Skip to content
2000
image of Exploring Anti-inflammatory Compounds from Kappaphycus alvarezii in High Cholesterol-induced Zebrafish Larvae: Revealing Cardiovascular Potential

Abstract

Introduction

The study investigated the anti-inflammatory properties of by employing zebrafish larvae as a model system.

Materials and Methods

The seaweed extract was subjected to phytochemical screening, uncovering the presence of alkaloids, terpenoids, proteins, and cardiac glycosides. UV-visible, FTIR, and GC-MS were employed to identify the presence of bioactive compounds. The western blotting method was used to confirm the target proteins.

Results

Analysis through GC-MS revealed the presence of specific organic bioactive compounds, including 4-chlorobuten-3-yne, Methane-D, trichloro, and 1-propanol,2-(1-methylethoxy), each with distinct retention times. In the group induced with a high-cholesterol diet (HCD), the activities of antioxidant enzymes (SOD, CAT, GPx, and GST) were elevated, and treatment successfully reversed this effect. Additionally, the HCD group exhibited upregulation in the protein expression of MMP-9, MMP-13, MPO, IL-6, TNFα, and NFκB due to inflammation, whereas therapy reversed the inflammatory process in the treated group. These findings indicate the potential of to counteract inflammatory responses induced by a high-cholesterol diet through modulation of antioxidant enzyme activities and downregulation of pro-inflammatory markers.

Conclusion

shows promise for developing natural sources for antiradicals, food supplements, nutraceuticals, and various functional foods with therapeutic applications.

Loading

Article metrics loading...

/content/journals/aiaamc/10.2174/0118715230342356250611114954
2025-06-26
2025-09-26
Loading full text...

Full text loading...

References

  1. Binesh A. Devaraj Sivasitambaram N. Halagowder D. Monocytes treated with ciprofloxacin and oxyLDL express myristate, priming atherosclerosis. J. Biochem. Mol. Toxicol. 2020 34 3 e22442 10.1002/jbt.22442 31926051
    [Google Scholar]
  2. Kattoor A.J. Pothineni N.V.K. Palagiri D. Mehta J.L. Oxidative stress in atherosclerosis. Curr. Atheroscler. Rep. 2017 19 11 42 10.1007/s11883‑017‑0678‑6 28921056
    [Google Scholar]
  3. Binesh A. Devaraj S.N. Halagowder D. Atherogenic diet induced lipid accumulation induced NFκB level in heart, liver and brain of Wistar rat and diosgenin as an anti-inflammatory agent. Life Sci. 2018 196 28 37 10.1016/j.lfs.2018.01.012 29339101
    [Google Scholar]
  4. Fujiwara N. Kobayashi K. Macrophages in inflammation. Curr. Drug Targets Inflamm. Allergy 2005 4 3 281 286 10.2174/1568010054022024 16101534
    [Google Scholar]
  5. Binesh A. Devaraj S.N. Halagowder D. Molecular interaction of NFκB and NICD in monocyte–macrophage differentiation is a target for intervention in atherosclerosis. J. Cell. Physiol. 2019 234 5 7040 7050 10.1002/jcp.27458 30478968
    [Google Scholar]
  6. Lee H.S. Kim W.J. The role of matrix metalloproteinase in inflammation with a focus on infectious diseases. Int. J. Mol. Sci. 2022 23 18 10546 10.3390/ijms231810546 36142454
    [Google Scholar]
  7. Huxley-Jones J. Clarke T.K. Beck C. Toubaris G. Robertson D.L. Boot-Handford R.P. The evolution of the vertebrate metzincins; Insights from Ciona intestinalis and Danio rerio. BMC Evol. Biol. 2007 7 1 63 10.1186/1471‑2148‑7‑63 17439641
    [Google Scholar]
  8. Al-Roub A. Akhter N. Al-Rashed F. Wilson A. Alzaid F. Al-Mulla F. Sindhu S. Ahmad R. TNFα induces matrix metalloproteinase-9 expression in monocytic cells through ACSL1/JNK/ERK/NF-kB signaling pathways. Sci. Rep. 2023 13 1 14351 10.1038/s41598‑023‑41514‑6 37658104
    [Google Scholar]
  9. Khan A.A. Alsahli M.A. Rahmani A.H. Myeloperoxidase as an active disease biomarker: Recent biochemical and pathological perspectives. Med. Sci. 2018 6 2 33 10.3390/medsci6020033 29669993
    [Google Scholar]
  10. Binesh A. Gnanam R. Diosgenin production from callus, suspension and hairy root cultures of Trigonalle foenum-graceum L. Adv. Bio Tech. 2009 9 33 40
    [Google Scholar]
  11. Mantri V.A. Eswaran K. Shanmugam M. Ganesan M. Veeragurunathan V. Thiruppathi S. Reddy C.R.K. Seth A. An appraisal on commercial farming of Kappaphycus alvarezii in India: success in diversification of livelihood and prospects. J. Appl. Phycol. 2017 29 1 335 357 10.1007/s10811‑016‑0948‑7
    [Google Scholar]
  12. Binesh A. Decades‐long involvement of signalling pathways in cardiovascular research using zebrafish model and its global trends. Rev. Aquacult. 2021 13 1 556 566 10.1111/raq.12486
    [Google Scholar]
  13. Narasimhan M.K. Pavithra S.K. Krishnan V. Chandrasekaran M. In vitro analysis of antioxidant, antimicrobial and antiproliferative activity of Enteromorpha antenna, Enteromorpha linza and Gracilaria corticata extracts. Jundishapur J. Nat. Pharm. Prod. 2013 8 4 151 159 10.17795/jjnpp‑11277 24624206
    [Google Scholar]
  14. Madhumitha G. Saral A.M. Free radical scavenging assay of Thevetia neriifolia leaf extracts. Asian J. Chem. 2009 21 3 2468 2470
    [Google Scholar]
  15. Singleton V.L. Rossi J.A. Jr Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965 16 3 144 158 10.5344/ajev.1965.16.3.144
    [Google Scholar]
  16. Benzie I.F.F. Strain J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996 239 1 70 76 10.1006/abio.1996.0292 8660627
    [Google Scholar]
  17. Blois M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958 181 4617 1199 1200 10.1038/1811199a0
    [Google Scholar]
  18. Stoletov K. Fang L. Choi S.H. Hartvigsen K. Hansen L.F. Hall C. Pattison J. Juliano J. Miller E.R. Almazan F. Crosier P. Witztum J.L. Klemke R.L. Miller Y.I. Vascular lipid accumulation, lipoprotein oxidation, and macrophage lipid uptake in hypercholesterolemic zebrafish. Circ. Res. 2009 104 8 952 960 10.1161/CIRCRESAHA.108.189803 19265037
    [Google Scholar]
  19. Fang L. Harkewicz R. Hartvigsen K. Wiesner P. Choi S.H. Almazan F. Pattison J. Deer E. Sayaphupha T. Dennis E.A. Witztum J.L. Tsimikas S. Miller Y.I. Oxidized cholesteryl esters and phospholipids in zebrafish larvae fed a high cholesterol diet: Macrophage binding and activation. J. Biol. Chem. 2010 285 42 32343 32351 10.1074/jbc.M110.137257 20710028
    [Google Scholar]
  20. Sinha A.K. Colorimetric assay of catalase. Anal. Biochem. 1972 47 2 389 394 10.1016/0003‑2697(72)90132‑7 4556490
    [Google Scholar]
  21. Misra H.P. Fridovich I. The generation of superoxide radical during the autoxidation of hemoglobin. J. Biol. Chem. 1972 247 21 6960 6962 10.1016/S0021‑9258(19)44679‑6 4673289
    [Google Scholar]
  22. Rotruck J.T. Pope A.L. Ganther H.E. Swanson A.B. Hafeman D.G. Hoekstra W.G. Selenium: Biochemical role as a component of glutathione peroxidase. Science 1973 179 4073 588 590 10.1126/science.179.4073.588 4686466
    [Google Scholar]
  23. Habig W.H. Jakoby W.B. Assays for differentiation of glutathione S-Transferases. Methods in Enzymology Academic press 1981 398 405 10.1016/S0076‑6879(81)77053‑8
    [Google Scholar]
  24. García D. Delgado R. Ubeira F.M. Leiro J. Modulation of rat macrophage function by the Mangifera indica L. extracts Vimang and mangiferin. Int. Immunopharmacol. 2002 2 6 797 806 10.1016/S1567‑5769(02)00018‑8 12095170
    [Google Scholar]
  25. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970 227 5259 680 685 10.1038/227680a0 5432063
    [Google Scholar]
  26. Binesh A. Devaraj S.N. Devaraj H. Inhibition of nuclear translocation of notch intracellular domain (NICD) by diosgenin prevented atherosclerotic disease progression. Biochimie 2018 148 63 71 10.1016/j.biochi.2018.02.011 29481959
    [Google Scholar]
  27. Ranganayaki P. Susmitha S. Vijayaraghavan R. Study on metabolic compounds of Kappaphycus alvarezii and its in vitro analysis of anti-inflammatory activity. Int. J. Curr. Res. Acad. Rev. 2014 2 10 157 166
    [Google Scholar]
  28. Mariappan K.V. Binesh A. Medicinal plants or plant derived compounds used in aquaculture. Recent Advances in Aquaculture Microbial Technology Academic press 2023 10.1016/B978‑0‑323‑90261‑8.00003‑1
    [Google Scholar]
  29. Papitha R. Selvaraj C.I. Palanichamy V. Arunachalam P. Roopan S.M. In vitro antioxidant and cytotoxic capacity of Kappaphycus alvarezii successive extracts. Curr. Sci. 2020 119 5 790 798 10.18520/cs/v119/i5/790‑798
    [Google Scholar]
  30. Rudke A.R. da Silva M. Andrade C.J. Vitali L. Ferreira S.R.S. Green extraction of phenolic compounds and carrageenan from the red alga Kappaphycus alvarezii. Algal Res. 2022 67 102866 102866 10.1016/j.algal.2022.102866
    [Google Scholar]
  31. Vaghela P. Das A.K. Trivedi K. Anand K.G.V. Shinde P. Ghosh A. Characterization and metabolomics profiling of Kappaphycus alvarezii seaweed extract. Algal Res. 2022 66 102774 102774 10.1016/j.algal.2022.102774
    [Google Scholar]
  32. Valko M. Leibfritz D. Moncol J. Cronin M.T.D. Mazur M. Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007 39 1 44 84 10.1016/j.biocel.2006.07.001 16978905
    [Google Scholar]
  33. Zhang Y.J. Gan R.Y. Li S. Zhou Y. Li A.N. Xu D.P. Li H.B. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 2015 20 12 21138 21156 10.3390/molecules201219753 26633317
    [Google Scholar]
  34. Chandler J.D. Day B.J. THIOCYANATE: A potentially useful therapeutic agent with host defense and antioxidant properties. Biochem. Pharmacol. 2012 84 11 1381 1387 10.1016/j.bcp.2012.07.029 22968041
    [Google Scholar]
  35. Bourhia M. Messaoudi M. Bakrim H. Mothana R.A. Sddiqui N.A. Almarfadi O.M. El Mzibri M. Gmouh S. Laglaoui A. Benbacer L. Citrullus colocynthis (L.) Schrad: Chemical characterization, scavenging and cytotoxic activities. Open Chem. 2020 18 1 986 994 10.1515/chem‑2020‑0124
    [Google Scholar]
  36. Chia Y.Y. Kanthimathi M.S. Khoo K.S. Rajarajeswaran J. Cheng H.M. Yap W.S. Antioxidant and cytotoxic activities of three species of tropical seaweeds. BMC Complement. Altern. Med. 2015 15 1 339 10.1186/s12906‑015‑0867‑1 26415532
    [Google Scholar]
  37. Ahn C.B. Park P.J. Je J.Y. Preparation and biological evaluation of enzyme-assisted extracts from edible seaweed ( Enteromorpha prolifera ) as antioxidant, anti-acetylcholinesterase and inhibition of lipopolysaccharide-induced nitric oxide production in murine macrophages. Int. J. Food Sci. Nutr. 2012 63 2 187 193 10.3109/09637486.2011.616486 21913802
    [Google Scholar]
  38. Song W. Wang Z. Zhang X. Li Y. Ethanol extract from Ulva prolifera prevents high-fat diet-induced insulin resistance, oxidative stress, and inflammation response in mice. BioMed Res. Int. 2018 2018 1 9 10.1155/2018/1374565 29511669
    [Google Scholar]
  39. Binesh A. Venkatachalam K. Ramachandran S. Investigating the therapeutic potential of gracilaria edulis extract in copper-exposed zebrafish embryos: An anti-inflammatory perspective. Nat. Prod. J. 2025 15 5 e22103155294834 10.2174/0122103155294834240607054701
    [Google Scholar]
  40. Binesh A. Devaraj S.N. Devaraj H. Expression of chemokines in macrophage polarization and downregulation of NFκB in aorta allow macrophage polarization by diosgenin in atherosclerosis. J. Biochem. Mol. Toxicol. 2020 34 2 e22422 10.1002/jbt.22422 31729780
    [Google Scholar]
  41. Abu Bakar N.A. Anyanji V.U. Mustapha N.M. Lim S.L. Mohamed S. Seaweed (Eucheuma cottonii) reduced inflammation, mucin synthesis, eosinophil infiltration and MMP-9 expressions in asthma-induced rats compared to Loratadine. J. Funct. Foods 2015 19 710 722 10.1016/j.jff.2015.10.011
    [Google Scholar]
/content/journals/aiaamc/10.2174/0118715230342356250611114954
Loading
/content/journals/aiaamc/10.2174/0118715230342356250611114954
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test