Skip to content
2000
Volume 23, Issue 3
  • ISSN: 1871-5230
  • E-ISSN: 1875-614X

Abstract

Inflammation is a complex biological response that plays a pivotal role in various pathological conditions, including inflammatory diseases. The search for effective therapeutic agents has led researchers to explore natural products due to their diverse chemical composition and potential therapeutic benefits. This review comprehensively examines the current state of research on natural products as potential therapeutic agents for inflammatory diseases. The article discusses the anti-inflammatory properties of various natural compounds, their mechanisms of action, and their potential applications in managing inflammatory disorders. Additionally, formulation and delivery systems, challenges and future prospects in this field are also highlighted.

Loading

Article metrics loading...

/content/journals/aiaamc/10.2174/0118715230307969240614102321
2024-09-01
2025-09-09
Loading full text...

Full text loading...

References

  1. BoteroJSH PérezMCF The history of sepsis from ancient Egypt to the XIX century.Sepsis-an ongoing and significant challengeIntechopen2012
    [Google Scholar]
  2. HannoodeeS. NasuruddinD.N. Acute Inflammatory Response.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  3. GrangerD.N. SenchenkovaE. Inflammation and the Microcirculation.Morgan & Claypool Publishers201010.4199/C00013ED1V01Y201006ISP008
    [Google Scholar]
  4. JanewayC.A.Jr MedzhitovR. Innate immune recognition.Annu. Rev. Immunol.200220119721610.1146/annurev.immunol.20.083001.08435911861602
    [Google Scholar]
  5. ChenL. DengH. CuiH. FangJ. ZuoZ. DengJ. LiY. WangX. ZhaoL. Inflammatory responses and inflammation-associated diseases in organs.Oncotarget2018967204721810.18632/oncotarget.2320829467962
    [Google Scholar]
  6. PahwaR GoyalA BansalP JialalI. Chronic inflammation.StatPearls Treasure Island (FL)StatPearls Publishing2024
    [Google Scholar]
  7. HannoodeeS NasuruddinDN Acute inflammatory response.StatPearls Treasure Island (FL)StatPearls Publishing2024
    [Google Scholar]
  8. FurmanD. CampisiJ. VerdinE. Carrera-BastosP. TargS. FranceschiC. FerrucciL. GilroyD.W. FasanoA. MillerG.W. MillerA.H. MantovaniA. WeyandC.M. BarzilaiN. GoronzyJ.J. RandoT.A. EffrosR.B. LuciaA. KleinstreuerN. SlavichG.M. Chronic inflammation in the etiology of disease across the life span.Nat. Med.201925121822183210.1038/s41591‑019‑0675‑031806905
    [Google Scholar]
  9. BennettJ.M. ReevesG. BillmanG.E. SturmbergJ.P. Inflammation–nature’s way to efficiently respond to all types of challenges: Implications for understanding and managing “the epidemic” of chronic diseases.Front. Med.2018531610.3389/fmed.2018.0031630538987
    [Google Scholar]
  10. SugimotoM.A. SousaL.P. PinhoV. PerrettiM. TeixeiraM.M. Resolution of inflammation: What controls its onset?Front. Immunol.2016716010.3389/fimmu.2016.0016027199985
    [Google Scholar]
  11. GalloJ. RaskaM. KriegovaE. GoodmanS.B. Inflammation and its resolution and the musculoskeletal system.J. Orthop. Translat.201710526710.1016/j.jot.2017.05.00728781962
    [Google Scholar]
  12. SchilrreffP. AlexievU. Chronic inflammation in non-healing skin wounds and promising natural bioactive compounds treatment.Int. J. Mol. Sci.2022239492810.3390/ijms2309492835563319
    [Google Scholar]
  13. CoutinhoA.E. ChapmanK.E. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights.Mol. Cell. Endocrinol.2011335121310.1016/j.mce.2010.04.00520398732
    [Google Scholar]
  14. KrenskyA.M. VincentiF. BennettW.M. Immunosuppressants, tolerogens, and immunostimulants. in chief Goodman% Gilman’s the pharmacological basis of therapeutics.11th edNew YorkMcGraw-Hill Companies, Inc.200614051431
    [Google Scholar]
  15. LeoneG.M. ManganoK. PetraliaM.C. NicolettiF. FagoneP. Past, present and (Foreseeable) future of biological anti-TNF alpha therapy.J. Clin. Med.2023124163010.3390/jcm1204163036836166
    [Google Scholar]
  16. ZhaoH. WuL. YanG. ChenY. ZhouM. WuY. LiY. Inflammation and tumor progression: Signaling pathways and targeted intervention.Signal Transduct. Target. Ther.20216126310.1038/s41392‑021‑00658‑534248142
    [Google Scholar]
  17. GhlichlooI GerrietsV. Nonsteroidal anti-inflammatory drugs (NSAIDs).StatPearls Treasure Island (FL)StatPearls Publishing2024
    [Google Scholar]
  18. FleischmanA.N. LiW.T. LuzziA.J. Van NestD.S. TorjmanM.C. SchwenkE.S. ArnoldW.A. ParviziJ. Risk of gastrointestinal bleeding with extended use of nonsteroidal anti-inflammatory drug analgesia after joint arthroplasty.J. Arthroplasty202136619211925.e110.1016/j.arth.2021.02.01533642110
    [Google Scholar]
  19. SinniahA. YazidS. FlowerR.J. From NSAIDs to glucocorticoids and beyond.Cells20211012352410.3390/cells1012352434944032
    [Google Scholar]
  20. Moghadam-KiaS. WerthV.P. Prevention and treatment of systemic glucocorticoid side effects.Int. J. Dermatol.201049323924810.1111/j.1365‑4632.2009.04322.x20465658
    [Google Scholar]
  21. BosaniM. ArdizzoneS. PorroG.B. Biologic targeting in the treatment of inflammatory bowel diseases.Biologics20093779719707398
    [Google Scholar]
  22. PichlerW.J. Adverse side‐effects to biological agents.Allergy200661891292010.1111/j.1398‑9995.2006.01058.x16867042
    [Google Scholar]
  23. SobhaniM. FarzaeiM.H. KianiS. KhodarahmiR. Immunomodulatory; Anti-inflammatory/antioxidant effects of polyphenols: A comparative review on the parental compounds and their metabolites.Food Rev. Int.202137875981110.1080/87559129.2020.1717523
    [Google Scholar]
  24. KassimM. AchouiM. MustafaM.R. MohdM.A. YusoffK.M. Ellagic acid, phenolic acids, and flavonoids in Malaysian honey extracts demonstrate in vitro anti-inflammatory activity.Nutr. Res.201030965065910.1016/j.nutres.2010.08.00820934607
    [Google Scholar]
  25. ZhangL. RavipatiA.S. KoyyalamudiS.R. JeongS.C. ReddyN. SmithP.T. BartlettJ. ShanmugamK. MünchG. WuM.J. Antioxidant and anti-inflammatory activities of selected medicinal plants containing phenolic and flavonoid compounds.J. Agric. Food Chem.20115923123611236710.1021/jf203146e22023309
    [Google Scholar]
  26. KarakP. Biological activities of flavonoids: An overview.Int. J. Pharm. Sci. Res.201910415671574
    [Google Scholar]
  27. PancheA.N. DiwanA.D. ChandraS.R. Flavonoids: An overview.J. Nutr. Sci.20165e4710.1017/jns.2016.4128620474
    [Google Scholar]
  28. WangX. CaoY. ChenS. LinJ. BianJ. HuangD. Anti-inflammation activity of flavones and their structure–activity relationship.J. Agric. Food Chem.202169267285730210.1021/acs.jafc.1c0201534160206
    [Google Scholar]
  29. RatheeP ChaudharyH RatheeS RatheeD KumarV KohliK Mechanism of action of flavonoids as anti-inflammatory agents: A review.Inflamm Allergy Drug Targets20098322923510.2174/187152809788681029
    [Google Scholar]
  30. DeviK.P. KiruthigaP.V. PandianS.K. Emerging role of flavonoids in inhibition of NF-κB-mediated signaling pathway: A review.Int J Biomed Pharm Sci.2009313145
    [Google Scholar]
  31. WuY. ZhouC. LiX. SongL. WuX. LinW. ChenH. BaiH. ZhaoJ. ZhangR. SunH. ZhaoY. Evaluation of antiinflammatory activity of the total flavonoids of Laggera pterodonta on acute and chronic inflammation models.Phytother. Res.200620758559010.1002/ptr.191816673449
    [Google Scholar]
  32. ZhaoJ MaitituersunA LiC LiQ XuF LiuT Evaluation on analgesic and anti-inflammatory activities of total flavonoids from Juniperus sabina.Evid Based Complement Alternat Med.20182018796530610.1155/2018/7965306
    [Google Scholar]
  33. Giménez-BastidaJ.A. González-SarríasA. Laparra-LlopisJ.M. SchneiderC. EspínJ.C. Targeting mammalian 5-lipoxygenase by dietary phenolics as an anti-inflammatory mechanism: A systematic review.Int. J. Mol. Sci.20212215793710.3390/ijms2215793734360703
    [Google Scholar]
  34. KhanH. UllahH. CastilhoP.C.M.F. GomilaA.S. D’OnofrioG. FilosaR. WangF. NabaviS.M. DagliaM. SilvaA.S. RengasamyK.R.R. OuJ. ZouX. XiaoJ. CaoH. Targeting NF-κB signaling pathway in cancer by dietary polyphenols.Crit. Rev. Food Sci. Nutr.202060162790280010.1080/10408398.2019.166182731512490
    [Google Scholar]
  35. TaofiqO. CalhelhaR.C. HelenoS. BarrosL. MartinsA. Santos-BuelgaC. QueirozM.J.R.P. FerreiraI.C.F.R. The contribution of phenolic acids to the anti-inflammatory activity of mushrooms: Screening in phenolic extracts, individual parent molecules and synthesized glucuronated and methylated derivatives.Food Res. Int.201576Pt 382182710.1016/j.foodres.2015.07.04428455068
    [Google Scholar]
  36. dos SantosM.D. AlmeidaM.C. LopesN.P. de SouzaG.E.P. Evaluation of the anti-inflammatory, analgesic and antipyretic activities of the natural polyphenol chlorogenic acid.Biol. Pharm. Bull.200629112236224010.1248/bpb.29.223617077520
    [Google Scholar]
  37. DhifiW. BelliliS. JaziS. BahloulN. MnifW. Essential oils’ chemical characterization and investigation of some biological activities: A critical review.Medicines2016342510.3390/medicines304002528930135
    [Google Scholar]
  38. QuintansJ.S.S. ShanmugamS. HeimfarthL. AraújoA.A.S. AlmeidaJ.R.G.S. PicotL. Quintans-JúniorL.J. Monoterpenes modulating cytokines - A review.Food Chem. Toxicol.201912323325710.1016/j.fct.2018.10.05830389585
    [Google Scholar]
  39. RodriguesT.G. FernandesA.Jr SousaJ.P.B. BastosJ.K. SforcinJ.M. In vitro and in vivo effects of clove on pro-inflammatory cytokines production by macrophages.Nat. Prod. Res.200923431932610.1080/1478641080224267919296372
    [Google Scholar]
  40. WangJ SongY ChenZ LengSX Connection between systemic inflammation and neuroinflammation underlies neuroprotective mechanism of several phytochemicals in neurodegenerative diseases.Oxid Med Cell Longev20182018197271410.1155/2018/1972714
    [Google Scholar]
  41. SianiA.C. RamosM.F.S. Menezes-de-LimaO.Jr Ribeiro-dos-SantosR. Fernadez-FerreiraE. SoaresR.O.A. RosasE.C. SusunagaG.S. GuimarãesA.C. ZoghbiM.G.B. HenriquesM.G.M.O. Evaluation of anti-inflammatory-related activity of essential oils from the leaves and resin of species of Protium.J. Ethnopharmacol.1999661576910.1016/S0378‑8741(98)00148‑210432208
    [Google Scholar]
  42. SilvaJ. AbebeW. SousaS.M. DuarteV.G. MachadoM.I.L. MatosF.J.A. Analgesic and anti-inflammatory effects of essential oils of Eucalyptus.J. Ethnopharmacol.2003892-327728310.1016/j.jep.2003.09.00714611892
    [Google Scholar]
  43. KashyapD. SharmaA. TuliH.S. PuniaS. SharmaA.K. Ursolic acid and oleanolic acid: Pentacyclic terpenoids with promising anti-inflammatory activities.Recent Pat. Inflamm. Allergy Drug Discov.2016101213310.2174/1872213X1066616071114390427531153
    [Google Scholar]
  44. ChenM. QinY. MaH. ZhengX. ZhouR. SunS. HuangY. DuanQ. LiuW. WuP. XuX. ShengZ. ZhangK. LiD. Downregulating NF-κB signaling pathway with triterpenoids for attenuating inflammation: In vitro and in vivo studies.Food Funct.20191085080509010.1039/C9FO00561G31361289
    [Google Scholar]
  45. HohmannMSN Longhi-BalbinotDT GuazelliCFS NavarroSA ZarpelonAC CasagrandeR Sesquiterpene lactones: Structural diversity and perspectives as anti-inflammatory molecules.Stud Nat Prod Chem201649243264
    [Google Scholar]
  46. MatosM.S. AnastácioJ.D. Nunes dos SantosC. Sesquiterpene lactones: Promising natural compounds to fight inflammation.Pharmaceutics202113799110.3390/pharmaceutics1307099134208907
    [Google Scholar]
  47. FattoriV. HohmannM. RossaneisA. Pinho-RibeiroF. VerriW.Jr Capsaicin: Current understanding of its mechanisms and therapy of pain and other pre-clinical and clinical uses.Molecules201621784410.3390/molecules2107084427367653
    [Google Scholar]
  48. LeeI.O. LeeK.H. PyoJ.H. KimJ.H. ChoiY.J. LeeY.C. Anti-inflammatory effect of capsaicin in Helicobacter pylori-infected gastric epithelial cells.Helicobacter200712551051710.1111/j.1523‑5378.2007.00521.x17760719
    [Google Scholar]
  49. ZhengQ. SunW. QuM. Anti-neuro-inflammatory effects of the bioactive compound capsaicin through the NF-κB signaling pathway in LPS-stimulated BV2 microglial cells.Pharmacogn. Mag.20181458
    [Google Scholar]
  50. SilvaR.C.M.C. TanL. RodriguesD.A. PrestesE.B. GomesC.P. GamaA.M. OliveiraP.L. PaivaC.N. ManouryB. BozzaM.T. Chloroquine inhibits pro-inflammatory effects of heme on macrophages and in vivo.Free Radic. Biol. Med.202117310411610.1016/j.freeradbiomed.2021.07.02834303829
    [Google Scholar]
  51. BrindhaP. Role of phytochemicals as immunomodulatory agents: A review.Int. J. Green Pharm.2016101
    [Google Scholar]
  52. GalvãoI SugimotoMA VagoJP MachadoMG SousaLP Mediators of inflammation.Mediators of Inflammation. Springer, Cham2018332
    [Google Scholar]
  53. SakthivelK.M. GuruvayoorappanC. Acacia ferruginea inhibits tumor progression by regulating inflammatory mediators-(TNF-a, iNOS, COX-2, IL-1β, IL-6, IFN-γ, IL-2, GM-CSF) and pro-angiogenic growth factor- VEGF.Asian Pac. J. Cancer Prev.20131463909391910.7314/APJCP.2013.14.6.390923886206
    [Google Scholar]
  54. MohankumarK. FrancisA.P. PajaniradjeS. RajagopalanR. Synthetic curcumin analog: Inhibiting the invasion, angiogenesis, and metastasis in human laryngeal carcinoma cells via NF-kB pathway.Mol. Biol. Rep.20214886065607410.1007/s11033‑021‑06610‑834355287
    [Google Scholar]
  55. de VriesJ.E. Immunosuppressive and anti-inflammatory properties of interleukin 10.Ann. Med.199527553754110.3109/078538995090024658541028
    [Google Scholar]
  56. BiY ChenJ HuF LiuJ LiM ZhaoL. M2 macrophages as a potential target for antiatherosclerosis treatment.Neural Plast.20192019672490310.1155/2019/6724903
    [Google Scholar]
  57. ViolaA. LusterA.D. Chemokines and their receptors: Drug targets in immunity and inflammation.Annu. Rev. Pharmacol. Toxicol.200848117119710.1146/annurev.pharmtox.48.121806.15484117883327
    [Google Scholar]
  58. GautamR. JachakS.M. Recent developments in anti‐inflammatory natural products.Med. Res. Rev.200929576782010.1002/med.2015619378317
    [Google Scholar]
  59. KeaneM.P. StrieterR.M. Chemokine signaling in inflammation.Crit. Care Med.2000284Suppl.N13N2610.1097/00003246‑200004001‑0000310807313
    [Google Scholar]
  60. WangR.X. ZhouM. MaH.L. QiaoY.B. LiQ.S. The role of chronic inflammation in various diseases and anti‐inflammatory therapies containing natural products.ChemMedChem202116101576159210.1002/cmdc.20200099633528076
    [Google Scholar]
  61. RajakariarR. YaqoobM.M. GilroyD.W. COX-2 in inflammation and resolution.Mol. Interv.20066419920710.1124/mi.6.4.616960142
    [Google Scholar]
  62. YatooM.I. GopalakrishnanA. SaxenaA. ParrayO.R. TufaniN.A. ChakrabortyS. TiwariR. DhamaK. IqbalH.M.N. Anti-inflammatory drugs and herbs with special emphasis on herbal medicines for countering inflammatory diseases and disorders-a review.Recent Pat. Inflamm. Allergy Drug Discov.2018121395810.2174/1872213X1266618011515363529336271
    [Google Scholar]
  63. Bashir DarK. Hussain BhatA. AminS. MasoodA. Afzal ZargarM. Ahmad GanieS. Inflammation: A multidimensional insight on natural anti-inflammatory therapeutic compounds.Curr. Med. Chem.201623333775380010.2174/092986732366616081716353127538691
    [Google Scholar]
  64. JanakiramN. RaoC. Role of lipoxins and resolvins as anti-inflammatory and proresolving mediators in colon cancer.Curr. Mol. Med.20099556557910.2174/15665240978848874819601807
    [Google Scholar]
  65. ChoyK.W. MuruganD. LeongX.F. AbasR. AliasA. MustafaM.R. Flavonoids as natural anti-inflammatory agents targeting nuclear factor-kappa B (NFκB) signaling in cardiovascular diseases: A mini review.Front. Pharmacol.201910129510.3389/fphar.2019.0129531749703
    [Google Scholar]
  66. MobasheriA. HenrotinY. BiesalskiH.K. ShakibaeiM. Scientific evidence and rationale for the development of curcumin and resveratrol as nutraceutricals for joint health.Int. J. Mol. Sci.20121344202423210.3390/ijms1304420222605974
    [Google Scholar]
  67. XuL. BotchwayB.O.A. ZhangS. ZhouJ. LiuX. Inhibition of NF-κB signaling pathway by resveratrol improves spinal cord injury.Front. Neurosci.20181269010.3389/fnins.2018.0069030337851
    [Google Scholar]
  68. Aparicio-SotoM. RedhuD. Sánchez-HidalgoM. Fernández-BolañosJ.G. Alarcón-de-la-LastraC. WormM. BabinaM. Olive‐oil‐derived polyphenols effectively attenuate inflammatory responses of human keratinocytes by interfering with the NF‐κB pathway.Mol. Nutr. Food Res.20196321190001910.1002/mnfr.20190001931393642
    [Google Scholar]
  69. MandalS.K. DebnathU. KumarA. ThomasS. MandalS.C. ChoudhuryM.D. PalitP. Natural sesquiterpene lactones in the prevention and treatment of inflammatory disorders and cancer: A systematic study of this emerging therapeutic approach based on chemical and pharmacological aspect.Lett. Drug Des. Discov.20201791102111610.2174/1570180817999200421144007
    [Google Scholar]
  70. ParkE. SongJ.H. KimM.S. ParkS.H. KimT.S. Costunolide, a sesquiterpene lactone, inhibits the differentiation of pro-inflammatory CD4 + T cells through the modulation of mitogen-activated protein kinases.Int. Immunopharmacol.20164050851610.1016/j.intimp.2016.10.00627756053
    [Google Scholar]
  71. HarijithA. EbenezerD.L. NatarajanV. Reactive oxygen species at the crossroads of inflammasome and inflammation.Front. Physiol.2014535210.3389/fphys.2014.0035225324778
    [Google Scholar]
  72. ÖzenverN. EfferthT. Phytochemical inhibitors of the NLRP3 inflammasome for the treatment of inflammatory diseases.Pharmacol. Res.202117010571010.1016/j.phrs.2021.10571034089866
    [Google Scholar]
  73. LatzE. XiaoT.S. StutzA. Activation and regulation of the inflammasomes.Nat. Rev. Immunol.201313639741110.1038/nri345223702978
    [Google Scholar]
  74. YinH. GuoQ. LiX. TangT. LiC. WangH. SunY. FengQ. MaC. GaoC. YiF. PengJ. Curcumin suppresses IL-1β secretion and prevents inflammation through inhibition of the NLRP3 inflammasome.J. Immunol.201820082835284610.4049/jimmunol.170149529549176
    [Google Scholar]
  75. ChenB. ZhaoJ. ZhangR. ZhangL. ZhangQ. YangH. AnJ. Neuroprotective effects of natural compounds on neurotoxin-induced oxidative stress and cell apoptosis.Nutr. Neurosci.20222551078109910.1080/1028415X.2020.184003533164705
    [Google Scholar]
  76. SiseinE.A. Biochemistry of free radicals and antioxidants.Scholars Acad. J. Biosci.201422110118
    [Google Scholar]
  77. TruongV.L. JunM. JeongW.S. Role of resveratrol in regulation of cellular defense systems against oxidative stress.Biofactors2018441364910.1002/biof.139929193412
    [Google Scholar]
  78. Diniz do NascimentoL. MoraesA.A.B. CostaK.S. Pereira GalúcioJ.M. TaubeP.S. CostaC.M.L. Neves CruzJ. de Aguiar AndradeE.H. FariaL.J.G. Bioactive natural compounds and antioxidant activity of essential oils from spice plants: New findings and potential applications.Biomolecules202010798810.3390/biom1007098832630297
    [Google Scholar]
  79. MacákováK. AfonsoR. SasoL. MladěnkaP. The influence of alkaloids on oxidative stress and related signaling pathways.Free Radic. Biol. Med.201913442944410.1016/j.freeradbiomed.2019.01.02630703480
    [Google Scholar]
  80. AkbariB. Baghaei-YazdiN. BahmaieM. Mahdavi AbhariF. The role of plant‐derived natural antioxidants in reduction of oxidative stress.Biofactors202248361163310.1002/biof.183135229925
    [Google Scholar]
  81. LeeK.W. HurH.J. LeeH.J. LeeC.Y. Antiproliferative effects of dietary phenolic substances and hydrogen peroxide.J. Agric. Food Chem.20055361990199510.1021/jf048604015769125
    [Google Scholar]
  82. GraßmannJ. Terpenoids as plant antioxidants.Vitam. Horm.20057250553510.1016/S0083‑6729(05)72015‑X16492481
    [Google Scholar]
  83. DumanovićJ. NepovimovaE. NatićM. KučaK. JaćevićV. The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview.Front. Plant Sci.20211155296910.3389/fpls.2020.55296933488637
    [Google Scholar]
  84. BhadoriyaS.S. MangalA. MadoriyaN. DixitP. Bioavailability and bioactivity enhancement of herbal drugs by “Nanotechnology”: A review.J Curr Pharm Res.20118117
    [Google Scholar]
  85. SayedN. KhuranaA. GoduguC. Pharmaceutical perspective on the translational hurdles of phytoconstituents and strategies to overcome.J. Drug Deliv. Sci. Technol.20195310120110.1016/j.jddst.2019.101201
    [Google Scholar]
  86. ThakurL. GhodasraU. PatelN. DabhiM. Novel approaches for stability improvement in natural medicines.Pharmacogn. Rev.201159485410.4103/0973‑7847.7909922096318
    [Google Scholar]
  87. RanjbarS. EmamjomehA. SharifiF. ZarepourA. AghaabbasiK. DehshahriA. SepahvandA.M. ZarrabiA. BeyzaeiH. ZahediM.M. MohammadinejadR. Lipid-based delivery systems for flavonoids and flavonolignans: Liposomes, nanoemulsions, and solid lipid nanoparticles.Pharmaceutics2023157194410.3390/pharmaceutics1507194437514130
    [Google Scholar]
  88. Plaza-OliverM. Santander-OrtegaM.J. LozanoM.V. Current approaches in lipid-based nanocarriers for oral drug delivery.Drug Deliv. Transl. Res.202111247149710.1007/s13346‑021‑00908‑733528830
    [Google Scholar]
  89. CarneiroS. Costa DuarteF. HeimfarthL. Siqueira QuintansJ. Quintans-JúniorL. Veiga JúniorV. Neves de LimaÁ. Cyclodextrin–drug inclusion complexes: In vivo and in vitro approaches.Int. J. Mol. Sci.201920364210.3390/ijms2003064230717337
    [Google Scholar]
  90. LengyelM. Kállai-SzabóN. AntalV. LakiA.J. AntalI. Microparticles, microspheres, and microcapsules for advanced drug delivery.Sci. Pharm.20198732010.3390/scipharm87030020
    [Google Scholar]
  91. Gordillo-GaleanoA. Mora-HuertasC.E. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release.Eur. J. Pharm. Biopharm.201813328530810.1016/j.ejpb.2018.10.01730463794
    [Google Scholar]
  92. AkbariJ. SaeediM. AhmadiF. HashemiS.M.H. BabaeiA. YaddollahiS. RostamkalaeiS.S. Asare-AddoK. NokhodchiA. Solid lipid nanoparticles and nanostructured lipid carriers: A review of the methods of manufacture and routes of administration.Pharm. Dev. Technol.202227552554410.1080/10837450.2022.208455435635506
    [Google Scholar]
  93. LinC-H. ChenC-H. LinZ-C. FangJ-Y. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers.Yao Wu Shi Pin Fen Xi201725221923428911663
    [Google Scholar]
  94. BeginesB. OrtizT. Pérez-ArandaM. MartínezG. MerineroM. Argüelles-AriasF. AlcudiaA. Polymeric nanoparticles for drug delivery: Recent developments and future prospects.Nanomaterials2020107140310.3390/nano1007140332707641
    [Google Scholar]
  95. MaY. CongZ. GaoP. WangY. Nanosuspensions technology as a master key for nature products drug delivery and In vivo fate.Eur. J. Pharm. Sci.202318510642510.1016/j.ejps.2023.10642536934992
    [Google Scholar]
  96. AroraD. KhuranaB. RathG. NandaS. GoyalA.K. Recent advances in nanosuspension technology for drug delivery.Curr. Pharm. Des.201824212403241510.2174/138161282466618052210025129788880
    [Google Scholar]
  97. ChandranB. GoelA. A randomized, pilot study to assess the efficacy and safety of curcumin in patients with active rheumatoid arthritis.Phytother. Res.201226111719172510.1002/ptr.463922407780
    [Google Scholar]
  98. GuptaS.C. PatchvaS. AggarwalB.B. Therapeutic roles of curcumin: Lessons learned from clinical trials.AAPS J.201315119521810.1208/s12248‑012‑9432‑823143785
    [Google Scholar]
  99. AmmonH. Boswellic acids in chronic inflammatory diseases.Planta Med.200672121100111610.1055/s‑2006‑94722717024588
    [Google Scholar]
  100. SiddiquiM.Z. Boswellia serrata, a potential antiinflammatory agent: An overview.Indian J. Pharm. Sci.201173325526122457547
    [Google Scholar]
  101. GrzannaR. LindmarkL. FrondozaC.G. Ginger--an herbal medicinal product with broad anti-inflammatory actions.J. Med. Food20058212513210.1089/jmf.2005.8.12516117603
    [Google Scholar]
  102. MashhadiN.S. GhiasvandR. AskariG. HaririM. DarvishiL. MofidM.R. Anti-oxidative and anti-inflammatory effects of ginger in health and physical activity: Review of current evidence.Int. J. Prev. Med.20134Suppl. 1S36S4223717767
    [Google Scholar]
  103. KolluruGK BirSC KevilCG Endothelial dysfunction and diabetes: Effects on angiogenesis, vascular remodeling, and wound healing.Int J Vasc Med.2012201291826710.1155/2012/918267
    [Google Scholar]
  104. ChrubasikS. EisenbergE. BalanE. WeinbergerT. LuzzatiR. ConradtC. Treatment of low back pain exacerbations with willow bark extract: A randomized double-blind study.Am. J. Med.2000109191410.1016/S0002‑9343(00)00442‑310936472
    [Google Scholar]
  105. ChrubasikS. KünzelO. ModelA. ConradtC. BlackA. Treatment of low back pain with a herbal or synthetic anti-rheumatic: A randomized controlled study. Willow bark extract for low back pain.Br. J. Rheumatol.200140121388139310.1093/rheumatology/40.12.138811752510
    [Google Scholar]
  106. KhanN. MukhtarH. Tea polyphenols for health promotion.Life Sci.200781751953310.1016/j.lfs.2007.06.01117655876
    [Google Scholar]
  107. KimH.P. SonK.H. ChangH.W. KangS.S. Anti-inflammatory plant flavonoids and cellular action mechanisms.J. Pharmacol. Sci.200496322924510.1254/jphs.CRJ04003X15539763
    [Google Scholar]
  108. SinghB.N. ShankarS. SrivastavaR.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications.Biochem. Pharmacol.201182121807182110.1016/j.bcp.2011.07.09321827739
    [Google Scholar]
  109. PiscoyaJ. RodriguezZ. BustamanteS.A. OkuhamaN.N. MillerM.J.S. SandovalM. Efficacy and safety of freeze-dried cat’s claw in osteoarthritis of the knee: Mechanisms of action of the species Uncaria guianensis.Inflamm. Res.200150944244810.1007/PL0000026811603848
    [Google Scholar]
  110. SandovalM. CharbonnetR.M. OkuhamaN.N. RobertsJ. KrenovaZ. TrentacostiA.M. MillerM.J.S. Cat’s claw inhibits TNFα production and scavenges free radicals: Role in cytoprotection.Free Radic. Biol. Med.2000291717810.1016/S0891‑5849(00)00327‑010962207
    [Google Scholar]
  111. GagnierJ.J. ChrubasikS. ManheimerE. Harpgophytum procumbens for osteoarthritis and low back pain: A systematic review.BMC Complement. Altern. Med.2004411310.1186/1472‑6882‑4‑1315369596
    [Google Scholar]
  112. WegenerT. LüpkeN.P. Treatment of patients with arthrosis of hip or knee with an aqueous extract of Devil’s Claw ( Harpagophytum procumbens DC.).Phytother. Res.200317101165117210.1002/ptr.132214669250
    [Google Scholar]
  113. EshunK. HeQ. Aloe vera: A valuable ingredient for the food, pharmaceutical and cosmetic industries--a review.Crit. Rev. Food Sci. Nutr.2004442919610.1080/1040869049042469415116756
    [Google Scholar]
  114. SurjusheA. VasaniR. SapleD.G. Aloe vera: A short review.Indian J. Dermatol.200853416316610.4103/0019‑5154.4478519882025
    [Google Scholar]
  115. FuY. ChenJ. LiY.J. ZhengY.F. LiP. Antioxidant and anti-inflammatory activities of six flavonoids separated from licorice.Food Chem.201314121063107110.1016/j.foodchem.2013.03.08923790887
    [Google Scholar]
  116. ViswanathanP. MuralidaranY. RagavanG. Challenges in oral drug delivery: A nano-based strategy to overcome.Nanostructures for oral medicine.Elsevier2017173201
    [Google Scholar]
  117. CechN.B. YuK. Mass spectrometry for natural products research: Challenges, pitfalls, and opportunities.LC GC N. Am.20133111938947
    [Google Scholar]
  118. PereiraL. ValadoA. Algae-derived natural products in diabetes and its complications—current advances and future prospects.Life2023139183110.3390/life1309183137763235
    [Google Scholar]
  119. GeorgeP. Concerns regarding the safety and toxicity of medicinal plants-An overview.J. Appl. Pharm. Sci.2011164044
    [Google Scholar]
  120. van WykA.S. PrinslooG. Health, safety and quality concerns of plant-based traditional medicines and herbal remedies.S. Afr. J. Bot.2020133546210.1016/j.sajb.2020.06.031
    [Google Scholar]
  121. CaesarL.K. MontaserR. KellerN.P. KelleherN.L. Metabolomics and genomics in natural products research: Complementary tools for targeting new chemical entities.Nat. Prod. Rep.202138112041206510.1039/D1NP00036E34787623
    [Google Scholar]
  122. ThomfordN. SenthebaneD. RoweA. MunroD. SeeleP. MaroyiA. DzoboK. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery.Int. J. Mol. Sci.2018196157810.3390/ijms1906157829799486
    [Google Scholar]
  123. AswadM. RayanM. Abu-LafiS. FalahM. RaiynJ. AbdallahZ. RayanA. Nature is the best source of anti-inflammatory drugs: Indexing natural products for their anti-inflammatory bioactivity.Inflamm. Res.2018671677510.1007/s00011‑017‑1096‑528956064
    [Google Scholar]
  124. WangL.C. WeiW.H. ZhangX.W. LiuD. ZengK.W. TuP.F. An integrated proteomics and bioinformatics approach reveals the anti-inflammatory mechanism of carnosic acid.Front. Pharmacol.2018937010.3389/fphar.2018.0037029713284
    [Google Scholar]
  125. YuanH. MaQ. YeL. PiaoG. The traditional medicine and modern medicine from natural products.Molecules201621555910.3390/molecules2105055927136524
    [Google Scholar]
  126. MirsadeghiS. LarijaniB. Personalized medicine: Pharmacogenomics and drug development.Acta Med. Iran.201755315016528282716
    [Google Scholar]
  127. GligorijevićV. Malod-DogninN. PržuljN. Integrative methods for analyzing big data in precision medicine.Proteomics201616574175810.1002/pmic.20150039626677817
    [Google Scholar]
  128. RodriguesT. RekerD. SchneiderP. SchneiderG. Counting on natural products for drug design.Nat. Chem.20168653154110.1038/nchem.247927219696
    [Google Scholar]
  129. Lurie-LukeE. Product and technology innovation: What can biomimicry inspire?Biotechnol. Adv.20143281494150510.1016/j.biotechadv.2014.10.00225316672
    [Google Scholar]
/content/journals/aiaamc/10.2174/0118715230307969240614102321
Loading
/content/journals/aiaamc/10.2174/0118715230307969240614102321
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test