Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry - Anti-Cancer Agents) - Volume 21, Issue 8, 2021
Volume 21, Issue 8, 2021
-
-
Fluorinated-NHC Transition Metal Complexes: Leading Characters as Potential Anticancer Metallodrugs
In the last 20 years, N-Heterocyclic Carbene (NHC) ligands have been ubiquitous in biological and medicinal chemistry. Part of their success lies in the tremendous number of topologies that can be synthesized and thus finely tuned that have been described so far. This is particularly true in the case of those derivatives, including fluorine or fluorinated fragments on their NHC moieties, gaining much attention due to their enhanced biological properties and turning them into excellent candidates for the development of novel metallodrugs. Thus, this review summarizes the development that fluorinated-NHC transition metal complexes have had and their impact on cancer treatment.
-
-
-
The Chemosensitizing Role of Metformin in Anti-Cancer Therapy
Authors: Zhimin Tang, Nan Tang, Shanshan Jiang, Yangjinming Bai, Chenxi Guan, Wansi Zhang, Shipan Fan, Yonghong Huang, Hui Lin and Ying YingChemoresistance, which leads to the failure of chemotherapy and further tumor recurrence, presents the largest hurdle for the success of anti-cancer therapy. In recent years, metformin, a widely used first-line antidiabetic drug, has attracted increasing attention for its anti-cancer effects. A growing body of evidence indicates that metformin can sensitize tumor responses to different chemotherapeutic drugs, such as hormone modulating drugs, anti-metabolite drugs, antibiotics, and DNA-damaging drugs via selective targeting of Cancer Stem Cells (CSCs), improving the hypoxic microenvironment, and by suppressing tumor metastasis and inflammation. In addition, metformin may regulate metabolic programming, induce apoptosis, reverse Epithelial to Mesenchymal Transition (EMT), and Multidrug Resistance (MDR). In this review, we summarize the chemosensitization effects of metformin and focus primarily on its molecular mechanisms in enhancing the sensitivity of multiple chemotherapeutic drugs, through targeting of mTOR, ERK/P70S6K, NF-ΚB/HIF-1α, and Mitogen- Activated Protein Kinase (MAPK) signaling pathways, as well as by down-regulating the expression of CSC genes and Pyruvate Kinase isoenzyme M2 (PKM2). Through a comprehensive understanding of the molecular mechanisms of chemosensitization provided in this review, the rationale for the use of metformin in clinical combination medications can be more systematically and thoroughly explored for wider adoption against numerous cancer types.
-
-
-
Synthesis and Evaluation of Cytotoxic Activity of Certain Benzo[h]chromene Derivatives
More LessBackground: Benzo[h]chromenes attracted great attention because of their widespread biological activities, including anti-proliferate activity, and the discovery of novel effective anti-cancer agents is imperative. Objective: The main objective was to synthesize new benzo[h]chromene derivatives and some reported derivatives, and then test all of them for their anti-cancer activities. Methods: The structures of the newly synthesized derivatives were confirmed by elemental and spectral analysis (IR, Mass, 1H-NMR and 13C-NMR). 35 compounds were selected by the National Cancer Institute (NCI) for single-dose testing against 60 cell lines and 3 active compounds were selected for 5-doses testing. Also, these 3 compounds were tested as EGFR-inhibitors; using sorafenib as standard, and as Tubulin polymerization inhibitors using colchicines as a standard drug. Moreover, molecular docking study for the most active derivative on these 2 enzymes was also carried out. Results: Compounds 1a, 1c and 2b have the highest activities among all 35 tested compounds especially compound 1c. Conclusion: compound 1c has promising anti-cancer activities compared to the used standards and may need further modification and investigations.
-
-
-
QSAR Modeling, Molecular Docking and Molecular Dynamics Simulations Studies of Lysine-Specific Demethylase 1 (LSD1) Inhibitors as Anticancer Agents
Authors: Rahman Abdizadeh, Esfandiar Heidarian, Farzin Hadizadeh and Tooba AbdizadehBackground: Background: Histone Lysine Demetylases1 (LSD1) is a promising medication to treat cancer, which plays a crucial role in epigenetic modulation of gene expression. Inhibition of LSD1with small molecules has emerged as a vital mechanism to treat cancer. Objective: In the present research, molecular modeling investigations, such as CoMFA, CoMFA-RF, CoMSIA and HQSAR, molecular docking and Molecular Dynamics (MD) simulations were carried out on some tranylcypromine derivatives as LSD1 inhibitors. Methods: The QSAR models were carried out on a series of Tranylcypromine derivatives as data set via the SYBYL-X2.1.1 program. Molecular docking and MD simulations were carried out by the MOE software and the SYBYL program, respectively. The internal and external predictability performances related to the generated models for these LSD1 inhibitors were justified by evaluating cross-validated correlation coefficient (q2), noncross- validated correlation coefficient (r2ncv) and predicted correlation coefficient (r2pred) of the training and test set molecules, respectively. Results: The CoMFA (q2, 0.670; r2ncv, 0.930; r2pred, 0.968), CoMFA-RF (q2, 0.694; r2ncr, 0.926; r2pred, 0.927), CoMSIA (q2, 0.834; r2ncv, 0.956; r2pred, 0.958) and HQSAR models (q2, 0.854; r2ncv, 0.900; r2pred, 0.728) for training as well as the test set of LSD1 inhibition resulted in significant findings. Conclusion: These QSAR models were found to be perfect and strong with better predictability. Contour maps of all models were generated and it was proven by molecular docking studies and molecular dynamics simulation that the hydrophobic, electrostatic and hydrogen bonding fields are crucial in these models for improving the binding affinity and determining the structure-activity relationship. These theoretical results are possibly beneficial to design new strong LSD1 inhibitors with enhanced activity to treat cancer.
-
-
-
Antiproliferative and Genotoxic Action of an Underexploited Organoteluran Derivative on Sarcoma 180 Cells
Authors: Maria L.L. Barreto do Nascimento, Antonielly C. dos Reis, Josã V.O. Santos, Helber A. Negreiros, Felipe C. Carneiro da Silva, Paulo M.P. Ferreira, Juan C.R. Gonçalves, Dalton Dittz, Débora C. Braz, Adriana M.V. Nunes, Rodrigo L.O.R. Cunha, Ana A.C. Melo-Cavalcante and Joéo Marcelo de Castro e SousaBackground: The search for novel metallic chemical compounds with toxicogenic effects has been of great importance for more efficient cancer treatment. Objective: The study evaluated the cytotoxic, genotoxic and mutagenic activity of organoteluran RF07 in the S-180 cell line. Methods: The bioassays used were cell viability with 3-(4,5-dimethyl-2-thiazole)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) test, evaluation of apoptosis and necrosis using fluorescence and flow cytometry, cytokinesisblock micronucleus test and comet assay. The compound was tested at 1; 2.5 and 5μM. Results: The results showed the cytotoxicity of RF07 at concentrations of 2.5, 5, 10 and 20μM when compared to the negative control. For genotoxicity tests, RF07 showed effects in all concentrations assessed by increased index and frequencies of damage and mutagenic alterations. The compound was also cytotoxic due to the significant decrease in the nuclear division index, with significant values of apoptosis and necrosis. The results of fluorescence and flow cytometry showed apoptosis as the main type of cell death caused by RF07 at 5μM, which is thought to avoid an aggressive immune response of the organism. Conclusion: In addition to cytotoxic and genotoxic effects, RF07 creates good perspectives for future antitumor formulations.
-
-
-
Anti-Breast Cancer Activities of Ketoprofen-RGD Conjugate by Targeting Breast Cancer Stem-Like Cells and Parental Cells
Authors: Shokoofe Noori, Sadegh Rajabi, Mostafa R. Tavirani, Bahare Shokri and Afshin ZarghiBackground: Cancer Stem Cells (CSCs) play an important role in various stages of cancer development, advancement, and therapy resistance. Ketoprofen-RGD has been revealed to act as an anti-cancer agent against some tumors. Objective: We aimed to explore the effects of a novel Ketoprofen-RGD compound on the suppression of Breast Cancer Stem-like Cells (BCSCs) and their parental cells. Methods: Mammospheres were developed from MCF-7 cells and assessed by CSC surface markers through flowcytometry. The anti-proliferative and pro-apoptotic activities of Ketoprofen-RGD were measured by MTS assay and flowcytometry. The expression levels of stemness markers and JAK2/STAT proteins were measured by quantitative Real Time-PCR (qRT-PCR) and western blotting, respectively. Intracellular Reactive Oxygen Species (ROS) was measured using a cell permeable, oxidant-sensitive fluorescence probe (carboxy-H2DCFDA). Results: Ketoprofen-RGD significantly reduced the mammosphere formation rate and the expression of three out of six stemness markers and remarkably decreased viability and induced apoptosis of spheroidal and parental cells compared to controls. Further experiments using CD95L, as a death ligand, and ZB4 antibody, as an extrinsic apoptotic pathway blocker, showed that Ketoprofen-RGD induced intrinsic pathway, suggesting a mechanism by which Ketoprofen-RGD triggers apoptosis. ROS production was also another way to induce apoptosis. Results of western blot analysis also revealed a marked diminish in the phosphorylation of JAK2 and STAT proteins. Conclusion: Our study, for the first time, elucidated an anti-BCSC activity for Ketoprofen-RGD via declining stemness markers, inducing toxicity, and apoptosis in these cells and parental cells. These findings may suggest this compound as a promising anti-breast cancer.
-
-
-
A Study on the Effect and Mechanism of Xiaoaiping (XAP) Injection and S-1 Combination Therapy in Inhibiting the Invasion and Metastasis of Human GC Cells
Authors: Peiyu Wen, Haibo Wang, Tengyang Ni, Xiaojun Dai, Zewen Chu, Shuang Ma, Liangliang Xiang, Zhen Zhou, Yayun Qian, Masataka Sunagawa and Yanqing LiuBackground: This study aimed to determine the effect and mechanism of Xiaoaiping (XAP) injection combined with S-1 in inhibiting the invasion and metastasis of human GC cells. Methods: BGC-823 and MGC-803 cells were incubated in vitro, and the effects of treatment on the cytotoxicity and proliferation of BGC-823 and MGC-803 cells were evaluated by MTT assay. Cell adhesion tests and Transwell assays were used to detect the effects of Xiaoaiping injection combined with S-1 on the metastatic ability of BGC-823 and MGC-803 cells. The expression of VEGF, Metalloproteinases (MMPs) and proteins related to the Epithelial-Mesenchymal Transition (EMT) were detected by Western blotting. Meanwhile, a tumour model was established in nude mice, and the effect of XAP combined with S-1 on BGC-823 cells in vivo was studied. Results: Compared with the single drug group, the combination of XAP with S-1 increased the inhibition rate (P<0.05). The adhesion test showed that the combination group significantly inhibited the adhesion of BGC-823 and MGC-803 cells (P<0.05). The combination of XAP with S-1 reduced the migration and invasion potential of human GC BGC-823 and MGC-803 cells. Western blotting showed that the expression of VEGF, MMP-9, Ncadherin and vimentin was decreased and E-cadherin expression was increased in the combination group compared with these expression values in either the XAP or S-1 alone group (P<0.05). In vivo, we found that XAP combined with S-1 had a significant inhibitory effect on the growth of tumours compared with XAP or S-1 alone. Immunohistochemistry showed that XAP combined with S-1 was able to enhance the levels of E-cadherin and downregulate N-cadherin and vimentin. Conclusion: The combination of XAP with S-1 can enhance the inhibitory effect of a single drug on proliferation, invasion and metastasis. The mechanism may be related to the decrease in the expression of VEGF and MMP-9 proteins and the effect on EMT.
-
-
-
Synthesis and Preclinical Evaluation of Indole Triazole Conjugates as Microtubule Targeting Agents that are Effective against MCF-7 Breast Cancer Cell Lines
Background: Microtubules are considered to be an important therapeutic target for most of the anticancer drugs. These are highly dynamic structures comprising of α-tubulin and β-tubulin which are usually heterodimers and found to be involved in cell movement, intracellular trafficking, and mitosis inhibition of which might kill the tumour cells or inhibit the abnormal proliferation of cells. Most of the tubulin polymerization inhibitors, such as Vinca alkaloids, consist of Indole as the main scaffold. The literature also suggests using triazole moiety in the chemical entities, potentiating the inhibitory activity against cell proliferation. So, in our study, we used indole triazole scaffolds to synthesize the derivatives against tubulin polymerization. Objective: The main objective of this study to synthesize indole triazole conjugates by using environmentally friendly solvents (green chemistry) and click chemistry. To carry out the MTT assay and tubulin polymerization assay for the synthesized indole triazole conjugates. Methods: All the synthesized molecules were subjected to molecular docking studies using Schrodinger suite and the structural confirmation was performed by Mass, proton-NMR and carbon-NMR, documented in DMSO and CDCL3. Biological studies were performed using DU145 (prostate cancer), A-549 (lung cancer) and, MCF-7 (breast cancer), cell lines obtained from ATCC were maintained as a continuous culture. MTT assay was performed for the analogues using standard protocol. Cell cycle analysis was carried out using flow cytometry. Results: The Indole triazole scaffolds were synthesized using the principles of Green chemistry. The triazole formation is mainly achieved by using the Click chemistry approach. Structural elucidation of synthesized compounds was performed using Mass spectroscopy (HR-MS), Proton-Nuclear Magnetic Spectroscopy (1H-NMR) and Carbon-Nuclear Magnetic Spectroscopy (13C-NMR). The XP-docked poses and free energy binding calculations revealed that 2c and 2g molecules exhibited the highest docking affinity against the tubulin-colchicine domain (PDB:1SA0). In vitro cytotoxic assessment revealed that 2c and 2g displayed promising cytotoxicity in MTT assay (with CTC50 values 3.52μM and 2.37μM) which are in good agreement with the computational results. 2c and 2g also arrested 63 and 66% of cells in the G2/M phase, respectively, in comparison to control cells (10%) and tubulin polymerization inhibition assay revealed that 2c and 2g exhibited significant inhibition of tubulin polymerization with IC50 values of 2.31μM, and 2.62μM, respectively in comparison to Nocodazole, a positive control, resulted in an IC50 value of 2.51μM. Conclusion: Indole triazole hybrids were synthesized using click chemistry, and docking studies were carried out using Schrodinger for the designed molecules. Process Optimization has been done for both the schemes. Twelve compounds (2a-2l) have been successfully synthesized and analytical evaluation was performed using NMR and HR-MS. In vitro evaluation was for the synthesized molecules to check tubulin polymerization inhibition for antiproliferative action. Among the synthesized compounds, 2c and 2g have potent anticancer activities by inhibiting tubulin polymerization.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
Most Read This Month
