Skip to content
2000
Volume 24, Issue 4
  • ISSN: 1871-5230
  • E-ISSN: 1875-614X

Abstract

Introduction

The study investigated the anti-inflammatory properties of by employing zebrafish larvae as a model system.

Materials and Methods

The seaweed extract was subjected to phytochemical screening, uncovering the presence of alkaloids, terpenoids, proteins, and cardiac glycosides. UV-visible, FTIR, and GC-MS were employed to identify the presence of bioactive compounds. The western blotting method was used to confirm the target proteins.

Results

Analysis through GC-MS revealed the presence of specific organic bioactive compounds, including 4-chlorobuten-3-yne, Methane-D, trichloro, and 1-propanol,2-(1-methylethoxy), each with distinct retention times. In the group induced with a high-cholesterol diet (HCD), the activities of antioxidant enzymes (SOD, CAT, GPx, and GST) were elevated, and treatment successfully reversed this effect. Additionally, the HCD group exhibited upregulation in the protein expression of MMP-9, MMP-13, MPO, IL-6, TNFα, and NFκB due to inflammation, whereas therapy reversed the inflammatory process in the treated group. These findings indicate the potential of to counteract inflammatory responses induced by a high-cholesterol diet through modulation of antioxidant enzyme activities and downregulation of pro-inflammatory markers.

Conclusion

shows promise for developing natural sources for antiradicals, food supplements, nutraceuticals, and various functional foods with therapeutic applications.

Loading

Article metrics loading...

/content/journals/aiaamc/10.2174/0118715230342356250611114954
2025-06-26
2026-01-31
Loading full text...

Full text loading...

References

  1. BineshA. Devaraj SivasitambaramN. HalagowderD. Monocytes treated with ciprofloxacin and oxyLDL express myristate, priming atherosclerosis.J. Biochem. Mol. Toxicol.2020343e2244210.1002/jbt.22442 31926051
    [Google Scholar]
  2. KattoorA.J. PothineniN.V.K. PalagiriD. MehtaJ.L. Oxidative stress in atherosclerosis.Curr. Atheroscler. Rep.201719114210.1007/s11883‑017‑0678‑6 28921056
    [Google Scholar]
  3. BineshA. DevarajS.N. HalagowderD. Atherogenic diet induced lipid accumulation induced NFκB level in heart, liver and brain of Wistar rat and diosgenin as an anti-inflammatory agent.Life Sci.2018196283710.1016/j.lfs.2018.01.012 29339101
    [Google Scholar]
  4. FujiwaraN. KobayashiK. Macrophages in inflammation.Curr. Drug Targets Inflamm. Allergy20054328128610.2174/1568010054022024 16101534
    [Google Scholar]
  5. BineshA. DevarajS.N. HalagowderD. Molecular interaction of NFκB and NICD in monocyte–macrophage differentiation is a target for intervention in atherosclerosis.J. Cell. Physiol.201923457040705010.1002/jcp.27458 30478968
    [Google Scholar]
  6. LeeH.S. KimW.J. The role of matrix metalloproteinase in inflammation with a focus on infectious diseases.Int. J. Mol. Sci.202223181054610.3390/ijms231810546 36142454
    [Google Scholar]
  7. Huxley-JonesJ. ClarkeT.K. BeckC. ToubarisG. RobertsonD.L. Boot-HandfordR.P. The evolution of the vertebrate metzincins; Insights from Ciona intestinalis and Danio rerio.BMC Evol. Biol.2007716310.1186/1471‑2148‑7‑63 17439641
    [Google Scholar]
  8. Al-RoubA. AkhterN. Al-RashedF. WilsonA. AlzaidF. Al-MullaF. SindhuS. AhmadR. TNFα induces matrix metalloproteinase-9 expression in monocytic cells through ACSL1/JNK/ERK/NF-kB signaling pathways.Sci. Rep.20231311435110.1038/s41598‑023‑41514‑6 37658104
    [Google Scholar]
  9. KhanA.A. AlsahliM.A. RahmaniA.H. Myeloperoxidase as an active disease biomarker: Recent biochemical and pathological perspectives.Med. Sci.2018623310.3390/medsci6020033 29669993
    [Google Scholar]
  10. BineshA. GnanamR. Diosgenin production from callus, suspension and hairy root cultures of Trigonalle foenum-graceum L.Adv. Bio Tech.200993340
    [Google Scholar]
  11. MantriV.A. EswaranK. ShanmugamM. GanesanM. VeeragurunathanV. ThiruppathiS. ReddyC.R.K. SethA. An appraisal on commercial farming of Kappaphycus alvarezii in India: success in diversification of livelihood and prospects.J. Appl. Phycol.201729133535710.1007/s10811‑016‑0948‑7
    [Google Scholar]
  12. BineshA. Decades-long involvement of signalling pathways in cardiovascular research using zebrafish model and its global trends.Rev. Aquacult.202113155656610.1111/raq.12486
    [Google Scholar]
  13. NarasimhanM.K. PavithraS.K. KrishnanV. ChandrasekaranM. In vitro analysis of antioxidant, antimicrobial and antiproliferative activity of Enteromorpha antenna, Enteromorpha linza and Gracilaria corticata extracts.Jundishapur J. Nat. Pharm. Prod.20138415115910.17795/jjnpp‑11277 24624206
    [Google Scholar]
  14. MadhumithaG. SaralA.M. Free radical scavenging assay of Thevetia neriifolia leaf extracts.Asian J. Chem.200921324682470
    [Google Scholar]
  15. SingletonV.L. RossiJ.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents.Am. J. Enol. Vitic.196516314415810.5344/ajev.1965.16.3.144
    [Google Scholar]
  16. BenzieI.F.F. StrainJ.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay.Anal. Biochem.19962391707610.1006/abio.1996.0292 8660627
    [Google Scholar]
  17. BloisM.S. Antioxidant determinations by the use of a stable free radical.Nature195818146171199120010.1038/1811199a0
    [Google Scholar]
  18. StoletovK. FangL. ChoiS.H. HartvigsenK. HansenL.F. HallC. PattisonJ. JulianoJ. MillerE.R. AlmazanF. CrosierP. WitztumJ.L. KlemkeR.L. MillerY.I. Vascular lipid accumulation, lipoprotein oxidation, and macrophage lipid uptake in hypercholesterolemic zebrafish.Circ. Res.2009104895296010.1161/CIRCRESAHA.108.189803 19265037
    [Google Scholar]
  19. FangL. HarkewiczR. HartvigsenK. WiesnerP. ChoiS.H. AlmazanF. PattisonJ. DeerE. SayaphuphaT. DennisE.A. WitztumJ.L. TsimikasS. MillerY.I. Oxidized cholesteryl esters and phospholipids in zebrafish larvae fed a high cholesterol diet: Macrophage binding and activation.J. Biol. Chem.201028542323433235110.1074/jbc.M110.137257 20710028
    [Google Scholar]
  20. SinhaA.K. Colorimetric assay of catalase.Anal. Biochem.197247238939410.1016/0003‑2697(72)90132‑7 4556490
    [Google Scholar]
  21. MisraH.P. FridovichI. The generation of superoxide radical during the autoxidation of hemoglobin.J. Biol. Chem.1972247216960696210.1016/S0021‑9258(19)44679‑6 4673289
    [Google Scholar]
  22. RotruckJ.T. PopeA.L. GantherH.E. SwansonA.B. HafemanD.G. HoekstraW.G. Selenium: Biochemical role as a component of glutathione peroxidase.Science1973179407358859010.1126/science.179.4073.588 4686466
    [Google Scholar]
  23. HabigW.H. JakobyW.B. Assays for differentiation of glutathione S-Transferases.In: Methods in Enzymology.Academic press198139840510.1016/S0076‑6879(81)77053‑8
    [Google Scholar]
  24. GarcíaD. DelgadoR. UbeiraF.M. LeiroJ. Modulation of rat macrophage function by the Mangifera indica L. extracts Vimang and mangiferin.Int. Immunopharmacol.20022679780610.1016/S1567‑5769(02)00018‑8 12095170
    [Google Scholar]
  25. LaemmliU.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature1970227525968068510.1038/227680a0 5432063
    [Google Scholar]
  26. BineshA. DevarajS.N. DevarajH. Inhibition of nuclear translocation of notch intracellular domain (NICD) by diosgenin prevented atherosclerotic disease progression.Biochimie2018148637110.1016/j.biochi.2018.02.011 29481959
    [Google Scholar]
  27. RanganayakiP. SusmithaS. VijayaraghavanR. Study on metabolic compounds of Kappaphycus alvarezii and its in vitro analysis of anti-inflammatory activity.Int. J. Curr. Res. Acad. Rev.2014210157166
    [Google Scholar]
  28. MariappanK.V. BineshA. Medicinal plants or plant derived compounds used in aquaculture.In: Recent Advances in Aquaculture Microbial Technology.Academic press202310.1016/B978‑0‑323‑90261‑8.00003‑1
    [Google Scholar]
  29. PapithaR. SelvarajC.I. PalanichamyV. ArunachalamP. RoopanS.M. In vitro antioxidant and cytotoxic capacity of Kappaphycus alvarezii successive extracts.Curr. Sci.2020119579079810.18520/cs/v119/i5/790‑798
    [Google Scholar]
  30. RudkeA.R. da SilvaM. AndradeC.J. VitaliL. FerreiraS.R.S. Green extraction of phenolic compounds and carrageenan from the red alga Kappaphycus alvarezii.Algal Res.20226710286610286610.1016/j.algal.2022.102866
    [Google Scholar]
  31. VaghelaP. DasA.K. TrivediK. AnandK.G.V. ShindeP. GhoshA. Characterization and metabolomics profiling of Kappaphycus alvarezii seaweed extract.Algal Res.20226610277410277410.1016/j.algal.2022.102774
    [Google Scholar]
  32. ValkoM. LeibfritzD. MoncolJ. CroninM.T.D. MazurM. TelserJ. Free radicals and antioxidants in normal physiological functions and human disease.Int. J. Biochem. Cell. Biol.2007391448410.1016/j.biocel.2006.07.001 16978905
    [Google Scholar]
  33. ZhangY.J. GanR.Y. LiS. ZhouY. LiA.N. XuD.P. LiH.B. Antioxidant phytochemicals for the prevention and treatment of chronic diseases.Molecules20152012211382115610.3390/molecules201219753 26633317
    [Google Scholar]
  34. ChandlerJ.D. DayB.J. Thiocyanate: A potentially useful therapeutic agent with host defense and antioxidant properties.Biochem. Pharmacol.201284111381138710.1016/j.bcp.2012.07.029 22968041
    [Google Scholar]
  35. BourhiaM. MessaoudiM. BakrimH. MothanaR.A. SddiquiN.A. AlmarfadiO.M. El MzibriM. GmouhS. LaglaouiA. BenbacerL. Citrullus colocynthis (L.) Schrad: Chemical characterization, scavenging and cytotoxic activities.Open Chem.202018198699410.1515/chem‑2020‑0124
    [Google Scholar]
  36. ChiaY.Y. KanthimathiM.S. KhooK.S. RajarajeswaranJ. ChengH.M. YapW.S. Antioxidant and cytotoxic activities of three species of tropical seaweeds.BMC Complement. Altern. Med.201515133910.1186/s12906‑015‑0867‑1 26415532
    [Google Scholar]
  37. AhnC.B. ParkP.J. JeJ.Y. Preparation and biological evaluation of enzyme-assisted extracts from edible seaweed (Enteromorpha prolifera) as antioxidant, anti-acetylcholinesterase and inhibition of lipopolysaccharide-induced nitric oxide production in murine macrophages.Int. J. Food Sci. Nutr.201263218719310.3109/09637486.2011.616486 21913802
    [Google Scholar]
  38. SongW. WangZ. ZhangX. LiY. Ethanol extract from Ulva prolifera prevents high-fat diet-induced insulin resistance, oxidative stress, and inflammation response in mice.BioMed Res. Int.201820181910.1155/2018/1374565 29511669
    [Google Scholar]
  39. BineshA. VenkatachalamK. RamachandranS. Investigating the therapeutic potential of Gracilaria edulis extract in copper-exposed zebrafish embryos: An anti-inflammatory perspective.Nat. Prod. J.2025155e2210315529483410.2174/0122103155294834240607054701
    [Google Scholar]
  40. BineshA. DevarajS.N. DevarajH. Expression of chemokines in macrophage polarization and downregulation of NFκB in aorta allow macrophage polarization by diosgenin in atherosclerosis.J. Biochem. Mol. Toxicol.2020342e2242210.1002/jbt.22422 31729780
    [Google Scholar]
  41. Abu BakarN.A. AnyanjiV.U. MustaphaN.M. LimS.L. MohamedS. Seaweed (Eucheuma cottonii) reduced inflammation, mucin synthesis, eosinophil infiltration and MMP-9 expressions in asthma-induced rats compared to Loratadine.J. Funct. Foods20151971072210.1016/j.jff.2015.10.011
    [Google Scholar]
/content/journals/aiaamc/10.2174/0118715230342356250611114954
Loading
/content/journals/aiaamc/10.2174/0118715230342356250611114954
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test