Skip to content
2000
Volume 24, Issue 2
  • ISSN: 1871-5230
  • E-ISSN: 1875-614X

Abstract

In today’s time, a diversity of neurodegenerative diseases that widely affect the CNS causing insufficiency in particular brain processes such as memory, mobility, and cognition due to the moderate loss of CNS neurons.

This review emphasizes different phytochemical constituents used widely for the prevention or treatment of various neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). Berberin (BBR), which is an isoquinoline class of alkaloid and isolated from the plant and has both acetylcholine esterase (AChE) inhibiting properties as well as monoamine oxidase (MAO) inhibiting properties involved in the betterment of AD by decreasing the production of reactive oxygen species (ROS). Like BBR, Physostigmine, isolated from the and belongs to the family Leguminosae, and Morphine, isolated from the plant also has a significant impact on the management and treatment of AD and PD by reducing both neuroinflammation and pro-inflammatory cytokines production. Morphine bineurodegenerative diseases with µ-opioid receptor (MOR) in CNS elevate GABA levels in the synaptic cleft of the brain and reduces the neurotoxicity stimulation of MOR. It has been discovered that physostigmine improves cognitive function in AD patients and reduces α-synuclein expression in PD neural cell lines. Isorhyncophylline (IRN) is a Chinese herbal medicine isolated from the plant which provides neuroprotective efficiency against neurotoxicity that occurs by amyloid β (the main component of amyloid plaques) found in the brain of people with AD.

Loading

Article metrics loading...

/content/journals/aiaamc/10.2174/0118715230310192240925165925
2024-10-16
2025-09-29
Loading full text...

Full text loading...

References

  1. Yildiz-UnalA. KoruluS. KarabayA. Neuroprotective strategies against calpain-mediated neurodegeneration.Neuropsychiatr. Dis. Treat.20151129731010.2147/NDT.S7822625709452
    [Google Scholar]
  2. PrzedborskiS. VilaM. Jackson-LewisV. Series Introduction: Neurodegeneration: What is it and where are we?J. Clin. Investigat.20031111310
    [Google Scholar]
  3. GaoH.M. HongJ.S. Why neurodegenerative diseases are progressive: Uncontrolled inflammation drives disease progression.Trends Immunol.200829835736510.1016/j.it.2008.05.00218599350
    [Google Scholar]
  4. YacoubianT.A. Neurodegenerative disorders: Why do we need new therapies?Drug discovery approaches for the treatment of neurodegenerative disorders.Academic Press201711610.1016/B978‑0‑12‑802810‑0.00001‑5
    [Google Scholar]
  5. PiemonteseL. BrunettiL. LaghezzaA. LoiodiceF. TortorellaP. Combining fatty acid amide hydrolase (FAAH) inhibition with peroxisome proliferator-activated receptor (PPAR) activation: A new potential multi-target therapeutic strategy for the treatment of Alzheimer’s disease.Neural Regen. Res.2020151676810.4103/1673‑5374.26445831535650
    [Google Scholar]
  6. PoddarJ. PradhanM. GangulyG. ChakrabartiS. Biochemical deficits and cognitive decline in brain aging: Intervention by dietary supplements.J. Chem. Neuroanat.201995708010.1016/j.jchemneu.2018.04.00229678666
    [Google Scholar]
  7. OliveiraP.S. ChavesV.C. SoaresM.S.P. BonaN.P. MendonçaL.T. CarvalhoF.B. GutierresJ.M. VasconcellosF.A. VizzottoM. VieiraA. SpanevelloR.M. ReginattoF.H. LencinaC.L. StefanelloF.M. Southern Brazilian native fruit shows neurochemical, metabolic and behavioral benefits in an animal model of metabolic syndrome.Metab. Brain Dis.20183351551156210.1007/s11011‑018‑0262‑y29882020
    [Google Scholar]
  8. WinnerB. WinklerJ. Adult neurogenesis in neurodegenerative diseases.Cold Spring Harb. Perspect. Biol.201574a02128710.1101/cshperspect.a02128725833845
    [Google Scholar]
  9. BeltzB.S. TlustyM.F. BentonJ.L. SandemanD.C. Omega-3 fatty acids upregulate adult neurogenesis.Neurosci. Lett.2007415215415810.1016/j.neulet.2007.01.01017240063
    [Google Scholar]
  10. KimS.J. SonT.G. ParkH.R. ParkM. KimM.S. KimH.S. ChungH.Y. MattsonM.P. LeeJ. Curcumin stimulates proliferation of embryonic neural progenitor cells and neurogenesis in the adult hippocampus.J. Biol. Chem.200828321144971450510.1074/jbc.M70837320018362141
    [Google Scholar]
  11. RossiL. MazzitelliS. ArcielloM. CapoC.R. RotilioG. Benefits from dietary polyphenols for brain aging and Alzheimer’s disease.Neurochem. Res.200833122390240010.1007/s11064‑008‑9696‑718415677
    [Google Scholar]
  12. NuzzoD. AmatoA. PiconeP. TerzoS. GalizziG. BoninaF.P. MulèF. Di CarloM. A natural dietary supplement with a combination of nutrients prevents neurodegeneration induced by a high fat diet in mice.Nutrients2018109113010.3390/nu1009113030134549
    [Google Scholar]
  13. FancelluG. ChandK. TomásD. OrlandiniE. PiemonteseL. SilvaD.F. CardosoS.M. ChavesS. SantosM.A. Novel tacrine–benzofuran hybrids as potential multi-target drug candidates for the treatment of Alzheimer’s Disease.J. Enzyme Inhib. Med. Chem.202035121122610.1080/14756366.2019.168923731760822
    [Google Scholar]
  14. CarocciA. BarbarossaA. LeuciR. CarrieriA. BrunettiL. LaghezzaA. CattoM. LimongelliF. ChavesS. TortorellaP. AltomareC.D. SantosM.A. LoiodiceF. PiemonteseL. Piemontese, L Novel phenothiazine/donepezil-like hybrids endowed with antioxidant activity for a multi-target approach to the therapy of Alzheimer’s disease.Antioxidants2022119163110.3390/antiox1109163136139705
    [Google Scholar]
  15. LeuciR. BrunettiL. PolisenoV. LaghezzaA. LoiodiceF. TortorellaP. PiemonteseL. Natural Compounds for the Prevention and Treatment of Cardiovascular and Neurodegenerative Diseases.Foods20201012910.3390/foods1001002933374186
    [Google Scholar]
  16. GonzálezJ.F. AlcántaraA.R. DoadrioA.L. Sánchez-MonteroJ.M. Developments with multi-target drugs for Alzheimer’s disease: An overview of the current discovery approaches.Expert Opin. Drug Discov.201914987989110.1080/17460441.2019.162320131165654
    [Google Scholar]
  17. MendezM.F. Early-onset Alzheimer disease and its variants.Continuum (Minneap. Minn.)2019251345110.1212/CON.000000000000068730707186
    [Google Scholar]
  18. MartoranaA. EspositoZ. KochG. Beyond the cholinergic hypothesis: Do current drugs work in Alzheimer’s disease?CNS Neurosci. Ther.201016423524510.1111/j.1755‑5949.2010.00175.x20560995
    [Google Scholar]
  19. ReddyR.G. VeeravalL. MaitraS. Chollet-KruglerM. TomasiS. DévéhatF.L.L. BoustieJ. ChakravartyS. Lichen-derived compounds show potential for central nervous system therapeutics.Phytomedicine201623121527153410.1016/j.phymed.2016.08.01027765373
    [Google Scholar]
  20. PiemonteseL. VitucciG. CattoM. LaghezzaA. PernaF.M. RulloM. LoiodiceF. CapriatiV. SolfrizzoM. Natural scaffolds with multi-target activity for the potential treatment of Alzheimer’s disease.Molecules2018239218210.3390/molecules2309218230158491
    [Google Scholar]
  21. PacureanuL. BoraA. CrisanL. New Insights on the Activity and Selectivity of MAO-B Inhibitors through In Silico Methods.Int. J. Mol. Sci.20232411958310.3390/ijms2411958337298535
    [Google Scholar]
  22. HoughtonP.J. HowesM.J. Natural products and derivatives affecting neurotransmission relevant to Alzheimer’s and Parkinson’s disease.Neurosignals2005141-262210.1159/00008538215956811
    [Google Scholar]
  23. JiangW. LiS. LiX. Therapeutic potential of berberine against neurodegenerative diseases.Sci. China Life Sci.201558656456910.1007/s11427‑015‑4829‑025749423
    [Google Scholar]
  24. MojaradT.B. RoghaniM. The anticonvulsant and antioxidant effects of berberine in kainate-induced temporal lobe epilepsy in rats.Basic Clin. Neurosci.20145212413025337370
    [Google Scholar]
  25. ZhuH.L. WanJ.B. WangY.T. LiB.C. XiangC. HeJ. LiP. Medicinal compounds with antiepileptic/anticonvulsant activities.Epilepsia201455131610.1111/epi.1246324299155
    [Google Scholar]
  26. Dall’AcquaS. Plant-derived acetylcholinesterase inhibitory alkaloids for the treatment of Alzheimer’s disease.Botanics2013•••192810.2147/BTAT.S17297
    [Google Scholar]
  27. ChoudhuryB. SaytodeP. ShahV. Neurodegenrative Disorders: Past, Present and Future2014
    [Google Scholar]
  28. MishraA. PuniaJ.K. BladenC. ZamponiG.W. GoelR.K. Anticonvulsant mechanisms of piperine, a piperidine alkaloid.Channels (Austin)20159531732310.1080/19336950.2015.109283626542628
    [Google Scholar]
  29. HritcuL. NoumedemJ.A. CioancaO. HancianuM. KueteV. MihasanM. Methanolic extract of Piper nigrum fruits improves memory impairment by decreasing brain oxidative stress in amyloid beta(1-42) rat model of Alzheimer’s disease.Cell. Mol. Neurobiol.201434343744910.1007/s10571‑014‑0028‑y24442916
    [Google Scholar]
  30. Al-BaghdadiO.B. PraterN.I. Van der SchyfC.J. GeldenhuysW.J. Inhibition of monoamine oxidase by derivatives of piperine, an alkaloid from the pepper plant Piper nigrum, for possible use in Parkinson’s disease.Bioorg. Med. Chem. Lett.201222237183718810.1016/j.bmcl.2012.09.05623102654
    [Google Scholar]
  31. SchmittF. HussainG. DupuisL. LoefflerJ.P. HenriquesA. A plural role for lipids in motor neuron diseases: Energy, signaling and structure.Front. Cell. Neurosci.201482510.3389/fncel.2014.0002524600344
    [Google Scholar]
  32. TianE. SharmaG. DaiC. Neuroprotective properties of berberine: Molecular mechanisms and clinical implications.Antioxidants20231210188310.3390/antiox1210188337891961
    [Google Scholar]
  33. AkbarM. ShabbirA. RehmanK. AkashM.S.H. ShahM.A. Neuroprotective potential of berberine in modulating Alzheimer’s disease via multiple signaling pathways.J. Food Biochem.20214510e1393610.1111/jfbc.1393634523148
    [Google Scholar]
  34. PanahiN. MahmoudianM. MortazaviP. HashjinG.S. Experimental research Effects of berberine on β-secretase activity in a rabbit model of Alzheimer’s disease.Arch. Med. Sci.20131114615010.5114/aoms.2013.3335423516061
    [Google Scholar]
  35. MathewB. SureshJ. MathewG. ParasuramanR. AbdullaN. Plant secondary metabolites- potent inhibitors of monoamine oxidase isoforms.Cent. Nerv. Syst. Agents Med. Chem.2014141283310.2174/187152491466614082611193025142815
    [Google Scholar]
  36. HeW. WangC. ChenY. HeY. CaiZ. Berberine attenuates cognitive impairment and ameliorates tau hyperphosphorylation by limiting the self-perpetuating pathogenic cycle between NF-κB signaling, oxidative stress and neuroinflammation.Pharmacol. Rep.20176961341134810.1016/j.pharep.2017.06.00629132092
    [Google Scholar]
  37. a FanD. LiuL. WuZ. CaoM. Combating neurodegenerative diseases with the plant alkaloid berberine: Molecular mechanisms and therapeutic potential.Curr Neuropharmacol201917656357910.2174/1570159X16666180419141613.
    [Google Scholar]
  38. b ChengZ. KangC. CheS. SuJ. SunZ. YangW. SunQ. GeT. GuoY. LvJ. SunZ. YangW. LiB. LiX. CuiR. Berberine: A promising treatment for neurodegenerative diseases.Front. Pharmacol.20221384559110.3389/fphar.2022.845591.
    [Google Scholar]
  39. LinX. ZhangN. Berberine: Pathways to protect neurons.Phytother. Res.20183281501151010.1002/ptr.610729732634
    [Google Scholar]
  40. JinY. KhadkaD.B. ChoW.J. Pharmacological effects of berberine and its derivatives: A patent update.Expert Opin. Ther. Pat.201626222924310.1517/13543776.2016.111806026610159
    [Google Scholar]
  41. HuangM. JiangX. LiangY. LiuQ. ChenS. GuoY. Berberine improves cognitive impairment by promoting autophagic clearance and inhibiting production of β-amyloid in APP/tau/PS1 mouse model of Alzheimer’s disease.Exp. Gerontol.201791253310.1016/j.exger.2017.02.00428223223
    [Google Scholar]
  42. CuiJ. WangY. DongQ. WuS. XiaoX. HuJ. ChaiZ. ZhangY. Morphine protects against intracellular amyloid toxicity by inducing estradiol release and upregulation of Hsp70.J. Neurosci.20113145162271624010.1523/JNEUROSCI.3915‑11.201122072674
    [Google Scholar]
  43. AlmeidaM.B. Costa-MalaquiasA. NascimentoJ.L.M. OliveiraK.R. HerculanoA.M. Crespo-LópezM.E. Therapeutic concentration of morphine reduces oxidative stress in glioma cell line.Braz. J. Med. Biol. Res.201447539840210.1590/1414‑431X2014369724728211
    [Google Scholar]
  44. XuY. ChenR. ZhiF. ShengS. KhiatiL. YangY. PengY. XiaY. δ-Opioid receptor, microglia and neuroinflammation.Aging Dis.202314377879310.14336/AD.2022.091237191426
    [Google Scholar]
  45. CaoM. LiuF. JiF. LiangJ. LiuL. WuQ. WangT. Effect of c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (p38 MAPK) in morphine-induced tau protein hyperphosphorylation.Behav. Brain Res.201323724925510.1016/j.bbr.2012.09.04023026374
    [Google Scholar]
  46. WangB. SuC.J. LiuT.T. ZhouY. FengY. HuangY. LiuX. WangZ.H. ChenL.H. LuoW.F. LiuT. The neuroprotection of low-dose morphine in cellular and animal models of Parkinson’s disease through ameliorating endoplasmic reticulum (ER) stress and activating autophagy.Front. Mol. Neurosci.20181112010.3389/fnmol.2018.0012029731707
    [Google Scholar]
  47. KumarA. SinghA. Ekavali A review on Alzheimer’s disease pathophysiology and its management: An update.Pharmacol. Rep.201567219520310.1016/j.pharep.2014.09.00425712639
    [Google Scholar]
  48. a EldufaniJ. BlaiseG. The role of acetylcholinesterase inhibitors such as neostigmine and rivastigmine on chronic pain and cognitive function in aging: A review of recent clinical applications.Alzheimers Dement (N Y)2019517518310.1016/j.trci.2019.03.004
    [Google Scholar]
  49. bPhysostigmine: A Plant Alkaloid Isolated from Physostigma venenosum: A Review on Pharmacokinetics, Pharmacological and Toxicological ActivitiesJ. Drug Deliv. Ther.2019101-s187190
    [Google Scholar]
  50. a KopeckyL. DolezalM. Effects of physostigmine on cognitive and motor symptoms in Parkinson’s disease: A clinical perspective.J Parkinson’s Disease73477486
    [Google Scholar]
  51. b VecchioI. SorrentinoL. Paoletti.  MarraR. ArbitrioM. The state of the art on acetylcholinesterase inhibitors in the treatment of Alzheimer’s disease.J. Cent. Nerv. Syst. Dis.20211311795735211029113
    [Google Scholar]
  52. AraújoJ.Q. LimaJ.A. PintoA.C. de AlencastroR.B. AlbuquerqueM.G. Docking of the alkaloid geissospermine into acetylcholinesterase: A natural scaffold targeting the treatment of Alzheimer’s disease.J. Mol. Model.20111761401141210.1007/s00894‑010‑0841‑220844909
    [Google Scholar]
  53. CuddyC. Cultivating communities of practice: A guide to managing knowledge.Bottom line (N.Y.N.Y.)200215210.1108/bl.2002.17015bae.001
    [Google Scholar]
  54. ZhouJ.Y. ZhouS.W. Isorhynchophylline: A plant alkaloid with therapeutic potential for cardiovascular and central nervous system diseases.Fitoterapia201283461762610.1016/j.fitote.2012.02.01022406453
    [Google Scholar]
  55. ZhangH. BaiL. HeJ. ZhongL. DuanX. OuyangL. ZhuY. WangT. ZhangY. ShiJ. Recent advances in discovery and development of natural products as source for anti-Parkinson’s disease lead compounds.Eur. J. Med. Chem.201714125727210.1016/j.ejmech.2017.09.06829031072
    [Google Scholar]
  56. YeggoniD.P. RachamalluA. KallubaiM. SubramanyamR. Cytotoxicity and comparative binding mechanism of piperine with human serum albumin and α-1-acid glycoprotein.J. Biomol. Struct. Dyn.20153361336135110.1080/07391102.2014.94732625054206
    [Google Scholar]
  57. ZoheirA. DAMANHOURIA. Review on Therapeutic Potential of Piper nigrum L.(Black Pepper): The King of Spices.MAP2014316121670412
    [Google Scholar]
  58. SteinleinO.K. Calcium signaling and epilepsy.Cell Tissue Res.2014357238539310.1007/s00441‑014‑1849‑124723228
    [Google Scholar]
  59. RibeiroR.A. LeiteJ.R. Nantenine alkaloid presents anticonvulsant effect on two classical animal models.Phytomedicine2003106-756356810.1078/09447110332233155713678244
    [Google Scholar]
  60. AkaikeA. Takada-TakatoriY. KumeT. IzumiY. Mechanisms of neuroprotective effects of nicotine and acetylcholinesterase inhibitors: Role of α4 and α7 receptors in neuroprotection.J. Mol. Neurosci.2010401-221121610.1007/s12031‑009‑9236‑119714494
    [Google Scholar]
  61. LaurentC. EddarkaouiS. DerisbourgM. LeboucherA. DemeyerD. CarrierS. SchneiderM. HamdaneM. MüllerC.E. BuéeL. BlumD. Beneficial effects of caffeine in a transgenic model of Alzheimer’s disease-like tau pathology.Neurobiol. Aging20143592079209010.1016/j.neurobiolaging.2014.03.02724780254
    [Google Scholar]
  62. NehligA. Effects of coffee/caffeine on brain health and disease: What should I tell my patients?Pract. Neurol.2016162899510.1136/practneurol‑2015‑00116226677204
    [Google Scholar]
  63. MoreS.V. KumarH. KimI.S. SongS.Y. ChoiD.K. Cellular and molecular mediators of neuroinflammation in the pathogenesis of Parkinson's disease.Mediators Inflamm.2013201395237510.1155/2013/952375.
    [Google Scholar]
  64. GrestaF. LombardoG. SiracusaL. RubertoG. Saffron, An Alternative Crop for Sustainable Agricultural Systems: A Review.Sustainable Agriculture. LichtfouseE. NavarreteM. DebaekeP. VéroniqueS. AlberolaC. DordrechtSpringer200935537610.1007/978‑90‑481‑2666‑8_23
    [Google Scholar]
  65. MaggiM.A. BistiS. PiccoC. Saffron: Chemical composition and neuroprotective activity.Molecules20202523561810.3390/molecules2523561833260389
    [Google Scholar]
  66. HamedaniS.G. PourmasoumiM. ZarifiS.H. AskariG. JamialahmadiT. BagherniyaM. SahebkarA. Therapeutic effects of saffron and its components on neurodegenerative diseases.Heliyon2024102e2433410.1016/j.heliyon.2024.e2433438298664
    [Google Scholar]
  67. ZandiN. PazokiB. Momeni RoudsariN. LashgariN.A. JamshidiV. MomtazS. AbdolghaffariA.H. AkhondzadehS. Prospects of saffron and its derivatives in Alzheimer’s disease.Arch. Iran Med.202124323325210.34172/aim.2021.3533878882
    [Google Scholar]
  68. KadianJ.P. KaushikM.L. ChauhanB. SinghA.D. Potential Plant Secondary Metabolites for the Prevention of Skin Cancers and their Mechanism: A Review.Curr. Tradit. Med.202394e17062220612010.2174/2215083808666220617105123
    [Google Scholar]
  69. HussainG. ZhangL. RasulA. AnwarH. SohailM.u. RazzaqA. AzizN. ShabbirA. AliM. SunT. Role of Plant-Derived Flavonoids and Their Mechanism in Attenuation of Alzheimer's and Parkinson's Diseases: An Update of Recent Data.Molecules201823481410.3390/molecules23040814.
    [Google Scholar]
  70. NishalS. PhaugatP. DhakaR. KhatkarS. KhayatkashaniM. AlizadehP. HaghighiS.M. MehriM. KashaniH.R.K. A Concise Review of Common Plant-derived Compounds as a Potential Therapy for Alzheimer's Disease and Parkinson's Disease: Insight into Structure-Activity-Relationship.CNS Neurol Disord Drug Targets 20232271057106910.2174/1871527321666220614110616.
    [Google Scholar]
  71. GirdharS. GirdharA. VermaS.K. LatherV. PanditaD. Plant derived alkaloids in major neurodegenerative diseases: from animal models to clinical trials.J Ayurvedic Herbal Med2015139110010.31254/jahm.2015.1307
    [Google Scholar]
  72. YadavN. Singh ChandelS. VenkatachalamT. FathimaS.N. Herbal Medicine Formulation, Standardization, and Commercialization Challenges and Sustainable Strategies for Improvement.Herbal Med Phytochem202312710.1007/978‑3‑031‑21973‑3_40‑1.
    [Google Scholar]
  73. MalikM.K. MalikB.R. Challenges in standardization in Traditional Medicine / Herbal Drug.2015Available from: https://farmavita.net/documents/Traditional%20drugs.pdf
  74. UramovaS. KubatkaP. DankovaZ. KapinovaA. ZolakovaB. SamecM. ZuborP. ZulliA. ValentovaV. KwonT.K. SolarP. KelloM. KajoK. BusselbergD. PecM. DankoJ. Plant natural modulators in breast cancer prevention: Status quo and future perspectives reinforced by predictive, preventive, and personalized medical approach.EPMA J.20189440341910.1007/s13167‑018‑0154‑630538792
    [Google Scholar]
  75. ViglianisiG. SantonocitoS. LupiS.M. AmatoM. SpagnuoloG. PesceP. IsolaG. Impact of local drug delivery and natural agents as new target strategies against periodontitis: New challenges for personalized therapeutic approach.Ther. Adv. Chronic Dis.2023142040622323119104310.1177/2040622323119104337720593
    [Google Scholar]
/content/journals/aiaamc/10.2174/0118715230310192240925165925
Loading
/content/journals/aiaamc/10.2174/0118715230310192240925165925
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test