Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry - Anti-Cancer Agents) - Volume 25, Issue 7, 2025
Volume 25, Issue 7, 2025
-
-
CD36 as a Therapeutic Target in Tumor Microenvironment and Lipid Metabolism
More LessAuthors: Jiaxuan Li, Jiaqi Chen, Guang Yang, Shulin Zhang, Peiyao Li and Lan YeDysregulated lipid metabolism within the tumor microenvironment (TME) is a critical hallmark of cancer progression, with lipids serving as a major energy source for tumor cells. Beyond their role in cell membrane synthesis, lipids also provide essential substrates for biomolecule production and activate signaling pathways that regulate various cellular processes. Aberrant lipid metabolism impacts not only function but also alters the behavior of immune and stromal cells within the TME. CD36, a key lipid transporter, plays a crucial role in regulating fatty acid sensing and lipid metabolism, and its dysregulated expression has been associated with poor prognosis in several cancers. Studies have demonstrated that elevated CD 36 expression in the TME is closely linked to abnormal lipid metabolism, promoting tumor growth, migration, and metastasis. In recent years, significant progress has been made in developing CD36-targeted therapies, including small-molecule inhibitors, antibodies, and nanoparticle-based drugs, with many entering experimental or preclinical stages. This review comprehensively summarizes the latest advances in understanding the role of CD36 in the TME, focusing on its metabolic regulatory mechanisms in tumor cells, immune cells, and stromal cells. Additionally, it highlights the contribution of CD36 to immune evasion, drug resistance, and cancer stem cell maintenance while discussing several therapeutic strategies targeting CD36, including novel therapies currently in clinical trials. By exploring the therapeutic potential of CD36, this review provides critical insights for the future development of CD36-targeted cancer therapies.
-
-
-
Emerging AXL Inhibitors in Oncology: Chemical and Biological Advances in Targeted Cancer Therapy
More LessAuthors: Kamal Shah, Krishan Gopal, Shivendra Kumar and Sunam SahaAXL, a receptor tyrosine kinase, has emerged as a critical player in tumorigenesis, metastasis, and resistance to conventional therapies. Its aberrant activation drives cell proliferation, survival, and angiogenesis, making it an attractive target for cancer treatment. In recent years, significant progress has been made in the development of AXL inhibitors. Chemical approaches have led to the discovery of small molecules that selectively bind to and inhibit AXL, disrupting its downstream signaling pathways. These inhibitors exhibit diverse structural features, including ATP-competitive and allosteric binding modes, offering potential advantages in terms of selectivity and potency. In addition to chemical approaches, biological strategies have also been explored to target AXL. These include the use of monoclonal antibodies, which can neutralize AXL ligands or induce receptor internalization and degradation. Furthermore, gene therapy techniques have been investigated to downregulate AXL expression or disrupt its signaling pathways. Despite these advancements, challenges remain in the development of AXL inhibitors. Selectivity is a critical concern, as AXL shares homology with other receptor tyrosine kinases. Drug resistance is another obstacle, as cancer cells can develop mechanisms to evade AXL inhibition. Furthermore, to address these challenges, combination therapies are being explored, such as combining AXL inhibitors with other targeted agents or conventional treatments. In conclusion, developing AXL inhibitors represents a promising avenue for improving cancer treatment outcomes. Continued research efforts are essential to overcome the existing challenges and translate these compounds into effective clinical therapies.
-
-
-
Pioneering a New Era in Oral Cancer Treatment with Electrospun Nanofibers: A Comprehensive Insight
More LessAuthors: Devika Tripathi, Tanya Gupta, Awani Kumar Rai and Prashant PandeyOral cancer, currently ranked 16th among the most prevalent malignancies worldwide according to GLOBOCAN, presents significant challenges to global oral health. Conventional treatment modalities such as surgery, radiation, and chemotherapy often have limitations, prompting the need for innovative therapeutic approaches. Tissue engineering has emerged as a promising solution aimed at developing biocompatible, functional, and biologically responsive tissue constructs. This approach involves the integration of cells, bioactive compounds, and scaffolds to enhance treatment efficacy. Electrospun nanofibers, mimicking the extracellular matrix, exhibit considerable potential in addressing complex oral health issues by influencing cellular behavior. The versatility of electrospinning technology allows for the fabrication of fiber scaffolds with high surface area, making them ideal for localized delivery of bioactive compounds or pharmaceuticals. Enhancing these electrospun scaffolds with growth factors, nanoparticles, and biologically active substances significantly increases their therapeutic appeal in oral cancer management. This review offers a comprehensive examination of the various applications of electrospun nanofibers in oral cancer therapy. Utilizing electronic databases such as PubMed, CrossREF, and Google Scholar, we conducted an extensive review of relevant literature concerning “electrospun nanofibers” and their therapeutic potential in oral cancer treatment. Key topics addressed include engineering methodologies, drug diffusion mechanisms, factors influencing nanofiber scaffold design, toxicity concerns, and clinical implications. The findings underscore the transformative potential of electrospun nanofibers in revolutionizing oral cancer therapy.
-
-
-
An Updated Review on Dysregulated lncRNAs and their Contribution to the Various Molecular Types of Lung Carcinoma
More LessLung cancer is correlated with a high death rate, with approximately 1.8 million mortality cases reported worldwide in 2022. Despite development in the control of lung cancer, most cases are detected at higher stages with short survival rates. This reveals a need to recognize novel techniques to treat malignancy and decrease the burden of lung cancer. Long noncoding RNAs (lncRNAs) manage vital cellular and biochemical functions. lncRNAs play crucial roles in transcriptional and translational processes and signaling cascades. Recently, lncRNAs have been reported to be associated with malignancy where their expression is deregulated, leading to abnormal cellular activities and signaling pathways. In various malignancies, including lung cancer, lncRNA deregulation disrupts normal cellular function, promoting tumorigenesis and influencing patient outcomes and treatment responses. Studies have shown that lncRNAs can act as both oncogenes and tumor suppressors, depending on the lung cancer subtype, specifically in Non-small Cell Lung Cancer (NSCLC) and Small Cell Lung Cancer (SCLC). This dual role of lncRNAs as critical biomarkers might provide insights into lung cancer development and progression. lncRNAs have been discussed as key biomarkers in lung cancer. A comprehensive understanding of the biological activities of lncRNAs in NSCLC and SCLC may improve prognosis, diagnosis, and therapeutic methods. Researchers are increasingly interested in lncRNAs as potential diagnostic biomarkers and therapeutic targets in cancer treatment. As researchers continue to explore lncRNAs, their pivotal roles in lung cancer become increasingly evident. This review highlights the function of lncRNAs in lung carcinogenesis and discusses their molecular mechanisms of function.
-
-
-
In vivo, In vitro, and In silico Studies of Umbelliferone and Irinotecan on MDA-MB-231 Breast Cancer Cell Line and Drosophila melanogaster Larvae
More LessAuthors: Erkut Tamtürk, Serap Yalçın, Fahriye Ercan and Aydın Süzü TuncbilekAimsDeaths from cancer are still very common all over the world and continue to be the focus of scientific research. Chemotherapy is one of the primary treatments used to prevent deaths from cancer. Side effects of chemotherapeutic drugs and resistance of cells to drugs are essential problems that limit the treatment process. Drug combination therapy is regarded as a significant application that inhibits the growth of tumors and is anticipated to provide a solution for the issues encountered. The combination therapy aims at a synergistic effect that will limit drug resistance and cytotoxic effects with appropriate drug combinations. In this context, we aim to investigate the in vitro, in vivo, and in silico effects of single and combined doses of umbelliferone and irinotecan, known for their anticarcinogenic and curative effects, on MDA-MB-231 breast cancer cell lines and the model organism Drosophila melanogaster.
BackgroundIrinotecan is currently used as an anticarcinogenic drug. Anticarcinogenic effects of umbelliferone have also been detected. The in vivo, in vitro, and in silico impacts of single and combined doses use of these two agents are not yet available in the literature.
ObjectiveThis study aims to determine the anticarcinogenic effects of single and combined use of umbelliferone and irinotecan at the molecular level. It also attempts to determine the binding energies of chemicals to cancer-related proteins through docking and molecular dynamic studies.
MethodsThe cytotoxic effects of individual and combinational doses of umbelliferone and irinotecan on the MDA-MB-231 cell line and D. melanogaster were calculated by XTT and probit analyses. IC50 values for the cancer cells, LC50, and LC99 values for D. melanogaster were found. Gene expression analysis was performed to determine the effects of chemical agents on miR-7, miR-11, and miR-14, and their expression levels were found. The sequences of miRNAs not found in the literature were determined, and their molecular imaging was performed. In addition, the binding energies of irinotecan and umbelliferone to Bcl-2, Bad, and Akt1 proteins, which are known to have apoptotic effects, were found by the molecular docking method. Molecular dynamics studies of Bad proteins and chemicals were also performed. The drug potential of chemicals was determined by ADME/T analysis.
ResultsThe cytotoxic effect on cells was calculated, and the IC50 value of umbelliferone was calculated as 158 µM, the IC50 value of irinotecan was calculated as 48,3 µM and the IC50 value was calculated as 20 µM. In the probit analysis performed to calculate the cytotoxic effects of drugs on D. melanogaster, the LC50 value of umbelliferone was 2,5 µM, and the LC99 value was 13,4 µM. The LC50 value of irinotecan was found to be 0,1 µM, and the LC99 value was 0,28 µM. It was concluded that single and combined doses of chemicals in the invasion experiment significantly affected the spread of cells. As a result of expression analysis, a significant increase in Hsa-miR-7 (Homo sapiens miRNA-7), Hsa-miR-14 (Homo sapiens miRNA-14), and Hsa-miR-11(Homo sapiens miRNA-11) expression was observed in cells treated with umbelliferone irinotecan compared to the control groups.
ConclusionIn our study, it can be concluded that the cytotoxic effects of individual and combination doses of umbelliferone and irinotecan on MDA-MB-231 cells and D. melanogaster larvae are significant. In addition, the effects of umbelliferone and irinotecan on the expression level of miR-7, which is a common D. melanogaster and human miRNA, should be widely investigated. Expression analyses and docking studies of Hsa-miR-11 and Hsa-miR-14, which have been newly studied and are not in data repositories, are important for cancer research. In particular, the expression and binding energy of these miRNAs in new drug combinations and the expression level in different cancer cell lines are important for future studies. Another crucial point is that in vivo tests using different model species validate the usage of drugs at both single and mixed dosages.
OtherAs a result of this study, the in vivo, in vitro, and in silico effects of single and combined doses of umbelliferone and irinotecan were determined. In future studies, it would be useful to determine the binding energies of umbelliferone and irinotecan to other cancer-related proteins and to find their interactions with different miRNAs. Additionally, studies on different model organisms are also important.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
Most Read This Month