Skip to content
2000
Volume 24, Issue 3
  • ISSN: 1871-5230
  • E-ISSN: 1875-614X

Abstract

The potential of underutilized plant species to improve food security, health, economic output, and the environment has not been fully realized. Sri Lanka an island on the Indian Ocean is home to numerous plant species with significant medicinal potential, including many underutilized plants that could help meet the growing demand for food, energy, medicines, and industrial resources. Globally, there are over a thousand known and unknown phytochemicals derived from plants. Although these compounds are primarily produced by plants for self-defence, and studies have demonstrated their anti-inflammatory properties. Recent research indicates that several phytochemicals can also protect humans from disease by regulating key inflammatory pathways, such as NF-κB, MAPK, JAK/STAT and Nrf-2, which are involved in autoimmune diseases. Thus, these bioactive compounds are vital for managing managing immune related conditions. This review will explore underutilized fruit crops from Sri Lanka that could be used against inflammation, including autoimmune diseases.

Loading

Article metrics loading...

/content/journals/aiaamc/10.2174/0118715230353359241211215415
2025-01-17
2025-09-25
Loading full text...

Full text loading...

References

  1. MalkanthiS.H. Importance of underutilized crops in thanamalwila divisional secretariat division in Monaragala district in Sri Lanka.J. Agric. Sci.201712319720610.4038/jas.v12i3.8266
    [Google Scholar]
  2. RatnayakeS.S. KumarL. KariyawasamC.S. Neglected and underutilized fruit species in Sri Lanka: Prioritisation and understanding the potential distribution under climate change.Agronomy20191013410.3390/agronomy10010034
    [Google Scholar]
  3. BandulaA. NathT.K. Underutilized crops in the agricultural farms of southeastern Sri Lanka: Farmers’ knowledge, preference, and contribution to household economy.Econ. Bot.202074126139
    [Google Scholar]
  4. NapagodaM. GerstmeierJ. ButschekH. De SoyzaS. PaceS. LorenzS. QaderM. WitharanaS. NagahawatteA. WijayaratneG. SvatošA. JayasingheL. KoeberleA. WerzO. The anti-inflammatory and antimicrobial potential of selected ethnomedicinal plants from Sri Lanka.Molecules2020258189410.3390/molecules25081894 32326068
    [Google Scholar]
  5. DahanayakeN. Some neglected and underutilized fruit crops in Srilanka Int.J. Sci. Res.20155217
    [Google Scholar]
  6. SafeenaM. NethmiJ. SamarakoonN. Antioxidant potential of 12 medicinal plants of Sri Lanka J.Med. Plants Stud202085170177
    [Google Scholar]
  7. LiX. YadavR. SiddiqueK.H.M. Neglected and underutilized crop species: The key to improving dietary diversity and fighting hunger and malnutrition in Asia and the pacific.Front. Nutr.20207November59371110.3389/fnut.2020.593711 33330593
    [Google Scholar]
  8. PereraS. SilvaA.B.G. AmarathungaY. De SilvaS. JayatissaR. GamageA. MerahO. MadhujithT. Nutritional composition and antioxidant activity of selected underutilized fruits grown in Sri Lanka.Agronomy2022125107310.3390/agronomy12051073
    [Google Scholar]
  9. NadafR. Medicinal plants and health care systems. The Handbook of Medicinal Plants and Health Care Systems.Integrity Media2024
    [Google Scholar]
  10. KumarA. PN. KumarM. JoseA. TomerV. OzE. ProestosC. ZengM. ElobeidT. KS. OzF. Major phytochemicals: Recent advances in health benefits and extraction method.Molecules202328288710.3390/molecules28020887 36677944
    [Google Scholar]
  11. LaksmitawatiD.R. PrasantiA.P. LarasintaN. SyautaG.A. HildaR. RamadaniatiH.U. WidyastutiA. KaramiN. AfniM. RihibihaD.D. KusumaH.S.W. WidowatiW. Anti-inflammatory potential of gandarusa (Gendarussa vulgaris nees) and soursoup (Annona muricata L) extracts in LPS stimulated-macrophage cell (RAW264.7).J. Nat. Rem.2016162738110.18311/jnr/2016/5367
    [Google Scholar]
  12. EllisJ.A. KempA.S. PonsonbyA.L. Gene environment interaction in autoimmune disease.Expert Rev. Mol. Med.201416Marche410.1017/erm.2014.5 24602341
    [Google Scholar]
  13. MoudgilK.D. VenkateshaS.H. The anti-inflammatory and immunomodulatory activities of natural products to control autoimmune inflammation.Int. J. Mol. Sci.20222419510.3390/ijms24010095 36613560
    [Google Scholar]
  14. TaftiD. EhsanD. XixisK.L. Multiple Sclerosis.Treasure IslandStatPearls2022 29763024
    [Google Scholar]
  15. GuoY.X. ZhangY. GaoY.H. DengS.Y. WangL.M. LiC.Q. LiX. Role of plant-derived natural compounds in experimental autoimmune encephalomyelitis: A review of the treatment potential and development strategy.Front. Pharmacol.202112June63965110.3389/fphar.2021.639651 34262447
    [Google Scholar]
  16. CastellonX. BogdanovaV. Chronic inflammatory diseases and endothelial dysfunction.Aging Dis.201671818910.14336/AD.2015.0803 26815098
    [Google Scholar]
  17. RikerA.I. ZeaN. TrinhT. The epidemiology, prevention, and detection of melanoma.Ochsner J.20101025665 21603359
    [Google Scholar]
  18. SamarghandianS. FarkhondehT. SaminiF. Honey and health: A review of recent clinical research.Pharmacognosy Res.20179212112710.4103/0974‑8490.204647 28539734
    [Google Scholar]
  19. DengL. SongC. NiuY. LiQ. WangM. WuY.F. YeX.S. Synthesis and biological evaluation of bergenin derivatives as new immunosuppressants.RSC Med. Chem.202112111968197610.1039/D1MD00210D 34825192
    [Google Scholar]
  20. ChewS. AninyeI.O. Autoimmune health crisis: An inclusive approach to addressing disparities in women in the United States Int J Environ Res.Public Health20242110133910.3390/ijerph21101339
    [Google Scholar]
  21. NgoS.T. SteynF.J. McCombeP.A. Gender differences in autoimmune disease.Front. Neuroendocrinol.201435334736910.1016/j.yfrne.2014.04.004 24793874
    [Google Scholar]
  22. DesaiM.K. BrintonR.D. Autoimmune disease in women: Endocrine transition and risk across the lifespan.Front. Endocrinol. (Lausanne)201910APR26510.3389/fendo.2019.00265 31110493
    [Google Scholar]
  23. Amador-patarroyoM.J. Rodriguez-rodriguezA. Montoya-ortizG. How does age at onset influence the outcome of autoimmune diseases?Autoimmune Dis.2012201225173010.1155/2012/251730
    [Google Scholar]
  24. Nomulak. AleH. ChangC. Innate and Adaptive ImmunitySpringer International Publishing202211110.1007/978‑3‑031‑12867‑7_1
    [Google Scholar]
  25. NiiroH. Effector B cells in autoimmune diseases.Japanese J. Clin. Immunol201538541242010.2177/jsci.38.412 26725863
    [Google Scholar]
  26. GorisA. ListonA. The immunogenetic architecture of autoimmune diseases.Cold Spring Harb. Perspect. Biol.201243a00726010.1101/cshperspect.a007260
    [Google Scholar]
  27. GhasemiN. RazaviS. NikzadE. Multiple sclerosis: Pathogenesis, symptoms, diagnoses and cell-based therapy.Cell J.201719111010.22074/cellj.2016.4867 28367411
    [Google Scholar]
  28. MirmosayyebO. BrandS. BarzegarM. Afshari-SafaviA. NehzatN. ShaygannejadV. Sadeghi BahmaniD. Clinical characteristics and disability progression of early-and late-onset multiple sclerosis compared to adult-onset multiple sclerosis.J. Clin. Med.202095132610.3390/jcm9051326 32370288
    [Google Scholar]
  29. BalushaB.A.A.K. MorrowS.A. Multiple sclerosis in people over age202155February4143
    [Google Scholar]
  30. DimeglioL.A. Evans-molinaC. Type 1 diabetes.Lancet2019391101382449246210.1016/S0140‑6736(18)31320‑5
    [Google Scholar]
  31. SimmonsK.M. MichelsA.W. Type 1 diabetes: A predictable disease.World J. Diabetes20156338039010.4239/wjd.v6.i3.380 25897349
    [Google Scholar]
  32. BassL.E. BonamiR.H. Factors governing B cell recognition of autoantigen and function in type 1 diabetes.Antibodies20241322710.3390/antib13020027 38651407
    [Google Scholar]
  33. BullockJ. RizviS.A.A. SalehA.M. AhmedS.S. DoD.P. AnsariR.A. AhmedJ. Rheumatoid arthritis: A brief overview of the treatment.Med. Princ. Pract.201827650150710.1159/000493390 30173215
    [Google Scholar]
  34. GuoQ. WangY. XuD. NossentJ. PavlosN.J. XuJ. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies.Bone Res.2018611510.1038/s41413‑018‑0016‑9 29736302
    [Google Scholar]
  35. RahaliF.Z. TarmidiM. HazimeR. AdmouB. Clinical significance of anti-cyclic citrullinated peptide (anti-CCP) antibodies in rheumatoid arthritis: Literature review.SN Compr. Clin. Med.20235127210.1007/s42399‑023‑01613‑x
    [Google Scholar]
  36. MavraganiC.P. MoutsopoulosH.M. Sjögren syndrome.CMAJ201418615E579E58610.1503/cmaj.122037 24566651
    [Google Scholar]
  37. CarsonsS.E. PatelB.C. Sjogren Syndrome.Treasure IslandStatPearls2023
    [Google Scholar]
  38. SerorR. ChicheL. BeydonM. DesjeuxG. ZhuoJ. Vannier-MoreauV. Devauchelle-PensecV. Estimated prevalence, incidence and healthcare costs of Sjögren’s syndrome in France: A national claims-based study.RMD Open2024101e00359110.1136/rmdopen‑2023‑003591 38307699
    [Google Scholar]
  39. ChristodoulouM.I. KapsogeorgouE.K. MoutsopoulosH.M. Characteristics of the minor salivary gland infiltrates in Sjögren’s syndrome.J. Autoimmun.201034440040710.1016/j.jaut.2009.10.004 19889514
    [Google Scholar]
  40. JonssonR. BrokstadK.A. JonssonM.V. DelaleuN. SkarsteinK. Current concepts on Sjögren’s syndrome: Classification criteria and biomarkers.Eur. J. Oral Sci.2018126S1Suppl. 1374810.1111/eos.12536 30178554
    [Google Scholar]
  41. ThurtleE. GrosjeanA. SteenackersM. StregeK. BarcelosG. GoswamiP. Epidemiology of Sjögren’s: A systematic literature review.Rheumatol. Ther.202411111710.1007/s40744‑023‑00611‑8 37948031
    [Google Scholar]
  42. Justiz VaillantA.A. GoyalA. VaracalloM. Systemic Lupus Erythematosus.Treasure IslandStatpearls2022
    [Google Scholar]
  43. PanL. LuM.P. WangJ.H. XuM. YangS.R. Immunological pathogenesis and treatment of systemic lupus erythematosus.World J. Pediatr.2020161193010.1007/s12519‑019‑00229‑3 30796732
    [Google Scholar]
  44. HardenO.C. HammadS.M. Sphingolipids and diagnosis, prognosis, and organ damage in systemic lupus erythematosus.Front. Immunol.202011September58673710.3389/fimmu.2020.586737 33101319
    [Google Scholar]
  45. WangY. ChenJ. TianJ. WangY. ZhaZ. ZengX. Editorial: Medicinal plants as a source of novel autoimmune-modulating and anti-inflammatory drug products.Front. Pharmacol.202213September97858110.3389/fphar.2022.978581 36147323
    [Google Scholar]
  46. JacobM. AgrawalN. PaulD. Study of additive effect of Dexmedetomidine added to epidural Ropivacaine for orthopedic lower limb procedures.Int. J. Biomed. Res.2017812810.7439/ijbr
    [Google Scholar]
  47. GalindoT. ReynaJ. WeyerA. Evidence for transient receptor potential (TRP) channel contribution to arthritis pain and pathogenesis.Pharmaceuticals201811410510.3390/ph11040105 30326593
    [Google Scholar]
  48. PlachaD. JampilekJ. Chronic inflammatory diseases, anti-inflammatory agents and their delivery nanosystems.Pharmaceutics20211316410.3390/pharmaceutics13010064 33419176
    [Google Scholar]
  49. LiP. ZhengY. ChenX. Drugs for autoimmune inflammatory diseases: From small molecule compounds to anti-TNF biologics.Front. Pharmacol.20178JUL46010.3389/fphar.2017.00460 28785220
    [Google Scholar]
  50. AkhtarM.A. Anti-Inflammatory medicinal plants of Bangladesh: A pharmacological evaluation.Front. Pharmacol.202213March80932410.3389/fphar.2022.809324 35401207
    [Google Scholar]
  51. BacanliM. Aydin DilsizS. BaşaranA.A. BaşaranN. Phytochemicals used in autoimmune disorders.Hacettepe Univ. J. Fac. Pharm.20204028392
    [Google Scholar]
  52. GoudaN.A. AlshammariS.O. AbourehabM.A.S. AlshammariQ.A. ElkamhawyA. Therapeutic potential of natural products in inflammation: Underlying molecular mechanisms, clinical outcomes, technological advances, and future perspectives.Inflammopharmacology20233162857288310.1007/s10787‑023‑01366‑y 37950803
    [Google Scholar]
  53. NakandalageN. AnuruddiH.I.G.K. Underutilized crops as a resource to combat the food, nutrient, and economic security in Sri Lanka. J. Dry Zo.Agric2023918110610.4038/jdza.v9i1.70
    [Google Scholar]
  54. MurthyH.N. BapatV.A. Importance of underutilized fruits and nuts.Ref. Ser. Phytochem2020June31910.1007/978‑3‑030‑30182‑8_1
    [Google Scholar]
  55. Laldinchhana LalrengpuiiJ. RayS. PachuauL. Indian tropical fruits and their bioactive compounds against human diseases. Plant-derived Bioactives.SingaporeSpringer202345549410.1007/978‑981‑15‑2361‑8_21
    [Google Scholar]
  56. KuruppuA.I. ParanagamaP. GoonasekaraC.L. Medicinal plants commonly used against cancer in traditional medicine formulae in Sri Lanka.Saudi Pharm. J.201927456557310.1016/j.jsps.2019.02.004 31061626
    [Google Scholar]
  57. PalR. AbrolG. SinghA.K. PunethaS. SharmaP. Nutritional and medicinal value of underutilized fruits2019311622
    [Google Scholar]
  58. IniguezA.B. ZhuM.J. Hop bioactive compounds in prevention of nutrition-related noncommunicable diseases.Crit. Rev. Food Sci. Nutr.202161111900191310.1080/10408398.2020.1767537 32462886
    [Google Scholar]
  59. MeenaV.S. GoraJ.S. SinghA. RamC. MeenaN.K. Pratibha RouphaelY. BasileB. KumarP. Underutilized fruit crops of Indian Arid and semi-arid regions: Importance, conservation and utilization strategies.Horticulturae20228217110.3390/horticulturae8020171
    [Google Scholar]
  60. El-desokyA.H. Abdel-RahmanR.F. AhmedO.K. El-BeltagiH.S. HattoriM. Anti-inflammatory and antioxidant activities of naringin isolated from Carissa carandas L.: In vitro and in vivo evidence.Phytomedicine20184212613410.1016/j.phymed.2018.03.051
    [Google Scholar]
  61. MallawaarachchiM.A.L.N. MadhujithT. SuriyagodaL.D.B. PushpakumaraD.K.N.G. Antioxidant efficacy of selected underutilized fruit species grown in Srilanka.Trop. Agric. Res20213216810.4038/tar.v32i1.8443
    [Google Scholar]
  62. DissanayakeP.K. DharmasenaP.W.S.N. WimalasiriG.E.M. Diversity of antioxidant properties among Madan (Syzygium cumini) trees in Belihuloya Region, Sri Lanka: Potential for improvement for community use International scientific and practical conference “Bulgaria of regions",University of agribusiness and rural developmentPlovdiv 19–21 October-2018
    [Google Scholar]
  63. KukretiN. RaniR. VarshneyV.K. ChitmeH.R. Important medicinal plants recommended in management of rheumatoid arthritis Bangladesh.Pharm. J.202225212513610.3329/bpj.v25i2.60964
    [Google Scholar]
  64. Sumalatha. Rama BhaP. BallalS.R. AcharyaS. Studies on immunomodulatory effects of Salacia chinensis L. on albino rats.J. Appl. Pharm. Sci.2012299810710.7324/JAPS.2012.2920
    [Google Scholar]
  65. El-SHEEKHM.M. El-ShenodyR.A.E.K. BasesE.A. El ShafayS.M. Comparative assessment of antioxidant activity and biochemical composition of four seaweeds, Rocky Bay of Abu Qir in Alexandria, Egypt.Food Sci. Technol. (Campinas)2021411294010.1590/fst.06120
    [Google Scholar]
  66. KunduJ. RoyM. BacharS.C. ChunK. KunduJ.K. Analgesic, anti-inflammatory and diuretic activity of methanol extract of Flacourtia indica. Arch. Basic. Appl. Med201311
    [Google Scholar]
  67. JayanthbabuN. PragadaP. Narasimha RaoG. Ethnomedicinal plants used for the treatment of psoriatic arthritis from Eastern Ghats of Andhra Pradesh, India.Am. J. Ethnomedicine202073445210.9790/3008‑1502014452
    [Google Scholar]
  68. ParvezG.M.M. SarkerR.K. Pharmacological potential of wood apple (Limonia acidissima): A review.Int. J. Minor Fruits Med. Aromat. Plants202172404710.53552/ijmfmap.2021.v07ii02.003
    [Google Scholar]
  69. Devi-NelluriK.D. Effect of Aegle marmelos leaf extract on glucose uptake using isolated rat diaphragm.J. Pharm. Negat. Results202213S0138038510.47750/pnr.2022.13.S01.47
    [Google Scholar]
  70. SinghS. SinghS. TripathiD. MishraC. SinghS.K. BhagatA. SenS. KumarS. Evaluation of Cleome viscosa L. roots extract (s): Anti-allergic, antioxidant and diuretic activities in association of phenolic profile.Eur. J. Mol. Clin. Med.2021710
    [Google Scholar]
  71. OjoO.A. GrantS. AmanzeJ.C. OniA.I. OjoA.B. ElebiyoT.C. ObafemiT.O. AyokunleD.I. OgunlakinA.D. Annona muricata L. peel extract inhibits carbohydrate metabolizing enzymes and reduces pancreatic β-cells, inflammation, and apoptosis via upregulation of PI3K/AKT genes.PLoS One20221710e027698410.1371/journal.pone.0276984 36301972
    [Google Scholar]
  72. ShahM. Venmathi MaranB. ShalehS. ZuldinW. GnanarajC. YongY. Therapeutic potential and nutraceutical profiling of North Bornean seaweeds: A review.Mar. Drugs202220210110.3390/md20020101 35200631
    [Google Scholar]
  73. Landi LibrandiA.P. ChrysóstomoT.N. AzzoliniA.E.C.S. RecchiaC.G.V. UyemuraS.A. de Assis-PandochiA.I. Effect of the extract of the tamarind (Tamarindus indica) fruit on the complement system: Studies in vitro and in hamsters submitted to a cholesterol-enriched diet.Food Chem. Toxicol.20074581487149510.1016/j.fct.2007.02.008 17383788
    [Google Scholar]
  74. SianiparE.A. The potential of Indonesian traditional herbal medicine as immunomodulatory agents: A review.Int. J. Pharm. Sci. Res.20211210522910.13040/IJPSR.0975‑8232.12(10).5229‑37
    [Google Scholar]
  75. BazmiR.R. AsifM. YaseenH.S. PanichayupakaranantP. Comparison of anti-inflammatory and analgesic effects of artocarpin-rich Artocarpus heterophyllus extract and artocarpin.J. Angiother202262V601V61110.25163/angiotherapy.624303118330422
    [Google Scholar]
  76. HaoY. LiuX. ZhuN. MaoR. LiuR. WuL. KangJ. HuJ. LiY. Jackfruit (Artocarpus heterophyllus Lam.) oligopeptides regulate immune responses via Th cell stimulation, cytokine secretion and antibody production.Food Funct.202011119810981910.1039/D0FO01294G 33084695
    [Google Scholar]
  77. LiuY. ZhangY. MuemaF.W. KimutaiF. ChenG. GuoM. Phenolic compounds from Carissa spinarum are characterized by their antioxidant, anti-inflammatory and hepatoprotective activities.Antioxidants202110565210.3390/antiox10050652 33922451
    [Google Scholar]
  78. SeharI. PalH.C. ShuklaS. BhushanS. HamidA. GuptaB.D. SaxenaA.K. Cytotoxic evaluation and induction of mitochondria-mediated apoptosis in human leukaemia HL-60 cells by Carissa spinarum stem isolate.J. Pharm. Pharmacol.20116381078109010.1111/j.2042‑7158.2011.01310.x 21718292
    [Google Scholar]
  79. Bency BabyT. MuraliR. SuriyaprakashT.N.K. VenkatachalamV.V. Vigil AnbiahS. SrinivasanN. AjeeshV. Phytochemical profiling and pancreatic lipase inhibitory activity of Flacourtia inermis Roxb. fruits.J. Nat. Rem.2023June51352010.18311/jnr/2023/32051
    [Google Scholar]
  80. LiuJ. ZhouH. SongL. Anthocyanins: Promising natural products with diverse pharmacological activities.Molecules20212613123
    [Google Scholar]
  81. SarkerM.R. NimmiI. KawsarH. Preliminary screening of six popular fruits of Bangladesh for in vitro IgM production and proliferation of Splenocytes Bangladesh J. Pharmacol201215(1)3137
    [Google Scholar]
  82. FahrulD.H. Covariance structure analysis of health-related indicators for elderly people living at home, focusing on subjective sense of health.202313141
    [Google Scholar]
  83. AbeysuriyaH.I. BulugahapitiyaV.P. Loku PulukkuttigeJ. Total vitamin C, ascorbic acid, dehydroascorbic acid, antioxidant properties, and iron content of underutilized and commonly consumed fruits in Sri Lanka.Int. J. Food Sci.2020202011310.1155/2020/4783029 32908860
    [Google Scholar]
  84. MihiranieS. JayasingheJ.K. JayasingheC.V.L. WanasundaraJ.P.D. Indigenous and traditional foods of Srilanka.J. Ethn. Foods2020714210.1186/s42779‑020‑00075‑z
    [Google Scholar]
  85. van de SandL. BormannM. SchmitzY. HeilinglohC.S. WitzkeO. KrawczykA. Antiviral active compounds derived from natural sources against herpes simplex viruses.Viruses2021137138610.3390/v13071386 34372592
    [Google Scholar]
  86. KimH.M. KangY.M. JinB.R. LeeH. LeeD.S. LeeM. AnH.J. Morus alba fruits attenuates atopic dermatitis symptoms and pathology in vivo and in vitro via the regulation of barrier function, immune response and pruritus.Phytomedicine202310915457910.1016/j.phymed.2022.154579 36610150
    [Google Scholar]
  87. HerathD. KasthuriarachchiV. D. W. ChamikaraM. IshanM. Morphological characterization and consumer acceptance of sweet orange Cultivars vis-à-vis sour orange in Srilanka Rajarata Univ.J201421
    [Google Scholar]
  88. Oshadie De SilvaG. ManawadugeR. Oshadie De SilvaC.G. MarapanaR. Effect of naringinase enzymatic treatment on the bitter compound naringin in fresh juice of "Bibila sweet & quot; oranges.J. Pharmacogn. Phytochem.201764174178
    [Google Scholar]
  89. ZengZ. MaoZ. LiuY. ChenM. XuZ. YanX. XuG. ZhuW. LiuH. JiY. Functional substances and therapeutic potential of kumquat essential oil.Trends Food Sci. Technol.202313827228310.1016/j.tifs.2023.06.003
    [Google Scholar]
  90. MaksoudS. Abdel-MassihR.M. RajhaH.N. LoukaN. ChematF. BarbaF.J. DebsE. Citrus aurantium l. active constituents, biological effects and extraction methods. An updated review.Molecules20212619583210.3390/molecules26195832 34641373
    [Google Scholar]
  91. AnmolR.J. MariumS. HiewF.T. HanW.C. KwanL.K. WongA.K.Y. KhanF. SarkerM.M.R. ChanS.Y. KifliN. MingL.C. Phytochemical and therapeutic potential of Citrus grandis (L.) Osbeck: A review.J. Evid. Based Integr. Med.2021262515690X21104374110.1177/2515690X21104374134657477
    [Google Scholar]
  92. HaoX. SunW. KeC. WangF. XueY. LuoZ. WangX. ZhangJ. ZhangY. Anti-inflammatory activities of leaf oil from Cinnamomum subavenium in vitro and in vivo.BioMed Res. Int.2019201911010.1155/2019/1823149 30915347
    [Google Scholar]
  93. YanX. LiQ. JingL. WuS. DuanW. ChenY. ChenD. PanX. Current advances on the phytochemical composition, pharmacologic effects, toxicology, and product development of Phyllanthi Fructus.Front. Pharmacol.202213101726810.3389/fphar.2022.1017268
    [Google Scholar]
  94. TaylorP. BegumS. HassanS.I. AliS.N. Natural product research: Formerly natural product letters chemical constituents from the leaves of Psidium guajava.Nat. Prod. Res.201318213514010.1080/14786410310001608019
    [Google Scholar]
  95. MaheshwariP. Traditional uses, phytochemical and pharmacological activity of Elaeocarpus serratus: A global perspective.J. Pharm. Negat. Results2022138202210.47750/pnr.2022.13.S08.221
    [Google Scholar]
  96. FerreiraC. VieiraP. SáH. MalvaJ. Castelo-BrancoM. ReisF. VianaS. Polyphenols: Immunonutrients tipping the balance of immunometabolism in chronic diseases.Front. Immunol.202415March136006510.3389/fimmu.2024.1360065 38558823
    [Google Scholar]
  97. SalehH.A. YousefM.H. AbdelnaserA. The anti-inflammatory properties of phytochemicals and their effects on epigenetic mechanisms involved in TLR4/NF-κB-mediated inflammation.Front. Immunol.202112March60606910.3389/fimmu.2021.606069 33868227
    [Google Scholar]
  98. ChristovichA. LuoX.M. Gut microbiota, leaky gut, and autoimmune diseases.Front. Immunol.202213June94624810.3389/fimmu.2022.946248 35833129
    [Google Scholar]
  99. Physiol. Behav.2017176113914810.1016/j.autrev.2019.05.001.Polyphenols
    [Google Scholar]
  100. ShinS.A. JooB.J. LeeJ.S. RyuG. HanM. KimW.Y. ParkH.H. LeeJ.H. LeeC.S. Phytochemicals as anti-inflammatory agents in animal models of prevalent inflammatory diseases.Molecules20202524593210.3390/molecules25245932 33333788
    [Google Scholar]
  101. AihaitiY. Song CaiY. TuerhongX. Ni YangY. MaY. Shi ZhengH. XuK. XuP. Therapeutic effects of aringin in rheumatoid arthritis: Network Pharmacology and experimental validation.Front. Pharmacol.202112May67205410.3389/fphar.2021.67205434054546
    [Google Scholar]
  102. KhooH.E. AzlanA. TangS.T. LimS.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits.Food Nutr. Res.2017611136177910.1080/16546628.2017.136177928970777
    [Google Scholar]
  103. MattioliR. FranciosoA. MoscaL. SilvaP. Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases.Molecules20202517380910.3390/molecules2517380932825684
    [Google Scholar]
  104. BehlT. KumarK. BriscC. RusM. Nistor-CseppentoD.C. BusteaC. AronR.A.C. PantisC. ZenginG. SehgalA. KaurR. KumarA. AroraS. SetiaD. ChandelD. BungauS. Exploring the multifocal role of phytochemicals as immunomodulators.Biomed. Pharmacother.2021133September11095910.1016/j.biopha.2020.11095933197758
    [Google Scholar]
  105. SeoY. MunC.H. ParkS.H. JeonD. KimS.J. YoonT. KoE. JoS. ParkY.B. NamkungW. LeeS.W. Punicalagin Ameliorates lupus nephritis via inhibition of PAR2.Int. J. Mol. Sci.20202114497510.3390/ijms2114497532674502
    [Google Scholar]
  106. SalehiB. MishraA.P. NigamM. SenerB. KilicM. Sharifi-RadM. FokouP.V.T. MartinsN. Sharifi-RadJ. Resveratrol: A double-edged sword in health benefits.Biomedicines2018639110.3390/biomedicines603009130205595
    [Google Scholar]
  107. OmaraT. KipropA.K. RamkatR.C. CherutoiJ. KagoyaS. Moraa NyangenaD. Azeze TeboD. NteziyaremyeP. Nyambura KaranjaL. JepchirchirA. Medicinal plants used in traditional management of cancer in Uganda: A review of ethnobotanical surveys.Evid. Based Complement. Alternat. Med.20202020352908110.1155/2020/3529081
    [Google Scholar]
  108. AhmadS.F. ZoheirK.M.A. Abdel-HamiedH.E. AshourA.E. BakheetS.A. AttiaS.M. Abd-AllahA.R.A. Amelioration of autoimmune arthritis by naringin through modulation of T regulatory cells and Th1/Th2 cytokines.Cell. Immunol.2014287211212010.1016/j.cellimm.2014.01.00124487035
    [Google Scholar]
  109. ChenQ. ZhouW. HuangY. TianY. WongS.Y. LamW.K. YingK.Y. ZhangJ. ChenH. Umbelliferone and scopoletin target tyrosine kinases on fibroblast-like synoviocytes to block NF-κB signaling to combat rheumatoid arthritis.Front. Pharmacol.202213July94621010.3389/fphar.2022.94621035959425
    [Google Scholar]
  110. TamokouJ.D.D. MbavengA.T. KueteV. Antimicrobial activities of African medicinal spices and vegetables. Medicinal Spices and Vegetables from Africa.Academic Press201720723710.1016/B978‑0‑12‑809286‑6.00008‑X
    [Google Scholar]
  111. MakrisD.P. RossiterJ.T. Comparison of quercetin and a non-orthohydroxy flavonol as antioxidants by competing in vitro oxidation reactions.J. Agric. Food Chem.20014973370337710.1021/jf010107l11453777
    [Google Scholar]
  112. HongD.G. LeeS. KimJ. YangS. LeeM. AhnJ. LeeH. ChangS.C. HaN.C. LeeJ. Anti-inflammatory and neuroprotective effects of morin in an MPTP-induced parkinson’s disease model.Int. J. Mol. Sci.202223181057810.3390/ijms23181057836142491
    [Google Scholar]
  113. KowalczykT. Merecz-SadowskaA. RijoP. MoriM. HatziantoniouS. GórskiK. SzemrajJ. PiekarskiJ. ŚliwińskiT. BijakM. SitarekP. Hidden in plants: A review of the anticancer potential of the solanaceae family in in vitro and in vivo studies.Cancers2022146145510.3390/cancers1406145535326606
    [Google Scholar]
  114. ZuoX. GuY. WangC. ZhangJ. ZhangJ. WangG. WangF. A systematic review of the anti‐inflammatory and immunomodulatory properties of 16 essential oils of herbs.Evid. Based Complement. Alternat. Med.202020201887892710.1155/2020/887892733354224
    [Google Scholar]
  115. MaqboolZ. KhalidW. AtiqH.T. KoraqiH. JavaidZ. AlhagS.K. Al-ShuraymL.A. BaderD.M.D. AlmarzuqM. AfifiM. AL-FargaA. Citrus waste as source of bioactive compounds: Extraction and utilization in health and food industry.Molecules2023284163610.3390/molecules2804163636838623
    [Google Scholar]
  116. MilesE.A. CalderP.C. Effects of citrus fruit juices and their bioactive components on inflammation and immunity: A narrative review.Front. Immunol.202112June71260810.3389/fimmu.2021.71260834249019
    [Google Scholar]
  117. AlakolangaA.G.A.W. KumarN.S. JayasingheL. FujimotoY. Antioxidant property and α-glucosidase, α-amylase and lipase inhibiting activities of Flacourtia inermis fruits: Characterization of malic acid as an inhibitor of the enzymes.J. Food Sci. Technol.201552128383838810.1007/s13197‑015‑1937‑626604419
    [Google Scholar]
  118. LeX.T. HuynhM.T. PhamT.N. ThanV.T. ToanT.Q. BachL.G. TrungN.Q. Optimization of total anthocyanin content, stability and antioxidant evaluation of the anthocyanin extract from vietnamese Carissa carandas l.Fruits. Processes20197746810.3390/pr7070468
    [Google Scholar]
  119. OnuahC.L. ChukwumaC.C. OhanadorR. ChukwuC.N. IruolagbeJ. Quantitative phytochemical analysis of Annona muricata and Artocarpus heterophyllus leaves using gas chromatography-flame ionization detector.Trends Appl. Sci. Res.201914211311810.3923/tasr.2019.113.118
    [Google Scholar]
  120. MinH.K. KimS.M. BaekS.Y. WooJ.W. ParkJ.S. ChoM.L. LeeJ. KwokS.K. KimS.W. ParkS.H. Anthocyanin extracted from black Soybean seed coats prevents autoimmune arthritis by suppressing the development of Th17 cells and synthesis of proinflammatory cytokines by such cells, via inhibition of NF-KB.PLoS One20151011e013820110.1371/journal.pone.013820126544846
    [Google Scholar]
  121. YuanK. ZhuQ. LuQ. JiangH. ZhuM. LiX. HuangG. XuA. Quercetin alleviates rheumatoid arthritis by inhibiting neutrophil inflammatory activities.J. Nutr. Biochem.20208410845410.1016/j.jnutbio.2020.10845432679549
    [Google Scholar]
  122. FürstR. ZündorfI. Plant-derived anti-inflammatory compounds: Hopes and disappointments regarding the translation of preclinical knowledge into clinical progress.Mediators Inflamm.201420141910.1155/2014/14683224987194
    [Google Scholar]
  123. ShenP. LinW. DengX. BaX. HanL. ChenZ. QinK. HuangY. TuS. Potential implications of Quercetin in autoimmune diseases.Front. Immunol.202112June68904410.3389/fimmu.2021.68904434248976
    [Google Scholar]
  124. SinghE. SharmaS. PareekA. DwivediJ. YadavS. SharmaS. Phytochemistry, traditional uses and cancer chemopreventive activity of Amla (Phyllanthus emblica).: The sustainer.J. Appl. Pharm. Sci.201221176183
    [Google Scholar]
  125. FernandoF.L. CarolineA.B. ClaudiaA.L.C. MartaC.T.D. ElianaJ.S.A. Evaluation of nutritional composition, bioactive compounds and antimicrobial activity of Elaeocarpus serratus fruit extract.Afr. J. Food Sci.2019131303710.5897/AJFS2018.1760
    [Google Scholar]
  126. StojanovićI. ŠavikinK. ĐedovićN. ŽivkovićJ. SaksidaT. MomčilovićM. KoprivicaI. VujičićM. StanisavljevićS. MiljkovićĐ. MenkovićN. Pomegranate peel extract ameliorates autoimmunity in animal models of multiple sclerosis and type 1 diabetes.J. Funct. Foods20173552253010.1016/j.jff.2017.06.021
    [Google Scholar]
  127. NanserekoS. MuyongaJ.H. Exploring the potential of Jackfruit (Artocarpus heterophyllus Lam).Asian Food Sci. J.20212099711710.9734/afsj/2021/v20i930346
    [Google Scholar]
  128. JayakumarT. SheuJ-R. YuanK-C. YenT-L. HsiaC-W. HuangW-C. TsengL-N. ChenC-H. HsiaC-H. Antiinflammatory mechanism of morin hydrate by suppressing the NF-κB/MAPKs mediated cell migration and modulating Src/FAK and β-Catenin.Nat. Prod. Commun.20231891934578X23120102910.1177/1934578X231201029
    [Google Scholar]
  129. HettiarachchiH.A.C.O. GunathilakeK.D.P.P. Bioactives and bioactivity of selected underutilized fruits, vegetables and legumes grown in Srilanka: A review.J. Med. Plants Stud202086344410.22271/plants.2020.v8.i6a.1227
    [Google Scholar]
  130. TangT. ZhongW. TangP. DaiR. GuoJ. Linalool’s multifaceted antimicrobial potential: Unveiling its antimicrobial efficacy and immunomodulatory role against Saprolegnia parasitica.eLife2024
    [Google Scholar]
  131. BachhetiA. Deepti BachhetiR.K. SinghA. ZebeamanM. HundeY. HusenA. Bioactive constituents and health promoting compounds of underutilized fruits of the northern himalayas of India: A review.Food Prod. Process. Nutr.2023512410.1186/s43014‑023‑00140‑5
    [Google Scholar]
/content/journals/aiaamc/10.2174/0118715230353359241211215415
Loading
/content/journals/aiaamc/10.2174/0118715230353359241211215415
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test