Skip to content
2000
image of Chronic Treatment with Angiotensin-(1-7) Improves Metabolism by Modulating Adipose Tissue and Oxidative Stress in Mice

Abstract

Background

Angiotensin-(1-7) is a crucial endocrine modulatory peptide that can enhance conditions like diabetes, obesity, and other features of metabolic syndrome. However, there is a lack of data on its long-term effects.

Aim

This study aimed to assess the impact of chronic oral administration of Angiotensin-(1-7) on adipose tissue modulation and metabolic processes in mice.

Methods

The Angiotensin-(1-7) peptide oral formulation was encapsulated within the hydroxypropyl-β-cyclodextrin oligosaccharide (HPβCD) matrix. Male Swiss mice were divided into 4 groups: standard diet (ST)+HPßCD; ST+Ang-(1-7); high-fat diet HFD+HPßCD, and HFD+Ang-(1-7). The treatment lasted for 12 months, during which body weight, food intake, glycemic and lipid profiles, visceral adiposity, oxidative stress indicators, histological parameters, quantitative real-time PCR assessments, and comprehensive bioinformatics analyses were conducted.

Results

Prolonged treatment with Ang-(1-7) led to improvements in glucose levels, visceral body adiposity, decreased cholesterol and triglyceride levels, and reduced oxidative stress. Bioinformatics analysis revealed that AKT1, an insulin signaling effector (INS), and key inflammatory markers like IL-6 and VEGF may be potential molecular mediators of Angiotensin-(1-7) effects. Non-obese animals treated with Angiotensin-(1-7) showed increased expression levels of AKT1, supporting the findings from the bioinformatics analysis.

Conclusion

This study demonstrates that chronic oral use of Ang-(1-7) enhances adipose and metabolic parameters, suggesting its potential as a long-term therapeutic agent for regulating metabolic disorders.

Loading

Article metrics loading...

/content/journals/aiaamc/10.2174/0118715230367867250613134043
2025-06-20
2025-10-21
Loading full text...

Full text loading...

References

  1. Trayhurn P. Beattie J.H. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc. Nutr. Soc. 2001 60 3 329 339 10.1079/PNS200194 11681807
    [Google Scholar]
  2. Hassan M. Latif N. Yacoub M. Adipose tissue: friend or foe? Nat. Rev. Cardiol. 2012 9 12 689 702 10.1038/nrcardio.2012.148 23149834
    [Google Scholar]
  3. Tsvetkov D. Schleifenbaum J. Wang Y. Kassmann M. Polovitskaya M.M. Ali M. Schütze S. Rothe M. Luft F.C. Jentsch T.J. Gollasch M. KCNQ5 controls perivascular adipose tissue–mediated vasodilation. Hypertension 2024 81 3 561 571 10.1161/HYPERTENSIONAHA.123.21834 38354270
    [Google Scholar]
  4. Minor R.K. Baur J.A. Gomes A.P. Ward T.M. Csiszar A. Mercken E.M. Abdelmohsen K. Shin Y.K. Canto C. Scheibye-Knudsen M. Krawczyk M. Irusta P.M. Martín-Montalvo A. Hubbard B.P. Zhang Y. Lehrmann E. White A.A. Price N.L. Swindell W.R. Pearson K.J. Becker K.G. Bohr V.A. Gorospe M. Egan J.M. Talan M.I. Auwerx J. Westphal C.H. Ellis J.L. Ungvari Z. Vlasuk G.P. Elliott P.J. Sinclair D.A. de Cabo R. SRT1720 improves survival and healthspan of obese mice. Sci. Rep. 2011 1 1 70 10.1038/srep00070 22355589
    [Google Scholar]
  5. McAllister E.J. Dhurandhar N.V. Keith S.W. Aronne L.J. Barger J. Baskin M. Benca R.M. Biggio J. Boggiano M.M. Eisenmann J.C. Elobeid M. Fontaine K.R. Gluckman P. Hanlon E.C. Katzmarzyk P. Pietrobelli A. Redden D.T. Ruden D.M. Wang C. Waterland R.A. Wright S.M. Allison D.B. Ten putative contributors to the obesity epidemic. Crit. Rev. Food Sci. Nutr. 2009 49 10 868 913 10.1080/10408390903372599 19960394
    [Google Scholar]
  6. Amarya S. Singh K. Sabharwal M. Health consequences of obesity in the elderly. J. Clin. Gerontol. Geriatr 2014 5 3 63 67 10.1016/j.jcgg.2014.01.004
    [Google Scholar]
  7. Brüünsgaard H. Pedersen B.K. Age-related inflammatory cytokines and disease. Immunol. Allergy Clin. North Am. 2003 23 1 15 39 10.1016/S0889‑8561(02)00056‑5 12645876
    [Google Scholar]
  8. Rea I.M. Gibson D.S. McGilligan V. McNerlan S.E. Alexander H.D. Ross O.A. Age and Age-Related Diseases: Role of Inflammation Triggers and Cytokines. Front. Immunol. 2018 9 586 10.3389/fimmu.2018.00586 29686666
    [Google Scholar]
  9. Rajabnia M. Hajimirzaei S.M. Hatamnejad M.R. Shahrokh S. Ghavami S.B. Farmani M. Salarieh N. Ebrahimi N. Kazemifard N. Farahanie A. Sherkat G. Aghdaei H.A. Obesity, a challenge in the management of inflammatory bowel diseases. Immunol. Res. 2022 70 6 742 751 10.1007/s12026‑022‑09315‑7 36031674
    [Google Scholar]
  10. Engeli S. Negrel R. Sharma A.M. Physiology and pathophysiology of the adipose tissue renin-angiotensin system. Hypertension 2000 35 6 1270 1277 10.1161/01.HYP.35.6.1270 10856276
    [Google Scholar]
  11. Santos S.H.S. Editorial: Renin-Angiotensin System: Role in Chronic Diseases. Protein Pept. Lett. 2017 24 9 782 783 [PMID: 29210628
    [Google Scholar]
  12. Giacchetti G. Faloia E. Mariniello B. Sardu C. Gatti C. Camilloni M.A. Guerrieri M. Mantero F. Overexpression of the renin-angiotensin system in human visceral adipose tissue in normal and overweight subjects. Am. J. Hypertens. 2002 15 5 381 388 10.1016/S0895‑7061(02)02257‑4 12022238
    [Google Scholar]
  13. Ferrario C.M. Strawn W.B. Role of the renin-angiotensin-aldosterone system and proinflammatory mediators in cardiovascular disease. Am. J. Cardiol. 2006 98 1 121 128 10.1016/j.amjcard.2006.01.059 16784934
    [Google Scholar]
  14. Santos R.A.S. Sampaio W.O. Alzamora A.C. Motta-Santos D. Alenina N. Bader M. Campagnole-Santos M.J. The ACE2/Angiotensin-(1–7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1–7). Physiol. Rev. 2018 98 1 505 553 10.1152/physrev.00023.2016 29351514
    [Google Scholar]
  15. Etelvino G.M. Peluso A.A.B. Santos R.A.S. New components of the renin-angiotensin system: alamandine and the MAS-related G protein-coupled receptor D. Curr. Hypertens. Rep. 2014 16 6 433 10.1007/s11906‑014‑0433‑0 24760442
    [Google Scholar]
  16. Santos R.A. Angiotensin-(1–7). Hypertension 2014 63 6 1138 1147 10.1161/HYPERTENSIONAHA.113.01274 24664288
    [Google Scholar]
  17. Villela D.C. Passos-Silva D.G. Santos R.A.S. Alamandine. Curr. Opin. Nephrol. Hypertens. 2014 23 2 130 134 10.1097/01.mnh.0000441052.44406.92 24389733
    [Google Scholar]
  18. Musso C.G. Jauregui J.R. Renin-angiotensin-aldosterone system and the aging kidney. Expert Rev. Endocrinol. Metab. 2014 9 6 543 546 10.1586/17446651.2014.956723 30736192
    [Google Scholar]
  19. Romero A. San Hipólito-Luengo Á. Villalobos L.A. Vallejo S. Valencia I. Michalska P. Pajuelo-Lozano N. Sánchez-Pérez I. León R. Bartha J.L. Sanz M.J. Erusalimsky J.D. Sánchez-Ferrer C.F. Romacho T. Peiró C. The angiotensin(17)/Mas receptor axis protects from endothelial cell senescence via klotho and Nrf2 activation. Aging Cell 2019 18 3 e12913 10.1111/acel.12913 30773786
    [Google Scholar]
  20. Takeshita H. Takeda M. Yamamoto K. Rakugi H. Does ACE2-angiotensin-(1–7) axis protect from aging-associated loss of skeletal muscle function? J. Hypertens. 2016 34 1 e217 10.1097/01.hjh.0000500476.14631.13
    [Google Scholar]
  21. Zheng J.L. Li G.Z. Chen S.Z. Wang J.J. Olson J.E. Xia H.J. Lazartigues E. Zhu Y.L. Chen Y.F. Angiotensin converting enzyme 2/Ang-(1-7)/mas axis protects brain from ischemic injury with a tendency of age-dependence. CNS Neurosci. Ther. 2014 20 5 452 459 10.1111/cns.12233 24581232
    [Google Scholar]
  22. Lee R.M.K.W. Bader M. Alenina N. Santos R.A.S. Gao Y.J. Lu C. Mas receptors in modulating relaxation induced by perivascular adipose tissue. Life Sci. 2011 89 13-14 467 472 10.1016/j.lfs.2011.07.016 21820449
    [Google Scholar]
  23. Figueiredo V.P. Barbosa M.A. de Castro U.G.M. Zacarias A.C. Bezerra F.S. de Sá R.G. de Lima W.G. dos Santos R.A.S. Alzamora A.C. Antioxidant Effects of Oral Ang-(1-7) Restore Insulin Pathway and RAS Components Ameliorating Cardiometabolic Disturbances in Rats. Oxid. Med. Cell. Longev. 2019 2019 1 10 10.1155/2019/5868935 31396301
    [Google Scholar]
  24. de Pinho L. Andrade J.M.O. Paraíso A. Filho A.B.M. Feltenberger J.D. Guimarães A.L.S. de Paula A.M.B. Caldeira A.P. de Carvalho Botelho A.C. Campagnole-Santos M.J. Sousa Santos S.H. Diet composition modulates expression of sirtuins and ReninAngiotensin system components in adipose tissue. Obesity (Silver Spring) 2013 21 9 1830 1835 10.1002/oby.20305 23408648
    [Google Scholar]
  25. Freitas D.F. Colón D.F. Silva R.L. Santos E.M. Guimarães V.H.D. Ribeiro G.H.M. de Paula A.M.B. Guimarães A.L.S. dos Reis S.T. Cunha F.Q. Antunes M.M. Menezes G.B. Santos S.H.S. Neutrophil extracellular traps (NETs) modulate inflammatory profile in obese humans and mice: adipose tissue role on NETs levels. Mol. Biol. Rep. 2022 49 4 3225 3236 10.1007/s11033‑022‑07157‑y 35066770
    [Google Scholar]
  26. Andrade J.M.O. Lemos F.O. da Fonseca Pires S. Millán R.D.S. de Sousa F.B. Guimarães A.L.S. Qureshi M. Feltenberger J.D. de Paula A.M.B. Neto J.T.M. Lopes M.T.P. Andrade H.M. Santos R.A.S. Santos S.H.S. Proteomic white adipose tissue analysis of obese mice fed with a high-fat diet and treated with oral angiotensin-(1–7). Peptides 2014 60 56 62 10.1016/j.peptides.2014.07.023 25102447
    [Google Scholar]
  27. Lula I. Denadai Â.L. Resende J.M. de Sousa F.B. de Lima G.F. Pilo-Veloso D. Heine T. Duarte H.A. Santos R.A.S. Sinisterra R.D. Study of angiotensin-(1–7) vasoactive peptide and its -cyclodextrin inclusion complexes: Complete sequence-specific NMR assignments and structural studies. Peptides 2007 28 11 2199 2210 10.1016/j.peptides.2007.08.011 17904691
    [Google Scholar]
  28. Feltenberger J.D. Andrade J.M.O. Paraíso A. Barros L.O. Filho A.B.M. Sinisterra R.D.M. Sousa F.B. Guimarães A.L.S. de Paula A.M.B. Campagnole-Santos M.J. Qureshi M. dos Santos R.A.S. Santos S.H.S. Oral formulation of angiotensin-(1-7) improves lipid metabolism and prevents high-fat diet-induced hepatic steatosis and inflammation in mice. Hypertension 2013 62 2 324 330 10.1161/HYPERTENSIONAHA.111.00919 23753417
    [Google Scholar]
  29. Hodges D.M. DeLong J.M. Forney C.F. Prange R.K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 1999 207 4 604 611 10.1007/s004250050524
    [Google Scholar]
  30. Becker A. Soliman K.F.A. The role of intracellular glutathione in inorganic mercury-induced toxicity in neuroblastoma cells. Neurochem. Res. 2009 34 9 1677 1684 10.1007/s11064‑009‑9962‑3 19347580
    [Google Scholar]
  31. Merlo E. Podratz P.L. Sena G.C. de Araújo J.F.P. Lima L.C.F. Alves I.S.S. Gama-de-Souza L.N. Pelição R. Rodrigues L.C.M. Brandão P.A.A. Carneiro M.T.W.D. Pires R.G.W. Martins-Silva C. Alarcon T.A. Miranda-Alves L. Silva I.V. Graceli J.B. The environmental pollutant tributyltin chloride disrupts the hypothalamic-pituitary-adrenal axis at different levels in female rats. Endocrinology 2016 157 8 2978 2995 10.1210/en.2015‑1896 27267847
    [Google Scholar]
  32. Barreto L. Canadell D. Valverde-Saubí D. Casamayor A. Ariño J. The shortterm response of yeast to potassium starvation. Environ. Microbiol. 2012 14 11 3026 3042 10.1111/j.1462‑2920.2012.02887.x 23039231
    [Google Scholar]
  33. Rebhan M. Chalifa-Caspi V. Prilusky J. Lancet D. GeneCards: Integrating information about genes, proteins and diseases. Trends Genet. 1997 13 4 163 10.1016/S0168‑9525(97)01103‑7 9097728
    [Google Scholar]
  34. Cains L.J. Land W.A. Microscopically controlled excision of skin cancer in Australia: a report. Australas. J. Dermatol. 1979 20 3 135 138 10.1111/j.1440‑0960.1979.tb00222.x 539959
    [Google Scholar]
  35. Zhu B. Xia Y. Link Prediction in Weighted Networks: A Weighted Mutual Information Model. PLoS One 2016 11 2 e0148265 10.1371/journal.pone.0148265 26849659
    [Google Scholar]
  36. Orlando B. Bragazzi N. Nicolini C. Bioinformatics and systems biology analysis of genes network involved in OLP (Oral Lichen Planus) pathogenesis. Arch. Oral Biol. 2013 58 6 664 673 10.1016/j.archoralbio.2012.12.002 23347958
    [Google Scholar]
  37. Covani U. Marconcini S. Giacomelli L. Sivozhelevov V. Barone A. Nicolini C. Bioinformatic prediction of leader genes in human periodontitis. J. Periodontol. 2008 79 10 1974 1983 10.1902/jop.2008.080062 18834254
    [Google Scholar]
  38. Poswar F.O. Farias L.C. Fraga C.A.C. Bambirra W. Brito-Júnior M. Sousa-Neto M.D. Santos S.H.S. de Paula A.M.B. D’Angelo M.F.S.V. Guimarães A.L.S. Bioinformatics, interaction network analysis, and neural networks to characterize gene expression of radicular cyst and periapical granuloma. J. Endod. 2015 41 6 877 883 10.1016/j.joen.2015.02.004 25873079
    [Google Scholar]
  39. Cline M.S. Smoot M. Cerami E. Kuchinsky A. Landys N. Workman C. Christmas R. Avila-Campilo I. Creech M. Gross B. Hanspers K. Isserlin R. Kelley R. Killcoyne S. Lotia S. Maere S. Morris J. Ono K. Pavlovic V. Pico A.R. Vailaya A. Wang P.L. Adler A. Conklin B.R. Hood L. Kuiper M. Sander C. Schmulevich I. Schwikowski B. Warner G.J. Ideker T. Bader G.D. Integration of biological networks and gene expression data using Cytoscape. Nat. Protoc. 2007 2 10 2366 2382 10.1038/nprot.2007.324 17947979
    [Google Scholar]
  40. Maere S. Heymans K. Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks. Bioinformatics 2005 21 16 3448 3449 10.1093/bioinformatics/bti551 15972284
    [Google Scholar]
  41. Livak K.J. Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(- C(T)). Method. Methods 2001 25 4 402 408 10.1006/meth.2001.1262 11846609
    [Google Scholar]
  42. Poswar F.O. Santos L.I. Farias L.C. Guimarães T.A. Santos S.H.S. Jones K.M. de Paula A.M.B. Palhares R.M. D’Angelo M.F.S.V. Guimarães A.L.S. An adaptation of particle swarm clustering applied in basal cell carcinoma, squamous cell carcinoma of the skin and actinic keratosis. Meta Gene 2017 12 72 77 10.1016/j.mgene.2017.01.007
    [Google Scholar]
  43. Santos E.M. Farias L.C. Santos S.H.S. de Paula A.M.B. Oliveira e Silva C.S. Guimarães A.L.S. Molecular finds of pressure ulcer: A bioinformatics approach in pressure ulcer. J. Tissue Viability 2017 26 2 119 124 10.1016/j.jtv.2017.01.002 28188042
    [Google Scholar]
  44. Santos E.M.S. Santos H.O. Dos Santos Dias I. Santos S.H. Batista de Paula A.M. Feltenberger J.D. Sena Guimarães A.L. Farias L.C. Bioinformatics analysis reveals genes involved in the pathogenesis of ameloblastoma and keratocystic odontogenic tumor. Int. J. Mol. Cell. Med. 2016 5 4 199 219 [PMID: 28357197
    [Google Scholar]
  45. Jura M. Kozak L.P. Obesity and related consequences to ageing. Age (Omaha) 2016 38 1 23 10.1007/s11357‑016‑9884‑3 26846415
    [Google Scholar]
  46. Thorpe R.J. Ferraro K.F. Aging, Obesity, and Mortality. Res. Aging 2004 26 1 108 129 10.1177/0164027503258738 22707808
    [Google Scholar]
  47. Moraes D.S. Lelis D.F. Andrade J.M.O. Meyer L. Guimarães A.L.S. De Paula A.M.B. Farias L.C. Santos S.H.S. Enalapril improves obesity associated liver injury ameliorating systemic metabolic markers by modulating Angiotensin Converting Enzymes ACE/ACE2 expression in high-fat feed mice. Prostaglandins Other Lipid Mediat. 2021 152 106501 10.1016/j.prostaglandins.2020.106501 33049402
    [Google Scholar]
  48. Motta-Santos D. Santos R.A.S. Santos S.H.S. Angiotensin(17) and Obesity: Role in Cardiorespiratory Fitness and COVID19 Implications. Obesity (Silver Spring) 2020 28 10 1786 10.1002/oby.22949 32621779
    [Google Scholar]
  49. Romano A.D. Serviddio G. de Matthaeis A. Bellanti F. Vendemiale G. Oxidative stress and aging J. Nephrol 2010 23 (15) S29 S36 (Suppl. 15) 20872368
    [Google Scholar]
  50. Conti S. Cassis P. Benigni A. Aging and the renin-angiotensin system. Hypertension 2012 60 4 878 883 10.1161/HYPERTENSIONAHA.110.155895 22926952
    [Google Scholar]
  51. West D.B. Boozer C.N. Moody D.L. Atkinson R.L. Dietary obesity in nine inbred mouse strains. Am. J. Physiol. 1992 262 6 Pt 2 R1025 R1032 [PMID: 1621856
    [Google Scholar]
  52. Santos S.H.S. Fernandes L.R. Pereira C.S. Guimarães A.L.S. de Paula A.M.B. Campagnole-Santos M.J. Alvarez-Leite J.I. Bader M. Santos R.A.S. Increased circulating angiotensin-(1–7) protects white adipose tissue against development of a proinflammatory state stimulated by a high-fat diet. Regul. Pept. 2012 178 1-3 64 70 10.1016/j.regpep.2012.06.009 22749992
    [Google Scholar]
  53. Williams I.M. Otero Y.F. Bracy D.P. Wasserman D.H. Biaggioni I. Arnold A.C. Chronic angiotensin-(1–7) improves insulin sensitivity in high-fat fed mice independent of blood pressure. Hypertension 2016 67 5 983 991 10.1161/HYPERTENSIONAHA.115.06935 26975707
    [Google Scholar]
  54. Choe S.S. Huh J.Y. Hwang I.J. Kim J.I. Kim J.B. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders. Front. Endocrinol. 2016 7 30 10.3389/fendo.2016.00030 27148161
    [Google Scholar]
  55. Shao J. Qiao L. Friedman J. Decreased Akt kinase activity and insulin resistance in C57BL/KsJ-Leprdb/db mice. J. Endocrinol. 2000 167 1 107 115
    [Google Scholar]
  56. Muñoz M.C. Giani J.F. Dominici F.P. Angiotensin-(1-7) stimulates the phosphorylation of Akt in rat extracardiac tissues in vivo via receptor Mas. Regul. Pept. 2010 161 1-3 1 7 10.1016/j.regpep.2010.02.001 20188769
    [Google Scholar]
  57. Pugliese A. Miceli D. The insulin gene in diabetes. Diabetes Metab. Res. Rev. 2002 18 1 13 25 10.1002/dmrr.261 11921414
    [Google Scholar]
  58. Borém L.M.A. Neto J.F.R. Brandi I.V. Lelis D.F. Santos S.H.S. The role of the angiotensin II type I receptor blocker telmisartan in the treatment of non-alcoholic fatty liver disease: a brief review. Hypertens. Res. 2018 41 6 394 405 10.1038/s41440‑018‑0040‑6 29636553
    [Google Scholar]
  59. Kahn B.B. Flier J.S. Obesity and insulin resistance. J. Clin. Invest. 2000 106 4 473 481 10.1172/JCI10842 10953022
    [Google Scholar]
  60. Hardy O.T. Czech M.P. Corvera S. What causes the insulin resistance underlying obesity? Curr. Opin. Endocrinol. Diabetes Obes. 2012 19 2 81 87 10.1097/MED.0b013e3283514e13 22327367
    [Google Scholar]
  61. Ye J. Mechanisms of insulin resistance in obesity. Front. Med. 2013 7 1 14 24 10.1007/s11684‑013‑0262‑6 23471659
    [Google Scholar]
  62. Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J. Diabetes 2015 6 3 456 480 10.4239/wjd.v6.i3.456 25897356
    [Google Scholar]
  63. Barbosa M.A. Barbosa C.M. Lima T.C. Dos Santos R.A.S. Alzamora A.C. The Novel Angiotensin-(1-7) Analog, A-1317, improves insulin resistance by restoring pancreatic -cell functionality in rats with metabolic syndrome. Front. Pharmacol. 2020 11 1263
    [Google Scholar]
  64. Hadanu R. Idris S. Sutapa I.W. QSAR analysis of benzothiazole derivatives of antimalarial compounds based On AM1 semi-empirical method. Indonesian Journal of Chemistry 2015 15 1 86 92 10.22146/ijc.21228
    [Google Scholar]
  65. Male Y.T. Sutapa I.W. Maahury M.F. Jamal M. Male D. Computational study potency of eugenol and safrole derivatives as active sunscreen material. Molekul 2022 17 1 39 10.20884/1.jm.2022.17.1.5574
    [Google Scholar]
  66. Male Y. Sutapa I.W. Kapelle I. Lopulalan M. QSAR modeling and design of a new model of antihiv drug 1-aryl-tetrahydroisoquinoline derived using the pm3 semiempirical method. Rasayan J. Chem. 2022 15 359 368 10.31788/RJC.2022.1516479
    [Google Scholar]
  67. Rodrigues Prestes T.R. Rocha N.P. Miranda A.S. Teixeira A.L. Simoes-E-Silva, A.C. The Anti-Inflammatory Potential of ACE2/Angiotensin-(1-7)/Mas Receptor Axis: Evidence from Basic and Clinical Research. Curr. Drug Targets 2017 18 11 1301 1313 [PMID: 27469342
    [Google Scholar]
  68. Simões e Silva A.C. Silveira K.D. Ferreira A.J. Teixeira M.M. ACE2, angiotensin(17) and M as receptor axis in inflammation and fibrosis. Br. J. Pharmacol. 2013 169 3 477 492 10.1111/bph.12159 23488800
    [Google Scholar]
  69. da Silveira K.D. Coelho F.M. Vieira A.T. Sachs D. Barroso L.C. Costa V.V. Bretas T.L.B. Bader M. de Sousa L.P. da Silva T.A. dos Santos R.A.S. Simões e Silva A.C. Teixeira M.M. Anti-inflammatory effects of the activation of the angiotensin-(1-7) receptor, MAS, in experimental models of arthritis. J. Immunol. 2010 185 9 5569 5576 10.4049/jimmunol.1000314 20935211
    [Google Scholar]
  70. Lelis D.F. Freitas D.F. Machado A.S. Crespo T.S. Santos S.H.S. Angiotensin-(1-7), Adipokines and Inflammation. Metabolism 2019 95 36 45 10.1016/j.metabol.2019.03.006 30905634
    [Google Scholar]
  71. Baradaran Ghavami S. Mohebbi S.R. Karimi K. Azimzadeh P. Sharifian A. Mojahed Yazdi H. Hatami B. Variants in two gene members of the TNF ligand superfamily and hepatitis C virus chronic disease. Gastroenterol. Hepatol. Bed Bench 2018 11 S66 S72 (Suppl. 1) 30774809
    [Google Scholar]
  72. Wang J. Liu R. Qi H. Wang Y. Cui L. Wen Y. Li H. Yin C. The ACE2-angiotensin-(1-7)-Mas axis protects against pancreatic cell damage in cell culture. Pancreas 2015 44 2 266 272 10.1097/MPA.0000000000000247 25426615
    [Google Scholar]
  73. Souza L.L. Costa-Neto C.M. Angiotensin(1–7) decreases LPSinduced inflammatory response in macrophages. J. Cell. Physiol. 2012 227 5 2117 2122 10.1002/jcp.22940 21769868
    [Google Scholar]
  74. Miller W.M. Nori-Janosz K.E. Lillystone M. Yanez J. McCullough P.A. Obesity and lipids. Curr. Cardiol. Rep. 2005 7 6 465 470 10.1007/s11886‑005‑0065‑8 16256017
    [Google Scholar]
  75. Santos S.H.S. Braga J.F. Mario É.G. Pôrto L.C.J. Rodrigues-Machado M.G. Murari A. Botion L.M. Alenina N. Bader M. Santos R.A.S. Improved lipid and glucose metabolism in transgenic rats with increased circulating angiotensin-(1-7). Arterioscler. Thromb. Vasc. Biol. 2010 30 5 953 961 10.1161/ATVBAHA.109.200493 20203301
    [Google Scholar]
  76. Tang A. Li C. Zou N. Zhang Q. Liu M. Zhang X. Angiotensin(17) improves nonalcoholic steatohepatitis through an adiponectinindependent mechanism. Hepatol. Res. 2017 47 1 116 122 10.1111/hepr.12707 26992300
    [Google Scholar]
  77. Honma T. Tsuduki T. Sugawara S. Kitano Y. Ito J. Kijima R. Tsubata M. Nakagawa K. Miyazawa T. Aging decreases antioxidant effects and increases lipid peroxidation in the Apolipoprotein E deficient mouse. J. Clin. Biochem. Nutr. 2013 52 3 234 240 10.3164/jcbn.12‑85 23704813
    [Google Scholar]
  78. Praticò D. Lipid peroxidation and the aging process. Sci. Aging Knowledge Environ. 2002 2002 50 re5
    [Google Scholar]
  79. Spiteller G. Lipid peroxidation in aging and age-dependent diseases. Exp. Gerontol. 2001 36 9 1425 1457 10.1016/S0531‑5565(01)00131‑0 11525868
    [Google Scholar]
  80. Hashimoto F. Hayashi H. Significance of catalase in peroxisomal fatty acyl-CoA -oxidation: NADH oxidation by acetoacetyl-CoA and H2O2. J. Biochem. 1990 108 3 426 431 10.1093/oxfordjournals.jbchem.a123217 2277034
    [Google Scholar]
  81. Maher P. The effects of stress and aging on glutathione metabolism. Ageing Res. Rev. 2005 4 2 288 314 10.1016/j.arr.2005.02.005 15936251
    [Google Scholar]
  82. Ahmed Y.M. Abdelgawad M.A. Shalaby K. Ghoneim M.M. Pioglitazone synthetic analogue ameliorates streptozotocin-induced diabetes mellitus through modulation of ACE2/Angiotensin-(1–7) via PI3K/AKT/mTOR signaling pathway. Pharmaceuticals 2022
    [Google Scholar]
  83. Takeda Y. Yoshikawa T. Dai P. Angiotensin II participates in mitochondrial thermogenic functions via the activation of glycolysis in chemically induced human brown adipocytes. Sci. Rep. 2024 14 1 10789 10.1038/s41598‑024‑61774‑0 38734719
    [Google Scholar]
/content/journals/aiaamc/10.2174/0118715230367867250613134043
Loading
/content/journals/aiaamc/10.2174/0118715230367867250613134043
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: obesity ; adipose tissue ; Oxidative stress ; renin angiotensin system ; ACE2 ; metabolism
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test