Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry - Anti-Cancer Agents) - Volume 22, Issue 2, 2022
Volume 22, Issue 2, 2022
-
-
Rapid Arc-SBRT: Non-Invasive Immune Adjuvant for Advanced Stage Non-Small Cell Lung Carcinoma
Authors: Arun Chairmadurai, Sandeep K. Jain, Aklank Jain and Hridayesh PrakashAbstract: In conjunction with radio-chemotherapy, pulmonary resection is recommended for early-stage nonsmall- cell lung carcinoma but not for advanced-stage NSCLC patients having high-grade metastatic lesions. In these cases, the rapid Arc-Stereotactic body radiotherapy (Ra-SBRT) technique offers a therapeutic advantage by delivering focal irradiation to metastatic lung lesions and reduces the bystander toxicity to normal tissues. We have previously demonstrated that Ra-SBRT ablates metastatic lesions and induces tumor immune rejection of metastatic tumors by promoting in situ programming of M2 TAM towards M1-TAM and infiltration of Siglec-8+ Eosinophils. Most interestingly, Ra SBRT has very low abscopal impact and spares normal tissues, which are the significant limitations with conventional radiotherapy. In view of this and the immune adjuvant potential of Ra SBRT, it promotes normalization of aberrant vasculature and inhibits the metastatic potential of NSCLC lesions. In view of this, we here propose that Ra-SBRT indeed represents an immunogenic approach for the effective management of advanced-stage NSCLC.
-
-
-
High Diagnostic and Prognostic Value of miRNAs Compared with the Carcinoembryonic Antigen As A Traditional Tumor Marker
Abstract: Early diagnosis and accurate prognosis are significant important challenges against effective treatment of cancer and improving patient’s condition. Hitherto, many research works have tended to focus on the carcinoembryonic antigen (CEA) to detect cancers and estimate the survival rates of patients with multiple cancer types, including colorectal, breast, non-small cell lung, and pancreas cancer. Limited sensitivity and specificity of this traditional tumor marker make it an inappropriate biomarker to diagnose cancer, especially in the early stages while several lines of research have introduced miRNAs as reliable indicators of tumor initiation, development, and therapy response. Indeed, miRNAs have unique properties that provide considerable benefits, such as discriminating benign diseases from malignancies, predicting cancer development and progression, checking sensitivity to treatment, and initial detecting of tumors. This review summarizes the relationships between miRNAs and CEA, the diagnostic significance of CEA in combination with miRNAs, and the distinct advantages of miRNAs over CEA as tumor biomarkers. Advancement in our current understanding of miRNAs is very essential to discover new and effective biomarkers for diagnostic, prognostic, and therapeutic goals of cancer patients.
-
-
-
Reactive Oxygen Species (ROS): Key Components in Cancer Therapies
Authors: Biswa M. Sahoo, Bimal Krishna Banik, Preetismita Borah and Adya JainAbstract: Reactive Oxygen Species (ROS) refers to the highly reactive substances which contain oxygen radicals. Hypochlorous acid, peroxides, superoxide, singlet oxygen, alpha-oxygen, and hydroxyl radicals are the major examples of ROS. Generally, the reduction of oxygen (O2) in molecular form produces superoxide (•O2 −) anion. ROS are produced during a variety of biochemical reactions within the cell organelles, such as endoplasmic reticulum, mitochondria, and peroxisome. Naturally, ROS are also formed as a byproduct of the normal metabolism of oxygen. The production of ROS can be induced by various factors such as heavy metals, tobacco, smoke, drugs, xenobiotics, pollutants, and radiation. From various experimental studies, it is reported that ROS acts as either a tumor-suppressing or a tumor-promoting agent. The elevated level of ROS can arrest the growth of tumors through the persistent increase in cell cycle inhibition. The increased level of ROS can induce apoptosis by both intrinsic and extrinsic pathways. ROS is considered to be a tumor-suppressing agent as the production of ROS is due to the use of most of the chemotherapeutic agents in order to activate cell death. The cytotoxic effect of ROS provides impetus towards apoptosis, but in higher levels, ROS can cause initiation of malignancy that leads to uncontrolled cell death in cancer cells. In contrast, some species of ROS can influence various activities at the cellular level, including cell proliferation. This review highlights the genesis of ROS within cells by various routes and their role in cancer therapies.
-
-
-
The Effect of GLUT1 on the Survival Rate and Immune Cell Infiltration of Lung Adenocarcinoma and Squamous Cell Carcinoma: A Meta and Bioinformatics Analysis
Authors: Guihua Zhang, Rong Dong, Demiao Kong, Bo Liu, Yan Zha and Meng LuoBackground: Lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) are two major subtypes of Non-Small Cell Lung Cancer (NSCLC). Studies have shown that abnormal expression of glucose transport type 1 (GLUT1) in NSCLC patients has been associated with cancer progression, aggressiveness, and poor clinical outcome. However, the clinical effect of GLUT1 expression on LUAD and LUSC is unclear. Objective: This study aims to learn more about the character of GLUT1 in LUAD and LUSC. Methods: A meta-analysis was performed to evaluate the GLUT1 protein level, and the bioinformatics analysis was used to detect the GLUT1 mRNA expression level, survival differences, and the infiltration abundance of immune cells in samples from TCGA. Meanwhile, functional and network analysis was conducted to detect important signaling pathways and key genes with the Gene Expression Omnibus (GEO) dataset. Results: Our results showed that GLUT1 was over-expressed both in LUAD and LUSC. LUAD patients with high GLUT1 expression had a poor prognosis. Additionally, GLUT1 was related to B cell and neutrophil infiltration of LUAD. In LUSC, GLUT1 was correlated with tumor purity, B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil, and dendritic cell infiltration. The GEO dataset analysis results suggested GLUT1 potentially participated in the p53 signaling pathway and metabolism of xenobiotics through cytochrome P450 and was associated with KDR, TOX3, AGR2, FOXA1, ERBB3, ANGPT1, and COL4A3 gene in LUAD and LUSC. Conclusion: GLUT1 might be a potential biomarker for aggressive progression and poor prognosis in LUAD, and a therapeutic biomarker in LUSC.
-
-
-
Pre-Clinical Activity of Amino-Alcohol Dimeric Naphthoquinones as Potential Therapeutics for Acute Myeloid Leukemia
Authors: Dana Ferraris, Rena Lapidus, Phuc Truong, Dominique Bollino, Brandon Carter-Cooper, Michelle Lee, Elizabeth Chang, Maria LaRossa-Garcia, Smaraki Dash, Ronald Gartenhaus, Eun Y. Choi, Olivia Kipe, Vi Lam, Kristopher Mason, Riley Palmer, Elijah Williams, Nicholas Ambulos, Farin Kamangar, Yuji Zhang, Bandish Kapadia, Yin Jing and Ashkan EmadiBackground: The clinical outcomes of patients with Acute Myeloid Leukemia (AML) remain unsatisfactory. Therefore the development of more efficacious and better-tolerated therapy for AML is critical. We have previously reported anti-leukemic activity of synthetic halohydroxyl dimeric naphthoquinones (BiQ) and aziridinyl BiQ. Objective: This study aimed to improve the potency and bioavailability of BiQ compounds and investigate antileukemic activity of the lead compound in vitro and a human AML xenograft mouse model. Methods: We designed, synthesized, and performed structure-activity relationships of several rationally designed BiQ analogues with amino alcohol functional groups on the naphthoquinone core rings. The compounds were screened for anti-leukemic activity and the mechanism as well as in vivo tolerability and efficacy of our lead compound was investigated. Results: We report that a dimeric naphthoquinone (designated BaltBiQ) demonstrated potent nanomolar anti-leukemic activity in AML cell lines. BaltBiQ treatment resulted in the generation of reactive oxygen species, induction of DNA damage, and inhibition of indoleamine dioxygenase 1. Although BaltBiQ was tolerated well in vivo, it did not significantly improve survival as a single agent, but in combination with the specific Bcl-2 inhibitor, Venetoclax, tumor growth was significantly inhibited compared to untreated mice. Conclusion: We synthesized a novel amino alcohol dimeric naphthoquinone, investigated its main mechanisms of action, reported its in vitro anti-AML cytotoxic activity, and showed its in vivo promising activity combined with a clinically available Bcl-2 inhibitor in a patient-derived xenograft model of AML.
-
-
-
SphK1 Promotes Cancer Progression through Activating JAK/STAT Pathway and Up-Regulating S1PR1 Expression in Colon Cancer Cells
Authors: Jianting Long, Zhijia Yao, Yi Sui and Shi FangBackground: SphK1 is a conserved lipid kinase, which can catalyze the formation of tumorpromoting factor sphingosine phosphate-1 (S1P). Objective: This study aimed to investigate the effect of SphK1 on the proliferation/migration of colon cancer cells and associated mechanisms. Methods: Transcription of the SphK1 gene in colon cancer cells was detected. Gene transcription of SphK1 was inhibited by transfecting with the si-SphK1 gene in colon cancer cells. Effects of SphK1 inhibition (si-SphK1) on cell migration/proliferation were detected using the transwell system and MTS. Gene transcription of SIP, S1PR1, S1PR2, S1PR3, and activation of JAK/STAT3 pathway were examined using RT-PCR and western blot assay. S1PR1 over-expressing plasmid was constructed and transfected into cells. Effects of S1PR1 overexpression on migration/proliferation of si-SphK1 transfected colon cancer cells and activation of JAK/STAT3 pathway were determined using RT-PCR and western blotting. Results: Gene transcription of SphK1 in SW480 and HT-29 colon cancer cells was significantly inhibited by transfection of the si-SphK1 gene. Transwell migration and MTS findings showed that si-SphK1 transfection (si- SphK1 group) could reduce migration quantity and cell viability of colon cancer cells compared to the negative control (NC) (p<0.0001). SphK1 inhibition (si-SphK1 group) significantly down-regulated S1PR1 and S1PR3 gene transcription in SW480 and HT-29 cells (p<0.0001) and decreased activation level of JAKSTAT3 signaling pathway compared to NC group (p<0.05). Over-expression of S1PR1 reversed inhibitory effects of si-SphK1 on migration/proliferation of SW480 and activation of JAK/Stat3. Conclusion: SphK1 promoted proliferation and migration of colon cancer cells through promoting JAK/STAT activation and up-regulating S1PR1 expression.
-
-
-
Design, Synthesis and Binding Affinity Evaluation of Cytochrome P450 1B1 Targeted Chelators
Authors: Dongmei Chen, Qiqi Fan, Ting Xu, Jinyun Dong, Jiahua Cui, Zengtao Wang, Jie Wang, Qingqing Meng and Shaoshun LiBackground: Cytochrome P450 1B1 (CYP1B1) is specifically expressed in a variety of tumors which makes it a promising imaging target of tumor. Objective: We aimed to design and synthesize CYP1B1 targeted chelators for the potential application in positron emission tomography (PET) imaging of tumor. Methods: 1,4,7-triazacyclononane-1,4-diiacetic acid (NODA) was connected to the CYP1B1 selective inhibitor we developed before through polyethylene glycol (PEG) linkers with different lengths. The inhibitory activities of chelators 6a-c against CYP1 family were evaluated by 7-ethoxyresorufin o-deethylation (EROD) assay. The manual docking between the chelators and the CYP1B1 was conducted subsequently. To determine the binding affinities of 6a-c to CYP1B1 in cells, we further performed a competition study at the cellular level. Results: Among three chelators, 6a with the shortest linker showed the best inhibitory activity against CYP1B1. In the following molecular simulation study, protein-inhibitor complex of 6a showed the nearest F-heme distance which is consistent with the results of enzymatic assay. Finally, the cell based competitive assay proved the binding affinity of 6a-c to CYP1B1 enzyme. Conclusion: We designed and synthesized a series of chelators which can bind to CYP1B1 enzyme in cancer cells.To our knowledge, this work is the first attempt to construct CYP1B1 targeted chelators for radiolabeling and we hope it will prompt the application of CYP1B1 imaging in tumor detection.
-
-
-
Celastrol Inhibits the Proliferation and Decreases Drug Resistance of Cisplatin- Resistant Gastric Cancer SGC7901/DDP Cells
Authors: Dongmei Zhan, Tengyang Ni, Haibo Wang, Mengying Lv, Masataka Sunagawa and Yanqing LiuBackground: This study aimed to determine the effect and mechanism of Celastrol inhibiting the proliferation and decreasing the drug resistance of cisplatin-resistant gastric cancer cells. Objective: The objective of this study was to explore the effect and mechanism of Celastrol on proliferation and drug resistance of human gastric cancer cisplatin-resistant cells SGC7901/DDP. Methods: The thiazole blue (MTT) method was used to detect the sensitivity of human gastric cancer cisplatinresistant cells SGC7901/DPP to cisplatin and Celastrol to determine the Drug Resistance Index (DRI). According to the half Inhibitory Concentration (IC50) value, the action of the concentration of the following experimental drugs was set to reduce the cytotoxicity. Annexin V-FITC/PI double staining method was used to detect the apoptosis of SGC7901/DDP cells induced by Celastrol. Western Blot was used to examine the expression levels of P-glycoprotein (P-gp), Multidrug Resistance Associated Protein 1 (MRP1), Breast Cancer Resistance Associated Protein (Breast Cancer Resistance)-relative protein (BCRP), and mechanistic Target of Rapamycin (mTOR) pathway-related proteins. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was used to detect the mRNA expression levels of P-gp, MRP1, and BCRP. Results: (1) Compared with the control group (we set the untreated group as the control group), the proliferation of the SGC7901/DPP cells was significantly inhibited after treating with 0.1-6.4μmol/L Celastrol in a time- and concentration-dependent manner (P<0.05). The Drug Resistance Index (DRI) of the SGC7901/DPP cells to DDP was 5.64. (2) Compared with the control group, Celastrol could significantly inhibit the proliferation and induce the apoptosis of the SGC7901/DPP cells (P<0.05). (3) The mRNA and protein expression levels of P-gp, MRP1, and BCRP in the SGC7901/DPP cells were significantly higher than those in the SGC7901 cells. However, after treating with Celastrol, the expression levels of P-gp, MRP1, and BCRP in the SGC7901/DPP cells were significantly reduced (P<0.05). (4) Compared with the control group, the Celastrol treatment also reduced the expression of the mTOR signaling pathway-related proteins, suggesting that the mTOR signaling pathway may be involved in the process of Celastrol inhibiting the proliferation of the SGC7901/DDP cells and reducing their drug resistance. (5) Significantly, the combination of Celastrol and DDP reduced the expression of P-gp, MRP1, and BCRP in the SGC7901/DPP cells. Conclusion: Celastrol can inhibit the proliferation of the SGC7901/DDP cells, induce their apoptosis, and reduce the expression of drug resistance genes, probably by inhibiting the expression of the proteins related to the mTOR signaling pathway.
-
-
-
MPEG-PCL Nanomicelles Platform for Synergistic Metformin and Chrysin Delivery to Breast Cancer in Mice
Authors: Daiqin Luo, Xinjun Wang, Xiaomei Zhong, Jianying Chang, Mingyuan He, Heran Wang, Yongxia Li, Chaofen Zhao, Yan Luo and Li RanBackground: Metformin (MET) is a well-known anti-diabetic drug that also has anti-cancer effects. However, high therapeutic doses of MET on cancer cells and the low efficacy of combinatory therapeutic approaches limit its clinical application. Recent studies have shown that chrysin (CHR) can improve the pharmaceutical efficacy of MET by suppressing human telomerase reverse transcriptase (hTERT) and cyclin D1 gene expression. Objective: This study aimed to develop different ratios of methoxy poly(ethylene glycol)-b-poly(e-caprolactone) (MPEG-PCL) micelles for breast cancer to co-deliver a synergistic CHR/MET combination. Methods: CHR/MET drug-loaded micelles were prepared by modified thin-film hydration.Fourier infrared spectrum, gel permeation chromatography, transmission electron microscopy, and high-performance liquid chromatography were used to evaluate the physicochemical properties of nanostructures. Cell proliferation and cell apoptosis were assessed by MTT and Annexin V-FITC/PI double staining method. The gene expression of hTERT and cyclin D1 was measured by real-time PCR assay. A subcutaneous mouse T47D xenograft model was established to evaluate the in vivo efficiency. Results: When the ratio of MPEG-PCL was 1:1.7, the highest drug loading rate and encapsulation efficiency of CHR (11.31±0.37) and MET (12.22±0.44) were observed. Uniform MPEG-PCL micelles of 51.70±1.91 nm allowed MET to incorporate with CHR, which were co-delivered to breast cancer cells. We demonstrated that CHR/MET co-delivery micelles showed a good synergistic effect on inhibiting proliferation in T47D cells (combination index=0.87) by suppressing hTERT and cyclin D1 gene expression. Compared to the free CHR/MET group, the apoptosis rate on T47D cells by CHR/MET nano-micelles significantly improved from 71.33% to 79.25%. The tumour volume and tumour weight of the CHR/MET group increased more slowly than that of the single-drug treatment group (P<0.05). Compared to the CHR/MET group, the tumour volume and tumour weight of the CHR/MET nano-micelle group decreased by 42% and 59%, respectively. Conclusion: We demonstrated that ratiometric CHR/MET micelles could provide an effective technique for the treatment of breast cancer.
-
-
-
Single-Cell Transcriptome Analysis Reveals the M2 Macrophages and Exhausted T Cells and Intratumoral Heterogeneity in Triple-Negative Breast Cancer
Authors: Lingyun Xu and Chen LiBackground: Triple-Negative Breast Cancer (TNBC) is a highly heterogeneous and invasive malignancy that is characterized by high recurrence and mortality rates as well as extremely poor prognosis. Objective: The objective of this study is to analyze T cells and Macrophages in the tumor microenvironment with the aim of identifying targets with therapeutic potential. Methods: Single-cell sequencing data of TNBC patients from the GSE118389 dataset were analyzed to examine the immune environment and intratumoral heterogeneity of TNBC patients. Results: Polarized alternatively activated macrophages (M2) and exhausted CD8+ T cells were identified in TNBC patients. Immunosuppressive checkpoint analysis revealed that levels of lymphocyte-activation gene 3 (LAG3) and T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) of exhausted T cells were significantly higher than levels of programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyteassociated protein 4 (CTLA-4). This indicates that these markers are potential immunotherapy targets. Furthermore, analysis of significantly altered immune cell markers showed that several markers were associated with the prognosis of TNBC. Conclusion: Overall, these findings demonstrate inter-tissue heterogeneity of TNBC, and provides novel therapeutic targets for the treatment of TNBC.
-
-
-
Mechanistic Study on Thymoquinone Conjugated ZnO Nanoparticles Mediated Cytotoxicity and Anticancer Activity in Triple-Negative Breast Cancer Cells
Background: In the current era, the development of molecular techniques involves nano techniques, and the synthesis of nanoparticles is considered the preferred field in nanotechnology. Objective: The aim of the present work is to analyze the anticancer activity of the thymoquinone conjugated ZnO nanoparticles and understand its mechanism of action in triple-negative breast cancer cell lines MDA-MB-231. Methods: Zinc Oxide (ZnO) nanoparticles have extensive applications, and it was synthesized using a chemical precipitation method. Thymoquinone (TQ) is the major bioactive component of the seeds of Nigella sativa. Synthesized nanoparticles were characterized using various spectroscopic techniques. Thymoquinone-coated nanoparticles were checked for their efficiency. The cytotoxicity of ZnO, TQ, and TQ conjugated ZnO nanoparticles against MDA-MB-231. Colony-forming and cell migration assays were performed to measure the proliferative competence of the breast cancer cells on exposure to nanoparticles. The mechanism of apoptosis was probed by assessing MMP, interplay between ER stress and ROS. Results: The results of the characterization techniques confirmed that the particles synthesized were ZnO and TQ-ZnO nanoparticles. pH dependent release of the compound was observed. The anti-proliferative effect that impairs the formation of the colony was found to be enhanced in cells exposed to combined treatment with the nanoconjugate. Conclusion: Hence, the TQ conjugated ZnO nanoparticles can act as an efficient carrier for drug delivery at the target site in TNBC cells.
-
-
-
Evaluation of Benzamide-Chalcone Derivatives as EGFR/CDK2 Inhibitor: Synthesis, In-Vitro Inhibition, and Molecular Modeling Studies
Authors: Akshada Joshi, Heena Bhojwani, Ojas Wagal, Khushboo Begwani, Urmila Joshi, Sadhana Sathaye and Divya KanchanBackground: EGFR (Epidermal Growth Factor Receptor) and CDK2 (Cyclin Dependent Kinase 2) are important targets in the treatment of many solid tumors and different ligands of these receptors share many common structural features. Objective: The study involved the synthesis of benzamide-substituted chalcones and determination of their antiproliferative activity as well as a preliminary evaluation of EGFR and CDK2 inhibitory potential using both receptor binding and computational methods. Methods: We synthesized 13 benzamide-substituted chalcone derivatives and tested their antiproliferative activity against MCF-7, HT-29 and U373MG cell lines using Sulforhodamine B Assay. Four compounds were examined for activity against EGFR and CDK2 kinase. The compounds were docked into both EGFR and CDK2 using Glide software. The stability of the interactions for the most active compound was evaluated by Molecular Dynamics Simulation using Desmond software. Molecular docking studies on mutant EGFR (T790M, T790M/L858R, and T790M/C797S) were also carried out. Results: From the SRB assay, we concluded that compounds 1g, and 1k were effective in inhibiting the growth of the MCF-7 cell line whereas the other compounds were moderately active. Most compounds were either moderately active or inactive on U373 MG and HT-29 cell lines. Compounds 1g and 1k showed good inhibitory activity against CDK2 kinase while 1d and 1f were moderately active. Compounds 1d, 1f, 1g, and 1k were moderately active against EGFR kinase. Molecular docking reveals the involvement of one hydrogen bond with Met793 in binding with EGFR; however, it was not stable during the simulation and these compounds bind to the receptor mainly via hydrophobic contacts. This fact also points towards a different orientation of the inhibitor within the active site of EGFR kinase. Binding mode analysis for CDK2 inhibition studies indicates that hydrogen bonding interactions with Lys 33 and Leu83 are important for the activity. These interactions were found to be stable throughout the simulation. Considering the results for wild-type EGFR inhibition, the docking studies on mutants were performed and which indicate that the compounds bind to the mutant EGFR but the amino acid residues involved are similar to the wild-type EGFR, and therefore, the selectivity seems to be limited. Conclusion: These benzamide-substituted chalcone derivatives will be useful as lead molecules for the further development of newer inhibitors of EGFR and/or CDK2 kinases.
-
-
-
Quinoline-3-Carboxylic Acids “DNA Minor Groove-Binding Agent”
Authors: Priyank Purohit, Ravi K. Mittal and Kavita KhatanaBackground: The lead compounds from the series of 2, 4-disubstituted quinoline-3-carboxylic acid derivatives were selected for the in-silico mechanistic study. The compounds were found selective and potent for the cancer cell. Moreover, the relevant ADME in-silico data also support the safety of lead. Objective: The objective of the study is to correlate the interaction of DNA and quinoline derivative, which was reported with the fluorescence microscopy images of cells in-vitro data in the recently published data. Methods: The detailed interaction study with the DNA dodecanucleotide sequenced d(CGCGAATTCGCG) shows the present lead bounds with the A/T minor groove region of a B-DNA duplex through the important major and minor hydrogen bonds. Results: The present in-silico study supports the interactions of the drug with DNA with sufficient binding interactions and energy. The present study also gives vital information related to the mechanism of drug action, which was initially declared as a DNA targeting molecule through a fluorescence-based target study. Conclusion: The substitution at 2nd position (the carbonyl group) of the lead revealed as a hydrogen bond donor/acceptor for adenine and guanine nucleic acid-base pair. The in-silico prediction also confirmed the interaction pattern of the lead with the DNA, which will be further utilized for drug development.
-
-
-
Selective Cytotoxic Effects of 5-Trifluoromethoxy-1H-indole-2,3-dione 3-Thiosemicarbazone Derivatives on Lymphoid-originated Cells
Aim: The present study aims to identify the anticancer effect of novel 1H-indole-2,3-dione 3- thiosemicarbazone derivatives. These compounds could be promising anticancer agents in leukemia treatment. Background: Conventional chemotherapeutic agents accumulate in both normal and tumor cells due to nonspecificity. For effective cancer treatment, new drugs need to be developed to make chemotherapeutics selective for cancer cells. The ultimate goal of cancer treatment is to reduce systemic toxicity and improve the quality of life. Methods: In this study, the anticancer effects of 5-trifluoromethoxy-1H-indole-2,3-dione 3-thiosemicarbazone derivatives (A-L) were investigated in chronic myelogenous leukemia K562, Burkitt’s lymphoma P3HR1, acute promyelocytic leukemia HL60 cells, and vincristine-resistant sublines of K562 and P3HR1 cells. Additionally, the compounds were tested on lymphoid-derived cells from ALL patients. In order to investigate the particular mechanism of death caused by the cytotoxic effects of the compounds, immunohistochemical caspase 3 staining was performed in P3HR1 cells, and the resulting apoptotic activities were demonstrated. Results: All tested compounds have been found to have cytotoxic effects against lymphoma cells at submicromolar concentrations (IC50= 0.89-1.80 μM). Most compounds show significant selectivity for the P3HR1 and P3HR1 Vin resistance. The most effective and selective compound is 4-bromophenyl substituted compound I (IC50=0.96 and 0.89 μM). Cyclohexyl and benzyl substituted compounds D and E have also been found to have cytotoxic effects against K562 cell lines (IC50=2.38 μM), while the allyl substituted compound C is effective on all cell lines (IC50=1.13-2.21 μM). 4-Fluorophenyl substituted F compound has been observed to be effective on all cells (IC50=1.00-2.41 μM) except K562 cell. Compound C is the only compound that shows inhibition of HL-60 cells (IC50= 1.13 μM). Additionally, all compounds exhibited cytotoxic effects on lymphoidderived cells at 1μM concentration. These results are in accordance with the results obtained in lymphoma cells. Conclusion: All compounds tested have submicromolar concentrations of cytotoxic effects on cells. These compounds hold potential for use in future treatments of leukemia.
-
-
-
In Vitro Effects of Propofol on Cytotoxic, Apoptotic and PI3K-Akt Signaling Pathway Genes on Brain Cancer Cells
Aim: The study aimed to determine the cytotoxic and apoptotic effect of propofol on glioma cells. Background: Propofol [2,6-diisopropylphenol] is a commonly used intravenous anesthetic. Propofol is known to have a mechanism of action on the PI3K-AKT pathway. Objective: This study aimed to evaluate the effect of propofol on the proliferation and apoptosis of human glioma cells, as well as to investigate changes in expression levels of the PI3K-AKT signaling pathway genes. Materials and Methods: The cytotoxic effect of propofol on the U-87 MG cell line was determined by WST-1 method. Annexin V-FITC and Mitoprobe JC-1 assay were used to measure apoptosis by flow cytometry. The expression levels of genes in the PI3K-AKT signaling pathway were investigated by qRT-PCR. Results: We have shown that propofol induced apoptosis in U-87 MG cells by 17.1 fold compared to the untreated control. Furthermore, significant differences were found in the expression levels of the PI3K-AKT signaling pathway genes. Conclusion: As a result of our study, it was found that propofol caused differences in expression levels of PI3K-AKT signaling pathway genes and it was suggested that these differences may be related to apoptosis induction.
-
-
-
A Novel 4H-Chromen-4-One Derivative from Marine Streptomyces ovatisporus S4702T as Potential Antibacterial and Anti-Cancer Agent
Background: Marine actinomycetes are among indispensable sources of natural bioactive compounds with unique antimicrobial and anti-cancer activities. Objective: Herein, it was aimed to elucidate the bioactive potential of a marine-derived Streptomyces ovatisporus S4702T, isolated previously. Methods: Streptomyces ovatisporus S4702T was cultured in N-Z Amine broth, and extraction was carried out using different organic solvents. Bioassay-guided purification was followed by chemical characterization using NMR and LC-MS/MS. The compound was then evaluated for its antibacterial, antioxidant and cytotoxic activities. Results: Etyl acetate extracts gave the highest antibacterial activity, and chemical characterization of this extract indicated the formula as C15H29O5N3 and the corresponding possible molecular structure as 4H-chromen-4-one derivative. It was found highly potent against Bacillus subtilis ATCC 6633 (MIC: 0.25 μg ml-1) and Micrococcus luteus ATCC 9341 (MBC: 0.5 μg ml-1). It has no remarkable antioxidant activity, but a higher EC50 value and less cytotoxicity against normal cells. The EC50 values of this chromen derivative were found as 9.68 μg ml-1 for human colon carcinoma, 9.93 μg ml-1 for human prostate adenocarcinoma and 25.5 μg ml-1 for human embryonic kidney cells. Conclusion: Overall, the presented 4H-chromen-4-one derivative is a remarkable bioactive compound with potent antibacterial and cytotoxic activity. With its high bioactive potential, it is proposed as a good candidate in medicine.
-
-
-
The Cisplatin, 5-fluorouracil, Irinotecan, and Gemcitabine Treatment in Resistant 2D and 3D Model Triple Negative Breast Cancer Cell Line: ABCG2 Expression Data
Authors: Fatma K. Ata and Serap YalcinBackground: Chemotherapeutics have been commonly used in cancer treatment. Objective: In this study, the effects of Cisplatin, 5-fluorouracil, Irinotecan, and Gemcitabine have been evaluated on two-dimensional (2D) (sensitive and resistance) cell lines and three dimensional (3D) spheroid structure of MDA-MB- 231. The 2D cell culture lacks a natural tissue-like structural so, using 3D cell culture has an important role in the development of effective drug testing models. Furthermore, we analyzed the ATP Binding Cassette Subfamily G Member 2 (ABCG2) gene and protein expression profile in this study. We aimed to establish a 3D breast cancer model that can mimic the in vivo 3D breast cancer microenvironment. Methods: The 3D spheroid structures were multiplied (globally) using the three-dimensional hanging drop method. The cultures of the parental cell line MDA-MB-231 served as the controls. After adding the drugs in different amounts, we observed a clear and well-differentiated spheroid formation for 24 h. The viability and proliferation capacity of 2D (sensitive and resistant) cell lines and 3D spheroid cell treatment were assessed by the XTT assay. Results: Cisplatin, Irinotecan, 5-Fu, and Gemcitabine-resistant MDA-MB-231 cells were observed to begin to disintegrate in a three-dimensional clustered structure at 24 hours. Additionally, RT-PCR and protein assay showed overexpression of ABCG2 when compared to the parental cell line. Moreover, MDA-MB-231 cells grown in 3D showed decreased sensitivity to chemotherapeutics treatment. Conclusion: More resistance to chemotherapeutics and altered gene expression profile were shown in 3D cell cultures when compared with the 2D cells. These results might play an important role to evaluate the efficacy of anticancer drugs to explore the mechanisms of MDR in the 3D spheroid forms.
-
-
-
Propolis Extract Regulates microRNA Expression in Glioblastoma and Brain Cancer Stem Cells
Background: Grade IV gliomas are classified as glioblastoma (GBM), which is the most malignant brain cancer type. Various genetic and epigenetic mechanisms play a role in the initiation and progression of GBM. MicroRNAs (miRNAs) are small, non-coding RNA molecules that belong to the main epigenetic regulatory RNA class that plays different roles in either physiological or pathological conditions, including GBM pathogenesis regulating expression levels of the target genes. Brain Cancer Stem Cells (BCSCs) are responsible for poor prognosis, including therapy resistance and relapse. Epigenetic regulation mediated by miRNAs is also a critical component of BCSC selfrenewal and differentiation properties. Propolis is a resinous substance collected by honey bees from various plant sources. The flavonoid content of propolis varies depending on the collection region and the extraction method. Although there are studies that include the effects of different originated-propolis on the miRNA expression levels of the glioblastoma cells, the impact on the BCSCs has not been studied yet. Objective: This study aims to evaluate the effects of propolis obtained from Aydın, a city in western Turkey, on miRNA expression levels of BCSCs and GBM cells. Methods: Aydin propolis was dissolved in 60% ethanol, and after evaporation, distilled water was added to prepare the propolis stock solution. The flavonoids content of the Aydin propolis was determined by MS Q-TOF analysis. Commercially obtained U87MG and BCSCs were used as in-vitro brain cancer models. Cytotoxic and apoptotic effects of Aydın propolis were determined via WST-1 assay and Annexin V test, respectively. The miRNA expression profile was investigated using the real-time qRT-PCR method. The fold changes were calculated by the2-ΔΔCt method. The miRNA-mRNA-pathway interactions, including significantly altered miRNAs, were determined using different bioinformatics tools and databases. Results: Quercetin 3-methyl ether was the main component of the Aydin propolis. Aydin propolis did not show significant cytotoxic and apoptotic effects on both GBM and BCSCs up to 2mg/ml concentration. Aydin propolis treatment decreased the expression of nine miRNAs in the U87MG and five miRNAs in the BCSCs. Moreover, ten miRNAs have upregulated from 2.22 to 10.56 folds in propolis treated GBM cells compared to the control group significantly (p<0.05). In the study, the potential roles of two new miRNAs, whose regulations in glioma were not previously defined, were identified. One of them was miR-30d-5p, a novel potential oncomiR in GBM, which was 2.46 folds downregulated in Aydin propolis treated GBM cells. The other one is miR-335-5p, which is a potential tumor suppressor miR in GBM, that was 5.66 folds upregulated in Aydin propolis treated GBM cells. FOXO pathway, its upstream and downstream regulators, and critically neuronal developmental regulators, NOTCH and WNT pathways, were determined as the most deregulated pathways in Aydin propolis treated cells. Conclusion: The determination of the anti-cancer effect of Aydın propolis on the miRNA expression of GBM, especially on cancer stem cells, may contribute to the elucidation of brain cancer genetics by supporting further analyses.
-
-
-
A Comparison of the Anti-Cancer Effects of Free and PLGA-PAA Encapsulated Hydroxytyrosol on the HT-29 Colorectal Cancer Cell Line
Authors: Nasrin S. Sani, Habib Onsori, Somayeh Akrami and Mohammad RahmatiBackground: Hydroxytyrosol is one of the phenolic compounds of olive oil and can induce anticancer effects on colorectal cancer cells. Objective: The aim of the present study was to evaluate the free hydroxytyrosol and nano-capsulated hydroxytyrosol effects on the cell cycle arrest in HT-29 colorectal cancer cell line. Methods: The nano-capsulated hydroxytyrosol was synthesized in poly lactide-co-glycolide-co-polyacrylic acid (PLGA-PAA) copolymer. MTT assay was performed to evaluate the anti-proliferative and anti-tumor effects of the free hydroxytyrosol and nano-capsulated hydroxytyrosol. Finally, the relative expression of CDKN1A, CDKN1B, and CCND1 genes was evaluated in control and treated colorectal cancer cells by using Real-Time PCR. Results: The obtained results from the MTT assay showed that the cytotoxic effects of the nano-capsulated hydroxytyrosol on the colorectal cancer cell line (IC50= 6PPM) were significantly more than free hydroxytyrosol (IC50= 12PPM) after 72h. Also, nano-capsulated hydroxytyrosol showed more significant effects on the upregulation of CDKN1A and CDKN1B genes and down-regulation of the CCND1 gene in colorectal cancer cells. Conclusion: In conclusion, the present study showed that hydroxytyrosol led to the death of colorectal cancer cells through cell cycle arrest. Also, the PLGA-PAA copolymer dramatically caused to increase the cytotoxic effects of the hydroxytyrosol on the colorectal cancer cells.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
Most Read This Month
