Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry - Anti-Cancer Agents) - Volume 21, Issue 7, 2021
Volume 21, Issue 7, 2021
-
-
Isoquinolines: Important Cores in Many Marketed and Clinical Drugs
Authors: Chunying Luo, Maxwell Ampomah-Wireko, Huanhuan Wang, Chunli Wu, Qing Wang, Hui Zhang and Yaquan CaoBackground: Isoquinoline analogs are an important, structurally diverse class of compounds that are extensively used as pharmaceuticals. Derivatives containing the isoquinoline scaffold have become a focus of therapeutic research because of their wide range of biological characteristics. Examples of these drugs, many of which are in clinical application or at the pre-clinical stage, are used to treat a broad swathe of ailments, such as tumors, respiratory diseases, infections, nervous system diseases, cardiovascular and cerebrovascular diseases, endocrine and metabolic diseases. Methods: Data were collected from PubMed, Web of Science, and SciFinder, through searches of drug names. Results: At least 38 isoquinoline-based therapeutic drugs are in clinical application or clinical trials, and their chemical structure and pharmacokinetics are described in detail. Conclusion: The isoquinoline ring is a privileged scaffold which is often preferred as a structural basis for drug design, and plays an important role in drug discovery. This review provides a guide for pharmacologists to find effective preclinical/clinical drugs and examines recent progress in the application of the isoquinoline scaffold.
-
-
-
Recent Progress in the Development of Quinoline Derivatives for the Exploitation of Anti-Cancer Agents
Authors: Ruo-Jun Man, Nasreen Jeelani, Chongchen Zhou and Yu-Shun YangBackground: Along with the progress in medicine and therapies, the exploitation of anti-cancer agents focused more on the vital signaling pathways and key biological macromolecules. With rational design and advanced synthesis, quinoline derivatives have been utilized frequently in medicinal chemistry, especially in developing anti-cancer drugs or candidates. Methods: Using DOI searching, articles published before 2020 all over the world have been reviewed as comprehensively as possible. Results: In this review, we selected the representative quinoline derivate drugs in market or clinical trials, classified them into five major categories with detailed targets according to their main mechanisms, discussed the relationship within the same mechanism, and generated a summative discussion with prospective expectations. For each mechanism, the introduction of the target was presented, with the typical examples of quinoline derivate drugs. Conclusion: This review has highlighted the quinoline drugs or candidates, suited them into corresponding targets in their pathways, summarized and discussed. We hope that this review may help the researchers who are interested in discovering quinoline derivate anti-cancer agents obtain considerable understanding of this specific topic. Through the flourishing period and the vigorous strategies in clinical trials, quinoline drugs would be potential but facing new challenges in the future.
-
-
-
Indazole as a Privileged Scaffold: The Derivatives and their Therapeutic Applications
Authors: Jinling Qin, Weyland Cheng, Yong-Tao Duan, Hua Yang and Yongfang YaoBackground: Heterocyclic compounds, also called heterocycles, are a major class of organic chemical compound that plays a vital role in the metabolism of all living cells. The heterocyclic compound, indazole, has attracted more attention in recent years and is widely present in numerous commercially available drugs. Indazole-containing derivatives, representing one of the most important heterocycles in drug molecules, are endowed with a broad range of biological properties. Methods: A literature search was conducted in PubMed, Google Scholar and Web of Science regarding articles related to indazole and its therapeutic application. Results: The mechanism and structure-activity relationship of indazole and its derivatives were described. Based on their versatile biological activities, the compounds were divided into six groups: anti-inflammatory, antibacterial, anti-HIV, antiarrhythmic, antifungal and antitumour. At least 43 indazole-based therapeutic agents were found to be used in clinical application or clinical trials. Conclusion: This review is a guide for pharmacologists who are in search of valid preclinical/clinical drug compounds where the progress of approved marketed drugs containing indazole scaffold is examined from 1966 to the present day. Future direction involves more diverse bioactive moieties with indazole scaffold and greater insights into its mechanism.
-
-
-
Fused and Substituted Pyrimidine Derivatives as Profound Anti-Cancer Agents
The rationale behind drug design is the strategic utilization of heterocyclic fragments with specific physicochemical properties to form molecular targeted agents. Among the heterocyclic molecules, pyrimidine has proved to be a privileged pharmacophore for various biological cancer targets. The anti-cancer potential of small molecules with fused and substituted pyrimidines can be enhanced through bioisosteric replacements and altering their ADME parameters. Although several small molecules are used in cancer chemotherapy, oncology therapeutics has various limitations, especially in their routes of administration and their concurrent side effects. Such pernicious effects may be overcome, via selective biological targeting. In this review, the biological targets, to inhibit cancer, have been discussed. The structural activity relationship of fused and substituted pyrimidines was studied. Eco-friendly synthetic approaches for pyrimidine derivatives have also been discussed. This review will give an insight to scientists and researchers of medicinal chemistry discipline to design small molecules having a pyrimidine scaffold with high anti-cancer potential.
-
-
-
Identification of Maple Anthocyanin and its Antiproliferative Activity against LLC, T47D and C3H10T1/2 Cells
Authors: Yumi Fujiwara, Mako Miwa, Akito Nagatsu and Atsushi HonmaBackground: The genus Acer contains around 200 species, with more than 400 garden varieties. There is considerable diversity in these species and garden varieties, and each can be characterized by morphology and chemical composition. The red appearance of Acer leaves is due to anthocyanin compounds, including cyanidin glycosides, delphinidin glycosides, and galloylated anthocyanins. Few studies have investigated the diversity of anthocyanin compounds in garden varieties, and no studies have examined the pharmacological effects of these compounds. Objective: The purpose of this study was to identify the anthocyanins of Acer palmatum cv. ‘Chishio’, a garden variety of A. palmatum and evaluate their antiproliferative and antioxidant activities. Methods: A methanol extract of fresh leaves was partitioned with ethyl acetate. The extract was purified by column chromatography and compounds were subsequently identified by 1H and 13C NMR and ESI-HRMS. Antiproliferative activity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4- sulfophenyl)-2H-tetrazolium, inner salt (MTS) colorimetric assay. The antioxidant assay was evaluated by scavenging activity using the stable radical DPPH. Results: The anthocyanins cyanidin-3-O-(6''-O-α-rhamnopyranosyl- β-glucopyranoside), cyanidin-3-O- β- glucopyranoside, cyanidin-3-O-[2''-O-(galloyl)-6''-O-(rhamnosyl)-β-glucoside], and cyanidin-3-O-[2''-O-(galloyl)- β-glucopyranoside] were isolated from A. palmatum cv. ‘Chishio’. All four anthocyanin compounds showed antiproliferative activity against LLC and T47D cells, and galloylated anthocyanin showed antiproliferative activity against C3H10T1/2 cells. All four anthocyanins inhibited the activity of DPPH radicals in a dosedependent manner. Conclusion: Maple anthocyanins could be a new cancer therapeutic agent or prophylactic medicine.
-
-
-
Rotundic Acid Regulates the Effects of Let-7f-5p on Caco2 Cell Proliferation
Authors: Yuan Feng, Xinran Liu, Yueqing Han, Mantian Chen, Lin Zhang, Yuling Hu, Liya Chen, Gang Chen and Ning LiBackground & Objective: Nowadays, the interaction between natural products and microRNAs provides a promising field for exploring the chemopreventive agents for various cancers. As a member of microRNAs, the expression of let-7f-5p is universally downregulated in Colorectal Cancer (CRC). The present study aimed to uncover the function of let-7f-5p in the proliferation of human colon cancer cell line Caco2 and explored chemopreventive agents from natural resources that can prevent the development of CRC. Methods: Herein, Caco2 cells were transfected with let-7f-5p mimic and inhibitor to manipulate let-7f-5p levels, and the expression of let-7f-5p was performed by RT-qPCR. Next, we determined how let-7f-5p regulates Caco2 cell proliferation by using MTT, wound-healing, cell cycle, and colony formation assays. Besides, to further understand the effect of let-7f-5p, we evaluated the protein level of AMER3 and SLC9A9 by using western blotting assays. Results: The results showed a suppressive function of let-7f-5p on Caco2 cell proliferation and then put forward a triterpenoid (Rotundic Acid, RA) which significant antagonized the effect of cell proliferation, restitution after wounding, and colony formation caused by let-7f-5p. Moreover, the western blot results further indicated that the inhibitory effect of RA might be due to its suppressive role in let-7f-5p-targeted AMER3 and SLC9A9 regulation. Conclusion: Our validation study results confirmed that let-7f-5p was a potent tumor suppressor gene of Caco2 cell proliferation, and RA showed as a regulator of the effect of let-7f-5p on cell proliferation and then could be a potential chemopreventive agent for CRC treatment.
-
-
-
iRGD Co-Administration with Paclitaxel-Loaded PLGA Nanoparticles Enhance Targeting and Antitumor Effect in Colorectal Cancer Treatment
More LessObjective: To explore the targeting effect of PLGA-NP and iRGD co-administration with PTXPLGA NP (PTX-PLGA + iRGD) on colorectal cancer. Methods: Whether PLGA-NP co-administration with iRGD peptide could show effective tumor-targeting ability in contrast to with PLGA-NP in colorectal cancer mice models was evaluated. Moreover, the chemotherapeutics Paclitaxel (PTX) was loaded into the PLGA-NP to impart anti-tumor efficiency to the PTX-PLGA. Whether iRGD co-administration with PTX-PLGA NP (PTX-PLGA + iRGD) in colorectal cancer models enabled PTX to achieve better anti-tumor efficiency and biocompatibility was further assessed. Results: The targeting ability of PLGA-NP was enhanced in cell experiment and colorectal cancer mice models by co-administration of iRGD. As a result, PTX-PLGA + iRGD achieved better anti-tumor efficacy than PTX and PTX-PLGA. Conlusion: The nanocarrier based on PLGA with specific targeting ability could promote the clinical application of various chemotherapeutics similar to PTX. The combination of drug-loaded nanoparticles and iRGD could develop into a promising drug delivery system.
-
-
-
Pulsatilla saponin A Induces Apoptosis and Differentiation of Myeloma Cells
Authors: Bibo Ye, Yingying Zhou, Yanli Liu, Xuewei Li, Tianyu Li and Xiaofei QiObjectives: To investigate the performance of Pulsatilla saponin A (PsA) in Multiple Myeloma (MM) cells. Methods: Proliferation, cell cycle analysis, apoptosis and TUNEL assays were conducted to detect the growth and apoptosis in MM cells. Western blotting was used to identify the change in the protein. Results: In cell assays, PsA significantly inhibited the growth and apoptosis in MM cells. Cyclin B1, caspase-3, cleaved-caspase-3, PARP, cleaved-PARP, p-ERK increased, while Bcl-2 decreased after PSA treatment. The CD49e positive rate of U266 cells was increased after 96h PsA treatment. At the same time, immunoglobulin and the Free Light Chain (FLC) ratio in the culture supernatant obviously increased. Also, the differentiation induced by PsA was confirmed in the primary myeloma cells. Conclusion: Our findings reveal that PsA may exert its antitumor effect by causing G2 arrest and apoptosis in myeloma cells. And low-dose PsA can induce the differentiation of myeloma cell lines and primary myeloma cells, probably through the MEK/ERK signaling pathway in vitro.
-
-
-
Clinical and In Silico Outcomes of the Expression of miR-130a-5p and miR-615-3p in Tumor Compared with Non-Tumor Adjacent Tissues of Patients with BC
Authors: Khandan Ilkhani, Soheila Delgir, Asma Safi, Farhad Seif, Azam Samei, Milad Bastami and Mohammad R. AlivandBackground: Breast Cancer (BC) is the most common malignancy among women with a high mortality rate. The blockade of asparagine-related pathways may be an effective measure to control the progression and reduction of BC metastasis potential. Recently, it has been shown that various miRNAs, as part of small non-coding RNAs, have a great role in cancer development, especially asparagine-related pathways, to modulate the invasiveness. Objective: This study aimed to evaluate the expression of miR-130a-5p and miR-615-3p in tumoral and nontumoral adjacent tissues of patients with BC. Methods: There is a chance that asparagine metabolism is influenced by miR-130a-5p and miR-615-3p as confirmed by bioinformatics analysis. Hence, real-time PCR was conducted on eighty BC tumoral and non-tumoral adjacent tissues to evaluate the expression level of the two miRNAs. To predict the potential biological process and molecular pathways of miR-130a-5p, an in silico analysis was performed. Results: This study indicated that miR-130a was downregulated in tumoral tissues compared to non-tumoral adjacent tissues (P-value= 0.01443 and fold change= -2.5137), while miR-615-3p did not show a significant difference between the two groups. Furthermore, the subgroup studies did not reveal any significant correlation between the expression of these two miRNAs and subfactors. Furthermore, in silico studies unraveled several biological processes related to amino-acid metabolism, as well as pathways related to tumor development such as Phosphatase and Tensin Homolog (PTEN) and JAK-STAT pathways among miR-130a-5p target genes. Conclusion: Our findings indicate that miRNA-130a-5p is downregulated in BC tissues and may play a tumor suppressor role in patients with BC. Therefore, it may be suggested as a potential diagnostic and therapeutic target for BC.
10.2174/1871520620666200924105352
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
Most Read This Month
