Skip to content
2000
Volume 24, Issue 4
  • ISSN: 1871-5230
  • E-ISSN: 1875-614X

Abstract

Background

Angiotensin-(1-7) is a crucial endocrine modulatory peptide that can enhance conditions like diabetes, obesity, and other features of metabolic syndrome. However, there is a lack of data on its long-term effects.

Aim

This study aimed to assess the impact of chronic oral administration of Angiotensin-(1-7) on adipose tissue modulation and metabolic processes in mice.

Methods

The Angiotensin-(1-7) peptide oral formulation was encapsulated within the hydroxypropyl-β-cyclodextrin oligosaccharide (HPβCD) matrix. Male Swiss mice were divided into 4 groups: standard diet (ST)+HPßCD; ST+Ang-(1-7); high-fat diet HFD+HPßCD, and HFD+Ang-(1-7). The treatment lasted for 12 months, during which body weight, food intake, glycemic and lipid profiles, visceral adiposity, oxidative stress indicators, histological parameters, quantitative real-time PCR assessments, and comprehensive bioinformatics analyses were conducted.

Results

Prolonged treatment with Ang-(1-7) led to improvements in glucose levels, visceral body adiposity, decreased cholesterol and triglyceride levels, and reduced oxidative stress. Bioinformatics analysis revealed that AKT1, an insulin signaling effector (INS), and key inflammatory markers like IL-6 and VEGF may be potential molecular mediators of Angiotensin-(1-7) effects. Non-obese animals treated with Angiotensin-(1-7) showed increased expression levels of AKT1, supporting the findings from the bioinformatics analysis.

Conclusion

This study demonstrates that chronic oral use of Ang-(1-7) enhances adipose and metabolic parameters, suggesting its potential as a long-term therapeutic agent for regulating metabolic disorders.

Loading

Article metrics loading...

/content/journals/aiaamc/10.2174/0118715230367867250613134043
2025-06-20
2026-01-31
Loading full text...

Full text loading...

References

  1. TrayhurnP. BeattieJ.H. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ.Proc. Nutr. Soc.200160332933910.1079/PNS200194 11681807
    [Google Scholar]
  2. HassanM. LatifN. YacoubM. Adipose tissue: friend or foe?Nat. Rev. Cardiol.201291268970210.1038/nrcardio.2012.148 23149834
    [Google Scholar]
  3. TsvetkovD. SchleifenbaumJ. WangY. KassmannM. PolovitskayaM.M. AliM. SchützeS. RotheM. LuftF.C. JentschT.J. GollaschM. KCNQ5 controls perivascular adipose tissue–mediated vasodilation.Hypertension202481356157110.1161/HYPERTENSIONAHA.123.21834 38354270
    [Google Scholar]
  4. MinorR.K. BaurJ.A. GomesA.P. WardT.M. CsiszarA. MerckenE.M. AbdelmohsenK. ShinY.K. CantoC. Scheibye-KnudsenM. KrawczykM. IrustaP.M. Martín-MontalvoA. HubbardB.P. ZhangY. LehrmannE. WhiteA.A. PriceN.L. SwindellW.R. PearsonK.J. BeckerK.G. BohrV.A. GorospeM. EganJ.M. TalanM.I. AuwerxJ. WestphalC.H. EllisJ.L. UngvariZ. VlasukG.P. ElliottP.J. SinclairD.A. de CaboR. SRT1720 improves survival and healthspan of obese mice.Sci. Rep.2011117010.1038/srep00070 22355589
    [Google Scholar]
  5. McAllisterE.J. DhurandharN.V. KeithS.W. AronneL.J. BargerJ. BaskinM. BencaR.M. BiggioJ. BoggianoM.M. EisenmannJ.C. ElobeidM. FontaineK.R. GluckmanP. HanlonE.C. KatzmarzykP. PietrobelliA. ReddenD.T. RudenD.M. WangC. WaterlandR.A. WrightS.M. AllisonD.B. Ten putative contributors to the obesity epidemic.Crit. Rev. Food Sci. Nutr.2009491086891310.1080/10408390903372599 19960394
    [Google Scholar]
  6. AmaryaS. SinghK. SabharwalM. Health consequences of obesity in the elderly.J. Clin. Gerontol. Geriatr201453636710.1016/j.jcgg.2014.01.004
    [Google Scholar]
  7. BrüünsgaardH. PedersenB.K. Age-related inflammatory cytokines and disease.Immunol. Allergy Clin. North Am.2003231153910.1016/S0889‑8561(02)00056‑5 12645876
    [Google Scholar]
  8. ReaI.M. GibsonD.S. McGilliganV. McNerlanS.E. AlexanderH.D. RossO.A. Age and Age-Related Diseases: Role of Inflammation Triggers and Cytokines.Front. Immunol.2018958610.3389/fimmu.2018.00586 29686666
    [Google Scholar]
  9. RajabniaM. HajimirzaeiS.M. HatamnejadM.R. ShahrokhS. GhavamiS.B. FarmaniM. SalariehN. EbrahimiN. KazemifardN. FarahanieA. SherkatG. AghdaeiH.A. Obesity, a challenge in the management of inflammatory bowel diseases.Immunol. Res.202270674275110.1007/s12026‑022‑09315‑7 36031674
    [Google Scholar]
  10. EngeliS. NegrelR. SharmaA.M. Physiology and pathophysiology of the adipose tissue renin-angiotensin system.Hypertension20003561270127710.1161/01.HYP.35.6.1270 10856276
    [Google Scholar]
  11. SantosS.H.S. Editorial: Renin-Angiotensin System: Role in Chronic Diseases.Protein Pept. Lett.2017249782783 29210628
    [Google Scholar]
  12. GiacchettiG. FaloiaE. MarinielloB. SarduC. GattiC. CamilloniM.A. GuerrieriM. ManteroF. Overexpression of the renin-angiotensin system in human visceral adipose tissue in normal and overweight subjects.Am. J. Hypertens.200215538138810.1016/S0895‑7061(02)02257‑4 12022238
    [Google Scholar]
  13. FerrarioC.M. StrawnW.B. Role of the renin-angiotensin-aldosterone system and proinflammatory mediators in cardiovascular disease.Am. J. Cardiol.200698112112810.1016/j.amjcard.2006.01.059 16784934
    [Google Scholar]
  14. SantosR.A.S. SampaioW.O. AlzamoraA.C. Motta-SantosD. AleninaN. BaderM. Campagnole-SantosM.J. The ACE2/Angiotensin-(1–7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1–7).Physiol. Rev.201898150555310.1152/physrev.00023.2016 29351514
    [Google Scholar]
  15. EtelvinoG.M. PelusoA.A.B. SantosR.A.S. New components of the renin-angiotensin system: alamandine and the MAS-related G protein-coupled receptor D.Curr. Hypertens. Rep.201416643310.1007/s11906‑014‑0433‑0 24760442
    [Google Scholar]
  16. SantosR.A. Angiotensin-(1–7).Hypertension20146361138114710.1161/HYPERTENSIONAHA.113.01274 24664288
    [Google Scholar]
  17. VillelaD.C. Passos-SilvaD.G. SantosR.A.S. Alamandine.Curr. Opin. Nephrol. Hypertens.201423213013410.1097/01.mnh.0000441052.44406.92 24389733
    [Google Scholar]
  18. MussoC.G. JaureguiJ.R. Renin-angiotensin-aldosterone system and the aging kidney.Expert Rev. Endocrinol. Metab.20149654354610.1586/17446651.2014.956723 30736192
    [Google Scholar]
  19. RomeroA. San Hipólito-LuengoÁ. VillalobosL.A. VallejoS. ValenciaI. MichalskaP. Pajuelo-LozanoN. Sánchez-PérezI. LeónR. BarthaJ.L. SanzM.J. ErusalimskyJ.D. Sánchez-FerrerC.F. RomachoT. PeiróC. The angiotensin-(1-7)/Mas receptor axis protects from endothelial cell senescence via klotho and Nrf2 activation.Aging Cell2019183e1291310.1111/acel.12913 30773786
    [Google Scholar]
  20. TakeshitaH. TakedaM. YamamotoK. RakugiH. Does ACE2-angiotensin-(1–7) axis protect from aging-associated loss of skeletal muscle function?J. Hypertens.2016341e21710.1097/01.hjh.0000500476.14631.13
    [Google Scholar]
  21. ZhengJ.L. LiG.Z. ChenS.Z. WangJ.J. OlsonJ.E. XiaH.J. LazartiguesE. ZhuY.L. ChenY.F. Angiotensin converting enzyme 2/Ang-(1-7)/mas axis protects brain from ischemic injury with a tendency of age-dependence.CNS Neurosci. Ther.201420545245910.1111/cns.12233 24581232
    [Google Scholar]
  22. LeeR.M.K.W. BaderM. AleninaN. SantosR.A.S. GaoY.J. LuC. Mas receptors in modulating relaxation induced by perivascular adipose tissue.Life Sci.20118913-1446747210.1016/j.lfs.2011.07.016 21820449
    [Google Scholar]
  23. FigueiredoV.P. BarbosaM.A. de CastroU.G.M. ZacariasA.C. BezerraF.S. de SáR.G. de LimaW.G. dos SantosR.A.S. AlzamoraA.C. Antioxidant Effects of Oral Ang-(1-7) Restore Insulin Pathway and RAS Components Ameliorating Cardiometabolic Disturbances in Rats.Oxid. Med. Cell. Longev.2019201911010.1155/2019/5868935 31396301
    [Google Scholar]
  24. de PinhoL. AndradeJ.M.O. ParaísoA. FilhoA.B.M. FeltenbergerJ.D. GuimarãesA.L.S. de PaulaA.M.B. CaldeiraA.P. de Carvalho BotelhoA.C. Campagnole-SantosM.J. Sousa SantosS.H. Diet composition modulates expression of sirtuins and Renin-Angiotensin system components in adipose tissue.Obesity (Silver Spring)20132191830183510.1002/oby.20305 23408648
    [Google Scholar]
  25. FreitasD.F. ColónD.F. SilvaR.L. SantosE.M. GuimarãesV.H.D. RibeiroG.H.M. de PaulaA.M.B. GuimarãesA.L.S. dos ReisS.T. CunhaF.Q. AntunesM.M. MenezesG.B. SantosS.H.S. Neutrophil extracellular traps (NETs) modulate inflammatory profile in obese humans and mice: adipose tissue role on NETs levels.Mol. Biol. Rep.20224943225323610.1007/s11033‑022‑07157‑y 35066770
    [Google Scholar]
  26. AndradeJ.M.O. LemosF.O. da Fonseca PiresS. MillánR.D.S. de SousaF.B. GuimarãesA.L.S. QureshiM. FeltenbergerJ.D. de PaulaA.M.B. NetoJ.T.M. LopesM.T.P. AndradeH.M. SantosR.A.S. SantosS.H.S. Proteomic white adipose tissue analysis of obese mice fed with a high-fat diet and treated with oral angiotensin-(1–7).Peptides201460566210.1016/j.peptides.2014.07.023 25102447
    [Google Scholar]
  27. LulaI. DenadaiÂ.L. ResendeJ.M. de SousaF.B. de LimaG.F. Pilo-VelosoD. HeineT. DuarteH.A. SantosR.A.S. SinisterraR.D. Study of angiotensin-(1–7) vasoactive peptide and its β-cyclodextrin inclusion complexes: Complete sequence-specific NMR assignments and structural studies.Peptides200728112199221010.1016/j.peptides.2007.08.011 17904691
    [Google Scholar]
  28. FeltenbergerJ.D. AndradeJ.M.O. ParaísoA. BarrosL.O. FilhoA.B.M. SinisterraR.D.M. SousaF.B. GuimarãesA.L.S. de PaulaA.M.B. Campagnole-SantosM.J. QureshiM. dos SantosR.A.S. SantosS.H.S. Oral formulation of angiotensin-(1-7) improves lipid metabolism and prevents high-fat diet-induced hepatic steatosis and inflammation in mice.Hypertension201362232433010.1161/HYPERTENSIONAHA.111.00919 23753417
    [Google Scholar]
  29. HodgesD.M. DeLongJ.M. ForneyC.F. PrangeR.K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds.Planta1999207460461110.1007/s004250050524
    [Google Scholar]
  30. BeckerA. SolimanK.F.A. The role of intracellular glutathione in inorganic mercury-induced toxicity in neuroblastoma cells.Neurochem. Res.20093491677168410.1007/s11064‑009‑9962‑3 19347580
    [Google Scholar]
  31. MerloE. PodratzP.L. SenaG.C. de AraújoJ.F.P. LimaL.C.F. AlvesI.S.S. Gama-de-SouzaL.N. PeliçãoR. RodriguesL.C.M. BrandãoP.A.A. CarneiroM.T.W.D. PiresR.G.W. Martins-SilvaC. AlarconT.A. Miranda-AlvesL. SilvaI.V. GraceliJ.B. The environmental pollutant tributyltin chloride disrupts the hypothalamic-pituitary-adrenal axis at different levels in female rats.Endocrinology201615782978299510.1210/en.2015‑1896 27267847
    [Google Scholar]
  32. BarretoL. CanadellD. Valverde-SaubíD. CasamayorA. AriñoJ. The short-term response of yeast to potassium starvation.Environ. Microbiol.201214113026304210.1111/j.1462‑2920.2012.02887.x 23039231
    [Google Scholar]
  33. RebhanM. Chalifa-CaspiV. PriluskyJ. LancetD. GeneCards: Integrating information about genes, proteins and diseases.Trends Genet.199713416310.1016/S0168‑9525(97)01103‑7 9097728
    [Google Scholar]
  34. CainsL.J. LandW.A. Microscopically controlled excision of skin cancer in Australia: a report.Australas. J. Dermatol.197920313513810.1111/j.1440‑0960.1979.tb00222.x 539959
    [Google Scholar]
  35. ZhuB. XiaY. Link Prediction in Weighted Networks: A Weighted Mutual Information Model.PLoS One2016112e014826510.1371/journal.pone.0148265 26849659
    [Google Scholar]
  36. OrlandoB. BragazziN. NicoliniC. Bioinformatics and systems biology analysis of genes network involved in OLP (Oral Lichen Planus) pathogenesis.Arch. Oral Biol.201358666467310.1016/j.archoralbio.2012.12.002 23347958
    [Google Scholar]
  37. CovaniU. MarconciniS. GiacomelliL. SivozhelevovV. BaroneA. NicoliniC. Bioinformatic prediction of leader genes in human periodontitis.J. Periodontol.200879101974198310.1902/jop.2008.080062 18834254
    [Google Scholar]
  38. PoswarF.O. FariasL.C. FragaC.A.C. BambirraW. Brito-JúniorM. Sousa-NetoM.D. SantosS.H.S. de PaulaA.M.B. D’AngeloM.F.S.V. GuimarãesA.L.S. Bioinformatics, interaction network analysis, and neural networks to characterize gene expression of radicular cyst and periapical granuloma.J. Endod.201541687788310.1016/j.joen.2015.02.004 25873079
    [Google Scholar]
  39. ClineM.S. SmootM. CeramiE. KuchinskyA. LandysN. WorkmanC. ChristmasR. Avila-CampiloI. CreechM. GrossB. HanspersK. IsserlinR. KelleyR. KillcoyneS. LotiaS. MaereS. MorrisJ. OnoK. PavlovicV. PicoA.R. VailayaA. WangP.L. AdlerA. ConklinB.R. HoodL. KuiperM. SanderC. SchmulevichI. SchwikowskiB. WarnerG.J. IdekerT. BaderG.D. Integration of biological networks and gene expression data using Cytoscape.Nat. Protoc.20072102366238210.1038/nprot.2007.324 17947979
    [Google Scholar]
  40. MaereS. HeymansK. KuiperM. BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks.Bioinformatics200521163448344910.1093/bioinformatics/bti551 15972284
    [Google Scholar]
  41. LivakK.J. SchmittgenT.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)).Method. Methods200125440240810.1006/meth.2001.1262 11846609
    [Google Scholar]
  42. PoswarF.O. SantosL.I. FariasL.C. GuimarãesT.A. SantosS.H.S. JonesK.M. de PaulaA.M.B. PalharesR.M. D’AngeloM.F.S.V. GuimarãesA.L.S. An adaptation of particle swarm clustering applied in basal cell carcinoma, squamous cell carcinoma of the skin and actinic keratosis.Meta Gene201712727710.1016/j.mgene.2017.01.007
    [Google Scholar]
  43. SantosE.M. FariasL.C. SantosS.H.S. de PaulaA.M.B. Oliveira e SilvaC.S. GuimarãesA.L.S. Molecular finds of pressure ulcer: A bioinformatics approach in pressure ulcer.J. Tissue Viability201726211912410.1016/j.jtv.2017.01.002 28188042
    [Google Scholar]
  44. SantosE.M.S. SantosH.O. Dos Santos DiasI. SantosS.H. Batista de PaulaA.M. FeltenbergerJ.D. Sena GuimarãesA.L. FariasL.C. Bioinformatics analysis reveals genes involved in the pathogenesis of ameloblastoma and keratocystic odontogenic tumor.Int. J. Mol. Cell. Med.201654199219 28357197
    [Google Scholar]
  45. JuraM. KozakL.P. Obesity and related consequences to ageing.Age (Omaha)20163812310.1007/s11357‑016‑9884‑3 26846415
    [Google Scholar]
  46. ThorpeR.J. FerraroK.F. Aging, Obesity, and Mortality.Res. Aging200426110812910.1177/0164027503258738 22707808
    [Google Scholar]
  47. MoraesD.S. LelisD.F. AndradeJ.M.O. MeyerL. GuimarãesA.L.S. De PaulaA.M.B. FariasL.C. SantosS.H.S. Enalapril improves obesity associated liver injury ameliorating systemic metabolic markers by modulating Angiotensin Converting Enzymes ACE/ACE2 expression in high-fat feed mice.Prostaglandins Other Lipid Mediat.202115210650110.1016/j.prostaglandins.2020.106501 33049402
    [Google Scholar]
  48. Motta-SantosD. SantosR.A.S. SantosS.H.S. Angiotensin-(1-7) and Obesity: Role in Cardiorespiratory Fitness and COVID-19 Implications.Obesity (Silver Spring)20202810178610.1002/oby.22949 32621779
    [Google Scholar]
  49. RomanoA.D. ServiddioG. de MatthaeisA. BellantiF. VendemialeG. Oxidative stress and aging.J. Nephrol.20102315S29S36 20872368
    [Google Scholar]
  50. ContiS. CassisP. BenigniA. Aging and the renin-angiotensin system.Hypertension201260487888310.1161/HYPERTENSIONAHA.110.155895 22926952
    [Google Scholar]
  51. WestD.B. BoozerC.N. MoodyD.L. AtkinsonR.L. Dietary obesity in nine inbred mouse strains.Am. J. Physiol.19922626 Pt 2R1025R1032 1621856
    [Google Scholar]
  52. SantosS.H.S. FernandesL.R. PereiraC.S. GuimarãesA.L.S. de PaulaA.M.B. Campagnole-SantosM.J. Alvarez-LeiteJ.I. BaderM. SantosR.A.S. Increased circulating angiotensin-(1–7) protects white adipose tissue against development of a proinflammatory state stimulated by a high-fat diet.Regul. Pept.20121781-3647010.1016/j.regpep.2012.06.009 22749992
    [Google Scholar]
  53. WilliamsI.M. OteroY.F. BracyD.P. WassermanD.H. BiaggioniI. ArnoldA.C. Chronic angiotensin-(1–7) improves insulin sensitivity in high-fat fed mice independent of blood pressure.Hypertension201667598399110.1161/HYPERTENSIONAHA.115.06935 26975707
    [Google Scholar]
  54. ChoeS.S. HuhJ.Y. HwangI.J. KimJ.I. KimJ.B. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders.Front. Endocrinol.201673010.3389/fendo.2016.00030 27148161
    [Google Scholar]
  55. ShaoJ. QiaoL. FriedmanJ. Decreased Akt kinase activity and insulin resistance in C57BL/KsJ-Leprdb/db mice.J. Endocrinol.20001671107115
    [Google Scholar]
  56. MuñozM.C. GianiJ.F. DominiciF.P. Angiotensin-(1-7) stimulates the phosphorylation of Akt in rat extracardiac tissues in vivo via receptor Mas.Regul. Pept.20101611-31710.1016/j.regpep.2010.02.001 20188769
    [Google Scholar]
  57. PuglieseA. MiceliD. The insulin gene in diabetes.Diabetes Metab. Res. Rev.2002181132510.1002/dmrr.261 11921414
    [Google Scholar]
  58. BorémL.M.A. NetoJ.F.R. BrandiI.V. LelisD.F. SantosS.H.S. The role of the angiotensin II type I receptor blocker telmisartan in the treatment of non-alcoholic fatty liver disease: a brief review.Hypertens. Res.201841639440510.1038/s41440‑018‑0040‑6 29636553
    [Google Scholar]
  59. KahnB.B. FlierJ.S. Obesity and insulin resistance.J. Clin. Invest.2000106447348110.1172/JCI10842 10953022
    [Google Scholar]
  60. HardyO.T. CzechM.P. CorveraS. What causes the insulin resistance underlying obesity?Curr. Opin. Endocrinol. Diabetes Obes.2012192818710.1097/MED.0b013e3283514e13 22327367
    [Google Scholar]
  61. YeJ. Mechanisms of insulin resistance in obesity.Front. Med.201371142410.1007/s11684‑013‑0262‑6 23471659
    [Google Scholar]
  62. TangvarasittichaiS. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus.World J. Diabetes20156345648010.4239/wjd.v6.i3.456 25897356
    [Google Scholar]
  63. BarbosaM.A. BarbosaC.M. LimaT.C. Dos SantosR.A.S. AlzamoraA.C. The Novel Angiotensin-(1-7) Analog, A-1317, improves insulin resistance by restoring pancreatic β-cell functionality in rats with metabolic syndrome.Front. Pharmacol.2020111263
    [Google Scholar]
  64. HadanuR. IdrisS. SutapaI.W. QSAR analysis of benzothiazole derivatives of antimalarial compounds based On AM1 semi-empirical method.Indonesian Journal of Chemistry2015151869210.22146/ijc.21228
    [Google Scholar]
  65. MaleY.T. SutapaI.W. MaahuryM.F. JamalM. MaleD. Computational study potency of eugenol and safrole derivatives as active sunscreen material.Molekul20221713910.20884/1.jm.2022.17.1.5574
    [Google Scholar]
  66. MaleY. SutapaI.W. KapelleI. LopulalanM. QSAR modeling and design of a new model of antihiv drug 1-aryl-tetrahydroisoquinoline derived using the pm3 semiempirical method.Rasayan J. Chem.20221535936810.31788/RJC.2022.1516479
    [Google Scholar]
  67. Rodrigues PrestesT.R. RochaN.P. MirandaA.S. TeixeiraA.L. Simoes-E-Silva, A.C. The Anti-Inflammatory Potential of ACE2/Angiotensin-(1-7)/Mas Receptor Axis: Evidence from Basic and Clinical Research.Curr. Drug Targets2017181113011313 27469342
    [Google Scholar]
  68. Simões e SilvaA.C. SilveiraK.D. FerreiraA.J. TeixeiraM.M. ACE2, angiotensin-(1-7) and Mas receptor axis in inflammation and fibrosis.Br. J. Pharmacol.2013169347749210.1111/bph.12159 23488800
    [Google Scholar]
  69. da SilveiraK.D. CoelhoF.M. VieiraA.T. SachsD. BarrosoL.C. CostaV.V. BretasT.L.B. BaderM. de SousaL.P. da SilvaT.A. dos SantosR.A.S. Simões e SilvaA.C. TeixeiraM.M. Anti-inflammatory effects of the activation of the angiotensin-(1-7) receptor, MAS, in experimental models of arthritis.J. Immunol.201018595569557610.4049/jimmunol.1000314 20935211
    [Google Scholar]
  70. LelisD.F. FreitasD.F. MachadoA.S. CrespoT.S. SantosS.H.S. Angiotensin-(1-7), Adipokines and Inflammation.Metabolism201995364510.1016/j.metabol.2019.03.006 30905634
    [Google Scholar]
  71. Baradaran GhavamiS. MohebbiS.R. KarimiK. AzimzadehP. SharifianA. Mojahed YazdiH. HatamiB. Variants in two gene members of the TNF ligand superfamily and hepatitis C virus chronic disease.Gastroenterol. Hepatol. Bed Bench201811S66S72(Suppl. 1)30774809
    [Google Scholar]
  72. WangJ. LiuR. QiH. WangY. CuiL. WenY. LiH. YinC. The ACE2-angiotensin-(1-7)-Mas axis protects against pancreatic cell damage in cell culture.Pancreas201544226627210.1097/MPA.0000000000000247 25426615
    [Google Scholar]
  73. SouzaL.L. Costa-NetoC.M. Angiotensin-(1–7) decreases LPS-induced inflammatory response in macrophages.J. Cell. Physiol.201222752117212210.1002/jcp.22940 21769868
    [Google Scholar]
  74. MillerW.M. Nori-JanoszK.E. LillystoneM. YanezJ. McCulloughP.A. Obesity and lipids.Curr. Cardiol. Rep.20057646547010.1007/s11886‑005‑0065‑8 16256017
    [Google Scholar]
  75. SantosS.H.S. BragaJ.F. MarioÉ.G. PôrtoL.C.J. Rodrigues-MachadoM.G. MurariA. BotionL.M. AleninaN. BaderM. SantosR.A.S. Improved lipid and glucose metabolism in transgenic rats with increased circulating angiotensin-(1-7).Arterioscler. Thromb. Vasc. Biol.201030595396110.1161/ATVBAHA.109.200493 20203301
    [Google Scholar]
  76. TangA. LiC. ZouN. ZhangQ. LiuM. ZhangX. Angiotensin-(1-7) improves non-alcoholic steatohepatitis through an adiponectin-independent mechanism.Hepatol. Res.201747111612210.1111/hepr.12707 26992300
    [Google Scholar]
  77. HonmaT. TsudukiT. SugawaraS. KitanoY. ItoJ. KijimaR. TsubataM. NakagawaK. MiyazawaT. Aging decreases antioxidant effects and increases lipid peroxidation in the Apolipoprotein E deficient mouse.J. Clin. Biochem. Nutr.201352323424010.3164/jcbn.12‑85 23704813
    [Google Scholar]
  78. PraticòD. Lipid peroxidation and the aging process.Sci. Aging Knowledge Environ.2002200250re5
    [Google Scholar]
  79. SpitellerG. Lipid peroxidation in aging and age-dependent diseases.Exp. Gerontol.20013691425145710.1016/S0531‑5565(01)00131‑0 11525868
    [Google Scholar]
  80. HashimotoF. HayashiH. Significance of catalase in peroxisomal fatty acyl-CoA β-oxidation: NADH oxidation by acetoacetyl-CoA and H2O2.J. Biochem.1990108342643110.1093/oxfordjournals.jbchem.a123217 2277034
    [Google Scholar]
  81. MaherP. The effects of stress and aging on glutathione metabolism.Ageing Res. Rev.20054228831410.1016/j.arr.2005.02.005 15936251
    [Google Scholar]
  82. AhmedY.M. AbdelgawadM.A. ShalabyK. GhoneimM.M. Pioglitazone synthetic analogue ameliorates streptozotocin-induced diabetes mellitus through modulation of ACE2/Angiotensin-(1–7) via PI3K/AKT/mTOR signaling pathway.Pharmaceuticals2022
    [Google Scholar]
  83. TakedaY. YoshikawaT. DaiP. Angiotensin II participates in mitochondrial thermogenic functions via the activation of glycolysis in chemically induced human brown adipocytes.Sci. Rep.20241411078910.1038/s41598‑024‑61774‑0 38734719
    [Google Scholar]
/content/journals/aiaamc/10.2174/0118715230367867250613134043
Loading
/content/journals/aiaamc/10.2174/0118715230367867250613134043
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): ACE2; adipose tissue; metabolism; obesity; Oxidative stress; renin angiotensin system
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test