Skip to content
2000
Volume 24, Issue 2
  • ISSN: 1871-5230
  • E-ISSN: 1875-614X

Abstract

Objectives

This study assessed the Antioxidant and Analgesics and Anti-inflammatory Activity of Leaf Extract in Rats.

Introduction

Diverse pharmacological applications of plants from the Apocynaceae family are reported in the literature. ; an ornamental species belonging to the Apocynaceae family, is characterized by diverse biological activities, . antioxidant, cytotoxic, thrombolytic, membrane-stabilizing, antimicrobial, and anti-proliferative effects. This species represents a perennial flora that thrives in tropical and subtropical climates.

Materials and Methods

Ultrasonication-assisted method used for plant extraction. The extracts were subjected to phytochemical screening tests, followed by total phenolic content analysis, using gallic acid as a standard. The antioxidant activity was examined by DPPH scavenging and FRAP assays. The acetic acid-induced writhing test, tail flick, and Hot plate method were used for the determination of analgesic activity. Anti-inflammatory activity by following carrageenan-induced paw edema

Results

ABLE treatments show analgesic effectiveness against the acid-induced pain source, tail flick, and hot plate methods at different doses of ABLE 400,200,100 mg/kg results showed respectively- 55.32, 38.67, and 22.85 (% inhibition), 89.47%, 62.57%, 49.57%, and 100%, 92.40%, 65.33% response after 180 min of drug administration. ABLE 400 and 200 mg/kg exhibit effective results (1.43± 0.005 and 1.50± 0.008) against carrageenan-induced intoxication.

Discussion

The fundamental components of antioxidants that can aid in the reduction of free radicals include phenol, flavonoids, and polyphenols. Applying DPPH and FRAP, ABLE exhibits remarkable antioxidant activity. When it comes to both centrally and peripherally acting analgesics, ABLE exhibits highly effective activity. Methanolic ABLE had a noticeable impact on paw edema caused by carrageenan. Antioxidants, alkaloids, and glycosides were present in methanolic ABLE, which allowed it to efficiently combat inflammatory mediators and the cause of pain.

Conclusion

Ultrasonic assistance is beneficial in isolating active metabolites in plants, with phenolic compounds exhibiting antioxidant activity. ABLE, a plant with 55% squalene, effectively combats inflammatory mediators and pain. Further investigation is needed to identify biomarkers in the plant.

Loading

Article metrics loading...

/content/journals/aiaamc/10.2174/0118715230340178241008163943
2024-11-11
2025-09-28
Loading full text...

Full text loading...

References

  1. AnandU. NandyS. MundhraA. DasN. PandeyD.K. DeyA. A review on antimicrobial botanicals, phytochemicals and natural resistance modifying agents from Apocynaceae family: Possible therapeutic approaches against multidrug resistance in pathogenic microorganisms.Drug Resist. Updat.20205110069510.1016/j.drup.2020.10069532442892
    [Google Scholar]
  2. IslamMd. A study on different plants of Apocynaceae family and their medicinal uses.Univers. J. Pharm. Res.20194110.22270/ujpr.v4i1.235
    [Google Scholar]
  3. NazarN. GoyderD.J. ClarksonJ.J. MahmoodT. ChaseM.W. The taxonomy and systematics of Apocynaceae: Where we stand in 2012.Bot. J. Linn. Soc.2013171348249010.1111/boj.12005
    [Google Scholar]
  4. PetricevichV.L. Abarca-VargasR. Allamanda cathartica: A review of the phytochemistry, pharmacology, toxicology, and biotechnology.Molecules2019247123810.3390/molecules2407123830934947
    [Google Scholar]
  5. GhoshC. BanerjeeS. Floral extracts of Allamanda blanchetii and Allamanda cathartica are comparatively higher resource of anti-oxidants and polysaccharides than leaf and stem extracts.Int. J. Curr. Pharm. Res.20181043610.22159/ijcpr.2018v10i4.28458
    [Google Scholar]
  6. NurhananM.W. Anti-proliferative activities of 32 Malaysian plant species in breast cancer cell lines.J. Trop. For. Sci.20222027781[JTFS].
    [Google Scholar]
  7. Thangamari VengateshB. AsmathunishaN. KathiresanK. SarmilaA.S. BlanchettiA. Purple bloom - A review.Int. J. Sci. Res. Eng. Dev.202253134143
    [Google Scholar]
  8. HemaK. In vitro anti-inflammatory activity of Quercitrin isolated from Allamanda catharticalinn.Int. J. Pharm. Bio. Sci.201454440445
    [Google Scholar]
  9. PednekarH.D. HegdeH.V. HurakadaleP.J. WagawadeJ.D. BhatK.G. BogarC. Cytotoxic activity of endophytes isolated from Allamanda blanchetii A. DC.Indian J. Health Sci. Biomed. Res.2019122112116[KLEU].10.4103/kleuhsj.kleuhsj_7_19
    [Google Scholar]
  10. SharminT. SarkerP.K. IslamF. ChowdhuryS.R. QuaderyT.M. MianM.Y. Ashikur RahmanS.M. ChowdhuryZ.S. UllahM.S. Investigation of biological activities of Allamanda blanchetii, the violet Allamanda.J. Pharm. Res.20136776176410.1016/j.jopr.2013.07.010
    [Google Scholar]
  11. SubramanianK. VijayakumarV. Thermal analysis of cellulosic stalk (stem) fiber from the ornamental Allamanda blanchetii plant for commercial exploitations.Carbohydr. Polym. Technol. Appl.2021210006910.1016/j.carpta.2021.100069
    [Google Scholar]
  12. KusimoM.O. UkohaH. OludareA. AfolabiO. AgwaeM. Halochromic properties and antimicrobial potential of crude extracts from five species of ornamental plants.Cuad. Investig. UNED201911328329110.22458/urj.v11i3.2586
    [Google Scholar]
  13. de F Navarro SchmidtD. YunesR.A. SchaabE.H. MalheirosA. Cechinel FilhoV. FranchiG.C. NowillA.E. CardosoA.A. YunesJ. Evaluation of the anti-proliferative effect the extracts of Allamanda blanchetti and A. schottii on the growth of leukemic and endothelial cells.J. Pharm. Pharm. Sci.20069220020816959189
    [Google Scholar]
  14. SumathiR. AnuradhaR. Phytochemical screening and in vitro antioxidant activity of methanolic extract of flowers of Allamanda neriifolia hook.Int. J. Pharmacogn. Phytochem. Res.20168711111117
    [Google Scholar]
  15. OliveiraL.M.S. AlmeidaC.M.A. SilvaS.G.D. VerasB.O.D. OliveiraF.G.D.S. TenórioJ.C.G. CorreiaM.T.D.S. CavalcantiL.S. CoelhoR.S.B. SilvaM.V.D. Extracts from leaves of Allamanda blanchetti inducing mechanism of defense to diseases in sugarcane.J. Agric. Sci.201911328210.5539/jas.v11n3p282.Mazza
    [Google Scholar]
  16. Allamanda blanchetii.Available from: https://www.monaconatureencyclopedia.com/allamanda-blanchetii/?lang=en(Accessed on: 2024-09-07)
  17. BhattacharyyaJ. De MoraisM.D.S.Q. 5,6-dimethoxy-7 hydroxycoumarin (unckalin) from Allamanda blanchetii, isolation and 13C-NMR characteristics.J. Nat. Prod.198649235435510.1021/np50044a032
    [Google Scholar]
  18. DokheP. GirmeS. BarawantM.M. AbdiG. Biochemical, Phytochemical Screening and Pharmacological Potential of Allamanda blanchetii (Purple Allamanda).Int. J. Plant Environ.202391899210.18811/ijpen.v9i01.15
    [Google Scholar]
  19. Umckalin.Available from: https://www.pharmacompass.com/chemistry-chemical-name/umckalin(Accessed on: 2024-09-07)
  20. ChaveerachA. AungkapattamagulS. TaneeT. NoikotrK. SudmoonR. Genetic verification and chemical contents identification of Allamanda species (Apocynaceae).Pak. J. Pharm. Sci.201427341742424811796
    [Google Scholar]
  21. Larki-HarcheganiA. EhsanikiaA. AtaeiS. HosseiniF. HaddadiR. Effect of hydroalcoholic extract of hyssop on acute pain in male rats using tail flick test.Avicenna J. Pharm. Res.202121151910.34172/ajpr.2021.03
    [Google Scholar]
  22. VargaB.R. StreicherJ.M. MajumdarS. Strategies towards safer opioid analgesics — A review of old and upcoming targets.Br. J. Pharmacol.2023180797599310.1111/bph.1576034826881
    [Google Scholar]
  23. KimS.J. SeoJ.T. Selection of analgesics for the management of acute and postoperative dental pain: A mini-review.J. Periodontal Implant Sci.2020502687310.5051/jpis.2020.50.2.6832395385
    [Google Scholar]
  24. ZafeiriA. MitchellR.T. HayD.C. FowlerP.A. Over-the-counter analgesics during pregnancy: A comprehensive review of global prevalence and offspring safety.Hum. Reprod. Update2021271679510.1093/humupd/dmaa04233118024
    [Google Scholar]
  25. KopustinskieneD.M. BernatonyteU. MasliiY. HerbinaN. BernatonieneJ. Natural herbal non-opioid topical pain relievers — comparison with traditional therapy.Pharmaceutics20221412264810.3390/pharmaceutics1412264836559142
    [Google Scholar]
  26. RengasamyK.R.R. MahomoodallyM.F. JoaheerT. ZhangY. A systematic review of traditionally used herbs and animal-derived products as potential analgesics.Curr. Neuropharmacol.202119455358810.2174/1570159X1866620080815152232781962
    [Google Scholar]
  27. WongS. LimY. AbdullahN. NordinF. Antiproliferative and phytochemical analyses of leaf extracts of ten Apocynaceae species.Pharmacognosy Res.20113210010610.4103/0974‑8490.8195721772753
    [Google Scholar]
  28. ChenL. DengH. CuiH. FangJ. ZuoZ. DengJ. LiY. WangX. ZhaoL. Inflammatory responses and inflammation-associated diseases in organs.Oncotarget2018967204721810.18632/oncotarget.2320829467962
    [Google Scholar]
  29. AttiqA. JalilJ. HusainK. AhmadW. Raging the war against inflammation with natural products.Front. Pharmacol.2018997610.3389/fphar.2018.0097630245627
    [Google Scholar]
  30. ArulselvanP. FardM.T. TanW.S. GothaiS. FakuraziS. NorhaizanM.E. KumarS.S. Role of antioxidants and natural products in inflammation.Oxid. Med. Cell. Longev.201620161527613010.1155/2016/527613027803762
    [Google Scholar]
  31. BanikB. DasS. DasM.K. Medicinal plants with potent anti-inflammatory and anti-arthritic properties found in eastern parts of the Himalaya: An ethnomedicinal review.Pharmacogn. Rev.2020142812113710.5530/phrev.2020.14.16
    [Google Scholar]
  32. AkhtarM.A. Anti-inflammatory medicinal plants of Bangladesh — A pharmacological evaluation.Front. Pharmacol.20221380932410.3389/fphar.2022.80932435401207
    [Google Scholar]
  33. KhumaloG.P. Van WykB.E. FengY. CockI.E. A review of the traditional use of Southern African medicinal plants for the treatment of inflammation and inflammatory pain.J. Ethnopharmacol.202228311443610.1016/j.jep.2021.11443634289396
    [Google Scholar]
  34. UrituC.M. MihaiC.T. StanciuG.D. DodiG. Alexa-StratulatT. LucaA. Leon-ConstantinM.M. StefanescuR. BildV. MelnicS. TambaB.I. Medicinal plants of the family Lamiaceae in pain therapy: A review.Pain Res. Manag.2018201814410.1155/2018/780154329854039
    [Google Scholar]
  35. SunithaD. A review on antioxidant methods.Asian J. Pharm. Clin. Res.2016141410.22159/ajpcr.2016.v9s2.13092
    [Google Scholar]
  36. LavillaI. BendichoC. Chapter 11 - Fundamentals of ultrasound-assisted extraction.Water Extraction of Bioactive Compounds201729131610.1016/B978‑0‑12‑809380‑1.00011‑5
    [Google Scholar]
  37. Zhu-lingS. Yan-liW. YuZ. Yu-liangW. HongZ Zhi-mengZ. Acetylated modification and antioxidant activity of polysaccharides from Inonotus obliquus. Sci. Technol. Food Ind.2019409737710.13386/j.issn1002‑0306.2019.09.014
    [Google Scholar]
  38. KumarK. SrivastavS. SharanagatV.S. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review.Ultrason. Sonochem.20217010532510.1016/j.ultsonch.2020.10532532920300
    [Google Scholar]
  39. TruongD.H. NguyenD.H. TaN.T.A. BuiA.V. DoT.H. NguyenH.C. Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia.J. Food Qual.2019201911910.1155/2019/8178294
    [Google Scholar]
  40. VinatoruM. MasonT.J. CalinescuI. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials.Trends Analyt. Chem.20179715917810.1016/j.trac.2017.09.002
    [Google Scholar]
  41. LesellierE. LefebvreT. DestandauE. Recent developments for the analysis and the extraction of bioactive compounds from Rosmarinus officinalis and medicinal plants of the Lamiaceae family.Trends Analyt. Chem.202113511615810.1016/j.trac.2020.116158
    [Google Scholar]
  42. LiuX. LiuY. ShanC. YangX. ZhangQ. XuN. XuL. SongW. Effects of five extraction methods on total content, composition, and stability of flavonoids in jujube.Food Chem. X20221410028710.1016/j.fochx.2022.10028735313650
    [Google Scholar]
  43. ShaikhJ.R. PatilM.K. Qualitative tests for preliminary phytochemical screening: An overview.Int. J. Chem. Stud.20208260360810.22271/chemi.2020.v8.i2i.8834
    [Google Scholar]
  44. MadikeL.N. TakaidzaS. PillayM. Preliminary phytochemical screening of crude extracts from the leaves, stems, and roots of Tulbaghia violacea.Int. J. Pharmacog. Phytochem. Res.201791010.25258/phyto.v9i10.10453
    [Google Scholar]
  45. BelloA. CokerH. Phytochemical and antioxidant screening of some plants of Apocynaceae from South West Nigeria.Int. J. Plant Breed. Genet.2019641005
    [Google Scholar]
  46. LaherF. AremuA.O. Van StadenJ. FinnieJ.F. Evaluating the effect of storage on the biological activity and chemical composition of three South African medicinal plants.S. Afr. J. Bot.20138841441810.1016/j.sajb.2013.09.003
    [Google Scholar]
  47. FanJ.J. LiC.H. HuY.J. ChenH. YangF.Q. Comparative assessment of in vitro thrombolytic and fibrinolysis activity of four aloe species and analysis of their phenolic compounds by LC–MS.S. Afr. J. Bot.201811932533410.1016/j.sajb.2018.10.001
    [Google Scholar]
  48. Al-RajhiA.M.H. YahyaR. AbdelghanyT.M. FareidM.A. MohamedA.M. AminB.H. MasrahiA.S. Anticancer, anticoagulant, antioxidant and antimicrobial activities of Thevetia peruviana latex with molecular docking of antimicrobial and anticancer activities.Molecules20222710316510.3390/molecules2710316535630642
    [Google Scholar]
  49. BaliyanS. MukherjeeR. PriyadarshiniA. VibhutiA. GuptaA. PandeyR.P. ChangC.M. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa.Molecules2022274132610.3390/molecules2704132635209118
    [Google Scholar]
  50. ChaudhariGunjan M. MahajanRaghunath Totaram Comparative antioxidant activity of twenty traditional Indian medicinal plants and its correlation with total flavonoid and phenolic content.Int. J. Pharm. Sci. Rev. Res.201530120, 105-111
    [Google Scholar]
  51. TohidiB. RahimmalekM. ArzaniA. Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran.Food Chem.201722015316110.1016/j.foodchem.2016.09.20327855883
    [Google Scholar]
  52. OualcadiY. AityoubA. BerrekhisF. Investigation of different antioxidant capacity measurements suitable for bioactive compounds applied to medicinal plants.J. Food Meas. Charact.2021151718310.1007/s11694‑020‑00613‑y
    [Google Scholar]
  53. SethiS. JoshiA. AroraB. BhowmikA. SharmaR.R. KumarP. Significance of FRAP, DPPH, and CUPRAC assays for antioxidant activity determination in apple fruit extracts.Eur. Food Res. Technol.2020246359159810.1007/s00217‑020‑03432‑z
    [Google Scholar]
  54. ShomudroH.K. ShairaH.A. ChowdhuryS.A. Evaluation of in vitro antioxidant, anti-bacterial, cytotoxic and in vivo analgesic and neuro-pharmacological investigation of Alysicarpus vaginalis available in Bangladesh.J. Pharmacogn. Phytochem.202312131632310.22271/phyto.2023.v12.i1d.14592
    [Google Scholar]
  55. SharmaV.C. KaushikA. DeyY.N. SrivastavaB. WanjariM. JaiswalB. Analgesic, anti-inflammatory and antipyretic activities of ethanolic extract of stem bark of Anogeissus latifolia Roxb.Clinical Phytoscience2020612210.1186/s40816‑020‑00171‑2
    [Google Scholar]
  56. Raup-KonsavageW.M. SepulvedaD.E. WangJ. DokholyanN.V. VranaK.E. GrazianeN.M. Antinociceptive Effects of Cannabichromene (CBC) in Mice: Insights from von Frey, Tail-Flick, Formalin, and Acetone Tests.Biomedicines2023121838310.3390/biomedicines1201008338255191
    [Google Scholar]
  57. MahakalkarS. DhargaweN. MohodB. RajJ. Evaluation of analgesic, anti-inflammatory, and antipyretic activity of piperine: An experimental study.Pharmacognosy Res.202012217610.4103/pr.pr_94_19
    [Google Scholar]
  58. NakhaeeS. DastjerdiM. RoumiH. MehrpourO. FarrokhfallK. N-acetylcysteine dose-dependently improves the analgesic effect of acetaminophen on the rat hot plate test.BMC Pharmacol. Toxicol.2021221410.1186/s40360‑020‑00469‑433413696
    [Google Scholar]
  59. BhuiyanM.M.R. BhuiyaN.M.M.A. HasanM.N. NaharU.J. In vivo and in silico evaluation of antinociceptive activities of seed extract from the Holarrhena antidysenterica plant.Heliyon202065e0396210.1016/j.heliyon.2020.e0396232426548
    [Google Scholar]
  60. OuZ. ZhaoJ. ZhuL. HuangL. MaY. MaC. LuoC. ZhuZ. YuanZ. WuJ. LiR. YiJ. Anti-inflammatory effect and potential mechanism of betulinic acid on λ-carrageenan-induced paw edema in mice.Biomed. Pharmacother.201911810934710.1016/j.biopha.2019.10934731545273
    [Google Scholar]
  61. SemisH.S. GurC. IleriturkM. KaynarO. KandemirF.M. Investigation of the anti-inflammatory effects of caffeic acid phenethyl ester in a model of λ-Carrageenan–induced paw edema in rats.Hum. Exp. Toxicol.20214012_supplS721S73810.1177/0960327121105443634789018
    [Google Scholar]
  62. JuniorA.J. LeitãoM.M. BernalL.P.T. dos SantosE. Kuraoka-OliveiraÂ.M. JustiP. ArgandoñaE.J.S. KassuyaC.A.L. Analgesic and anti-inflammatory effects of Caryocar brasiliense.Antiinflamm. Antiallergy Agents Med. Chem.202019331332210.2174/187152301866619040814432030961515
    [Google Scholar]
  63. SolankiH.K. ShahD.A. MaheriyaP.M. PatelC.A. Evaluation of anti-inflammatory activity of probiotic on carrageenan-induced paw edema in Wistar rats.Int. J. Biol. Macromol.2015721277128210.1016/j.ijbiomac.2014.09.05925316426
    [Google Scholar]
  64. SinghN. YadavS.S. A review on health benefits of phenolics derived from dietary spices.Curr. Res. Food Sci.202251508152310.1016/j.crfs.2022.09.00936132490
    [Google Scholar]
  65. HuangH. HuangG. Extraction, separation, modification, structural characterization, and antioxidant activity of plant polysaccharides.Chem. Biol. Drug Des.20209651209122210.1111/cbdd.1379432959524
    [Google Scholar]
  66. DaiG. LiB. XuY. LiZ. MoF. WeiC. Synergistic interaction between matrine and paracetamol in the acetic acid writhing test in mice.Eur. J. Pharmacol.202189517386910.1016/j.ejphar.2021.17386933454375
    [Google Scholar]
  67. ShreedharaC.S. VaidyaV.P. VagdeviH.M. LathaK.P. MuralikrishnaK.S. KrupanidhiA.M. Screening of Bauhinia purpurea Linn. for analgesic and anti-inflammatory activities.Indian J. Pharmacol.2009412757910.4103/0253‑7613.5134520336222
    [Google Scholar]
  68. NegusS.S. VanderahT.W. BrandtM.R. BilskyE.J. BecerraL. BorsookD. Preclinical assessment of candidate analgesic drugs: Recent advances and future challenges.J. Pharmacol. Exp. Ther.2006319250751410.1124/jpet.106.10637716751251
    [Google Scholar]
  69. Le BarsD. GozariuM. CaddenS.W. Animal models of nociception.Pharmacol. Rev.200153459765211734620
    [Google Scholar]
  70. HutchinsonK.J. Gómez-PinillaF. CroweM.J. YingZ. BassoD.M. Three exercise paradigms differentially improve sensory recovery after spinal cord contusion in rats.Brain200412761403141410.1093/brain/awh16015069022
    [Google Scholar]
  71. Szandruk-BenderM. WiatrakB. SzczukowskiŁ. ŚwiątekP. RutkowskaM. DzimiraS. Merwid-LądA. DanielewskiM. SzelągA. Novel 1,3,4-oxadiazole derivatives of pyrrolo[3,4-d]pyridazinone exert antinociceptive activity in the tail-flick and formalin test in rodents and reveal reduced gastrotoxicity.Int. J. Mol. Sci.20202124968510.3390/ijms2124968533353118
    [Google Scholar]
  72. R Silva-CorreaC. Campos-ReynaJ.L. Villarreal-La TorreV.E. Calderon-PenaA.A. Gonzalez BlasM.V. Aspajo-VillalazC.L. Cruzado-RazcoJ.L. Sagastegui-GuarnizW.A. Guerrero- EspinoL.M. Hilario-VargasJ. Potential activity of medicinal plants as pain modulators: A review.Pharmacogn. J.202113124826310.5530/pj.2021.13.35
    [Google Scholar]
  73. JucáM.M. Cysne FilhoF.M.S. de AlmeidaJ.C. MesquitaD.S. BarrigaJ.R.M. DiasK.C.F. BarbosaT.M. VasconcelosL.C. LealL.K.A.M. RibeiroJ.E. VasconcelosS.M.M. Flavonoids: Biological activities and therapeutic potential.Nat. Prod. Res.202034569270510.1080/14786419.2018.149358830445839
    [Google Scholar]
  74. Vidal-TorresA. Fernández-PastorB. CarcellerA. VelaJ.M. MerlosM. ZamanilloD. Supraspinal and peripheral, but not intrathecal, σ1R blockade by S1RA enhances morphine antinociception.Front. Pharmacol.20191042210.3389/fphar.2019.0042231068818
    [Google Scholar]
  75. YsrafilY. SapiunZ. SlametN.S. MohamadF. HartatiH. DamitiS.A. AlexandraF.D. RahmanS. MasyeniS. HarapanH. MamadaS.S. EmranT.B. NainuF. Anti-inflammatory activities of flavonoid derivates.ADMET DMPK202311333135910.5599/admet.191837829324
    [Google Scholar]
  76. CárdenoA. Aparicio-SotoM. Montserrat-de la PazS. BermudezB. MurianaF.J.G. Alarcón-de-la-LastraC. Squalene targets pro- and anti-inflammatory mediators and pathways to modulate over-activation of neutrophils, monocytes and macrophages.J. Funct. Foods20151477979010.1016/j.jff.2015.03.009
    [Google Scholar]
  77. LatiefM. MuhaiminM. AmandaH. PrahandikaG. TariganI.L. Anti-inflammatory activities of squalene compound of methanol extract of Abroma augusta L.J. Technol. Laboratory.20209217618510.29238/teknolabjournal.v9i2.228
    [Google Scholar]
  78. IbrahimN.I. Naina MohamedI. Interdependence of anti-inflammatory and antioxidant properties of squalene–implication for cardiovascular health.Life (Basel)202111210310.3390/life1102010333573041
    [Google Scholar]
/content/journals/aiaamc/10.2174/0118715230340178241008163943
Loading
/content/journals/aiaamc/10.2174/0118715230340178241008163943
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test