Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry - Anti-Cancer Agents) - Volume 20, Issue 7, 2020
Volume 20, Issue 7, 2020
-
-
CDK1 in Breast Cancer: Implications for Theranostic Potential
Breast cancer has been identified as one of the main cancer-related deaths among women during some last decades. Recent advances in the introduction of novel potent anti-cancer therapeutics in association with early detection methods led to a decrease in the mortality rate of breast cancer. However, the scenario of breast cancer is yet going on and further improvements in the current anti-cancer therapeutic approaches are needed. Several factors are present in the tumor microenvironment which help to cancer progression and suppression of anti-tumor responses. Targeting these cancer-promoting factors in the tumor microenvironment has been suggested as a potent immunotherapeutic approach for cancer therapy. Among the various tumorsupporting factors, Cyclin-Dependent Kinases (CDKs) are proposed as a novel promising target for cancer therapy. These factors in association with cyclins play a key role in cell cycle progression. Dysregulation of CDKs which leads to increased cell proliferation has been identified in various cancers, such as breast cancer. Accordingly, the development and use of CDK-inhibitors have been associated with encouraging results in the treatment of breast cancer. However, it is unknown that the inhibition of which CDK is the most effective strategy for breast cancer therapy. Since the selective blockage of CDK1 alone or in combination with other therapeutics has been associated with potent anti-cancer outcomes, it is suggested that CDK1 may be considered as the best CDK target for breast cancer therapy. In this review, we will discuss the role of CDK1 in breast cancer progression and treatment.
-
-
-
Synergies of Targeting Angiogenesis and Immune Checkpoints in Cancer: From Mechanism to Clinical Applications
Authors: Shi Zhou and Haijun ZhangBackground: Angiogenesis marks key progress in the growth, recurrence, and metastasis of various cancers. Antiangiogenic drugs can improve the blood supply and oxygen content of tumors and enhance the effects of chemotherapy and radiotherapy by normalizing tumor blood vessels and microenvironment. The further recent developments of Immune Checkpoint Inhibitors (ICIs) provide significant progress in cancer immunotherapy. The study focused on programmed cell death protein 1 (PD-1) and Cytotoxic T Lymphocyte Antigen 4 (CTLA-4) blockade, reflecting on the evidence of durable responses among various tumor types. The aim of this review was to sum up present evidence and clarify the rationale behind supporting the benefits of combining antiangiogenic drugs with immunotherapy for cancer treatment as well as list the ongoing clinical trials that are being conducted. Methods: Using PubMed and Web of Science, published articles have been searched and comprehensively reviewed. Results: Antiangiogenic agents can trigger antitumor and immunity, and they can also be induced by the immune system. Combining antiangiogenic drugs with immunotherapy may be effective for the treatment of human cancers. Conclusion: It is evidenced that combining angiogenesis inhibitors with immunotherapy has a synergistic effect thus improving the curative effect of both agents.
-
-
-
A Hypothesis for the Relationship between Depression and Cancer: Role of Ca2+/cAMP Signalling
More LessLimitations on the pharmacotherapy and a high prevalence worldwide are critical issues related to depression and cancer. It has been discussed that a dysregulation of intracellular Ca2+ homeostasis is involved in the pathogenesis of both these diseases. In addition, depression raises the risk of cancer incidence. Consistent data support the concept that depression is an independent risk issue for cancer. However, the cellular mechanisms involved in this link between depression and cancer remain uncertain. Considering our previous reports about Ca2+ and cAMP signalling pathways (Ca2+/cAMP signalling), I herein discussed the putative contribution of Ca2+/cAMP signalling in this link between depression and cancer. Moreover, it is important to take depression into account during the process of prevention and treatment of cancer.
-
-
-
Selective Inhibition of Esophageal Cancer Stem-like Cells with Salinomycin
Authors: Mahdi Zarei, Marie S. Jazi, Mahboubeh Tajaldini, Ayyoob Khosravi and Jahanbakhsh AsadiBackground: Targeting Cancer Stem-Like Cells (CSLCs) can provide promising new therapeutic strategies to inhibit cancer progression, metastasis and recurrence. Salinomycin (Sal), an antibacterial ionophore, has been shown to inhibit CSCs specifically. Recently, it has been reported that Sal can destabilize TAZ, the hypo pathway transducer in CSLCs. Objectives: Here, in the current study, we aimed to assess the differential toxicity of Sal in esophageal CSLCs and its relation to TAZ gene expression. Methods: The esophageal cancer cell line, KYSE-30, was used for the enrichment of CSLCs. The expression of TAZ was knocked down using specific siRNA transfection and then the cytotoxicity of Sal was measured using XTT assay. The qRT-PCR method was used for gene expression assessment and the sphere formation ability was monitored using light microscopy. Results: Our findings showed that esophageal CSLCs over-express stemness-associated genes, including SOX2, OCT4 as well as TAZ (~14 fold, P value=0.02) transcription coactivator. We found Sal can selectively inhibit KYSE-30 CSLCs viability and sphere formation ability; however, TAZ knockdown does not change its differential toxicity. Conclusion: Overall, our results indicated that Sal can selectively decrease the viability of esophageal CSLCs in a TAZ-independent manner.
-
-
-
Apoptotic Effects of Melittin on 4T1 Breast Cancer Cell Line is associated with Up Regulation of Mfn1 and Drp1 mRNA Expression
Background and Purpose: Melittin, as the main ingredient of honeybee venom, that has shown anticancer properties. The present study aimed at investigating the cytotoxic impacts of melittin on 4T1 breast cancer cells. Methods: Hemolytic activity of different concentrations (0.125, 0.25, 0.5, 1, 2, 4, 8μg/ml) of melittin was assayed and then cytotoxicity of selected concentrations of melittin (2, 4, 8, 16, 32, and 64μg/ml), 2 and 4μg/ml of cisplatin and 0.513, 0.295 and 0.123μg/ml of doxorubicin was evaluated on 4T1 cells using MTT assay. We used Morphological evaluation and flow cytometric analysis was used. Real time PCR was also used to determine mRNA expression of Mfn1 and Drp1 genes. Results: All compounds showed anti-proliferative effects on the tumor cell line with different potencies. Melittin had higher cytotoxicity against 4T1 breast cancer cells (IC50= 32μg/ml-72h) and higher hemolytic activity (HD50= 1μg/ml), as compared to cisplatin and doxorubicin. Mellitin at 16 and 32μg/ml showed apoptotic effects on 4T1 cells according to the flow cytometric analysis. The Real time PCR analysis of Drp1 and Mfn1 expression in cells treated with 16μg/ml of melittin revealed an up-regulation in Drp1 and Mfn1 genes mRNA expression in comparison with control group. Treatment with 32μg/ml of melittin was also associated with a rise in mRNA expression of Drp1 and Mfn1 as compared to the control group. Conclusion: The results of this study showed that melittin has anticancer effects on 4T1 cell lines in a dose and time dependent manner and can be a good candidate for further research on breast cancer treatment.
-
-
-
Evaluation of the Diagnostic Properties of Serum hsa-miR-223-5p in the Detection of Gastric Cancer: A Case-Control Study
Background: MicroRNAs (miRs) are a group of small non-coding and single-stranded RNAs of 18 to 25 nucleotides. The study of microRNAs is one of the new ways to detect cancer. In this study, the serum expression of miR-223 in patients with GC was measured and compared with the control group. Methods: This case-control study was conducted on 39 patients with GC and 39 control subjects who visited the Reza Radiotherapy and Oncology Center, Mashhad, Iran, due to gastrointestinal complaints. The demographic information was collected, and the serum levels of miR-223 were measured using the real-time PCR technique in all study subjects. The association between the GC of miR-223 and tumor staging and cancer progression was assessed. Results: The miR-223 expression in GC patients was 3.10-fold higher than that of the control group (p<0.0001). The miR-223 expression was significantly higher in the GC stages and grades compared to the control group (p<0.0001 each). However, there was no significant effect for age, smoking, and gender on miR- 223 expression in GC and controls. At the optimal cutoff value of 0.7436, the maximal sensitivity of 89.74% and specificity of 84.62% were achieved for miR-223 (p<0.001). The sensitivity and specificity for miR-223 for differentiating low grades from high grade were 92.31% and 73.08% (p=0.0003), and for differentiating low stages from the high stage was 81.82% and 39.29% respectively (p=0.696). Conclusion: This study revealed that miR-223 could be considered as a non-invasive diagnostic marker in the early diagnosis of GC.
-
-
-
Alkylamino Phenol Derivative Induces Apoptosis by Inhibiting EGFR Signaling Pathway in Breast Cancer Cells
Authors: Suresh Palanivel, Olli Yli-Harja and Meenakshisundaram KandhaveluBackground and Objective: The present study was carried out to evaluate the anticancer property of an alkylamino phenol derivative -2-((3,4-Dihydroquinolin-1(2H)-yl)(p-tolyl)methyl)phenol) (THTMP) against human breast cancer cells. The cytotoxicity of the THTMP was assessed to know its specificity towards breast cancer cells without affecting the normal cells. Methods: The THTMP was synthesized and the cytotoxicity was assessed by MTT assay, Caspases enzyme activity, DNA fragmentation and FITC/Annexin V, AO/EtBr staining, RT-PCR and QSAR. In addition, ADME analysis was executed to understand the mode of action of THTMP. Results: THTMP showed potential cytotoxic activity against the growth of MCF7 and SK-BR3 cells with the IC50 values of 87.92μM and 172.51μM, respectively. Interestingly, THTMP found to activate caspase 3 and caspase 9 enzymes in cancer cells, which are the key enzymes implicated in apoptosis. THTMP induced apoptosis in which 33% of the cells entered the late apoptotic stage after 24h of treatment. The results also revealed that the apoptotic response could be influenced by the association of THTMP with the Epidermal Growth Factor Receptor (EGFR) mediated inhibition of the Phosphatidylinositol 3-Kinase (PI3K)/S6K1 signaling pathway. In addition, docking was performed to study the binding mode of the THTMP, which shows better interaction with EGFR. The structural elucidation of THTMP by Quantitative Structure-Activity Relationship model (QSAR) and ADMET screening suggested, THTMP as an effective anticancer compound. Conclusion: This work strengthens the potential of a promising drug-like compound, THTMP, for the discovery of anticancer drug against breast cancer.
-
-
-
NLRP3 Promotes Colorectal Cancer Cell Proliferation and Metastasis via Regulating Epithelial Mesenchymal Transformation
Authors: Xinyu Shao, Zhiyi Lei and Chunli ZhouBackground: Nucleotide-binding domain Leucine-rich Repeat Protein 3 (NLRP3) plays a regulatory role in the immune and inflammatory responses, and has been implicated in Colorectal Cancer (CRC) progression and metastasis. However, the underlying molecular mechanisms have not been fully elucidated. Methods: In this study, we analyzed the expression levels of NLRP3 in human CRC tissues, and performed functional assays in CRC cell lines and a subcutaneous tumor model to elucidate its role in the development and progression of CRC. Results: In this study, we found that NLRP3 was significantly upregulated in human CRC tissues and was associated with tumor size and invasion, lymph node metastasis, venous invasion, neural invasion and TNM staging. Furthermore, knockdown of NLRP3 in CRC cells inhibited their migration and growth in vitro and in vivo, and reversed Epithelial-Mesenchymal Transition (EMT) in vitro. Conclusion: Our findings indicate that NLRP3 likely regulates CRC metastasis by activating the EMT program, and is a potential therapeutic target.
-
-
-
PDK1 Inhibitor GSK-470 Exhibits Potent Anticancer Activity in a Pheochromocytoma PC12 Cell Tumor Model via Akt/mTOR Pathway
Authors: Xiaohua Zhang and Shan ZhongBackground: Phosphoinositide-Dependent Kinase 1 (PDK1) is now widely studied in malignant solid tumors. Researchers have previously revealed that targeting PDK1 is thought of as a promising anticancer treatment strategy. The aim of this study was designed to evaluate the anticancer activity of GSK-470, a novel and highly specific inhibitor of PDK1, in Pheochromocytoma (PCC) tumor model. Methods: PC12 cells were xenografted into nude mice to build PCC tumor model. Animals were treated with GSK-470 vs vehicle. Mean tumor volume was calculated and compared across groups. TUNEL was used to detect apoptosis. The effects of PDK1 inhibitor GSK-470 on activation of the Akt signaling and its downstream Akt/mTOR pathway in xenotransplant tumor tissues were examined by western bolt. Results: The mean tumor volume in GSK-470 group was significantly less than that in control group. TUNEL results found that cell apoptosis was markedly increased in GSK-470 group compared with the control group. The western bolt analysis showed that the phosphorylation of Akt at threonine 308 was significantly reduced in GSK-470 group. Also, GSK-470 strongly inhibited phosphorylation of mTOR on Ser2448, a marker for mTORC1 activity, as well as phosphorylation of p70S6K, best characterized targets of mTOR. Conclusion: Our results showed that GSK-470 exhibited potent anticancer activity in PC12 tumor-bearing mice. Also, we found that this effect appeared to be mediated by the inhibition of the Akt/mTOR pathway. The present study once again provides new insights into the therapeutic effects of inhibiting PDK1 in the treatment of malignant PCC. Therefore, we propose that GSK-470 might be an effective therapeutic agent for the treatment of malignant PCC.
-
-
-
Lauric Acid Modulates Cancer-Associated microRNA Expression and Inhibits the Growth of the Cancer Cell
Authors: Poonam Verma, Amit Ghosh, Manisha Ray and Saurav SarkarBackground: microRNAs are known to regulate various protein-coding gene expression posttranscriptionally. Fatty acids are cell membrane constituents and are also known to influence the biological activities of the cells like signal transduction, growth and differentiation of the cells, apoptosis induction, and other physiological functions. In our experiments, we used lauric acid to analyse its effects on human cancerous cell lines. Objective: Our objective was to speculate the miRNA expression profile in lauric acid treated and untreated cancerous cell lines and further study the metabolic pathways of the targeted tumour suppressor and oncogenes. Methods: The KB cells and HepG2 cells were treated with lauric acid and miRNA was isolated and the expression of tumour suppressor and oncogenic miRNA was measured by quantitative PCR. The untreated cells were used as control. The metabolic pathways of the target tumour suppressor and oncogenes were examined by GeneMANIA software. Results: Interestingly, the lauric acid treatment suppresses the expression of oncogenic miRNA and significantly upregulated the expression of some tumour suppressor miRNAs. GeneMANIA metabolic pathway revealed that the upregulated tumour suppressor miRNAs regulate several cancer-associated pathways such as DNA damage, signal transduction p53 class mediator, stem cell differentiation, cell growth, cell cycle phase transition, apoptotic signalling pathway, cellular response to stress and radiation, etc. whereas oncogenic miRNAs regulate the cancer-associated pathway like cell cycle phase transition, apoptotic signalling pathway, cell growth, response to oxidative stress, immune response activating cell surface protein signalling pathway, cyclin-dependent protein kinase activity, epidermal growth factor receptor signalling pathways, etc. Conclusion: In our study, we found that lauric acid works as an anticancer agent by altering the expression of miRNAs.
-
-
-
Synthesis of Dihydrazones as Potential Anticancer and DNA Binding Candidates: A Validation by Molecular Docking Studies
Background: Accounting for mortality nearly one in four of human and second highest leading cause of death worldwide. Every year, about 10 million new cancers are diagnosed and causing major health issues in both developing and developed countries. Methods: A series of new dihydrazones were synthesized and screened for in vitro anticancer activity against three different MDA-MB-231, A546 and MCF7 cell lines and validated by DNA binding and molecular docking approaches. Result: In the present investigations, synthesized compounds 21, 22, 23 and 24 exhibited potent anticancer activity against tested cancer cell lines and DNA binding study using methyl green comparing to Doxorubicin and ethidium bromide as a positive control respectively. Conclusion: The Structure Activity Relationship (SAR) showed that the electron withdrawing groups (-Cl, -NO2, - F, and -Br) favored the DNA binding studies and anticancer activity whereas, electron donating groups (-OH and - OCH3) showed moderate activity. In the molecular docking study, binding interactions of the most active compounds 21, 22, 23 and 24 stacked with A-T rich regions of the DNA minor groove by surface binding interactions were confirmed. Further, the tuning of active analogs for targeted therapy was warranted.
-
-
-
Melatonin a Promising Candidate for DNA Double-Stranded Breaks Reduction in Patients Undergoing Abdomen-Pelvis Computed Tomography Examinations
Authors: Ali Eskandari, Aziz Mahmoudzadeh, Alireza Shirazi, Farid Esmaely, Carla Carnovale and Mohsen ChekiBackground and Objective: Cancer incidence is 24% higher in children and young adults exposed to Computed Tomography (CT) scans than those unexposed. Non-repairing of ionizing radiation-induced DNA Double-Strand Breaks (DSBs) can initiate carcinogenesis. In the present study, we aimed to investigate the radioprotective potential of melatonin against DSBs in peripheral blood lymphocytes of patients undergoing abdomen-pelvis CT examinations. Methods: This double-blind, placebo-controlled clinical trial was conducted on thirty patients. These patients were divided into two groups; group one (control) patients who have undergone the CT examination received a single oral dose of placebo, while in group two, patients received a single oral dose of 100mg melatonin. In both the groups, blood samples were collected 5-10min before and 30 minutes after the CT examination. The lymphocytes from these samples were isolated and DSBs were analyzed using γH2AX immunofluorescence microscopy. Results: Compared to the control group, the use of melatonin 1h before the CT examination caused a significant reduction in γH2AX-foci, indicating a reduction in DSBs. In addition, no side effect was observed in patients following 100mg melatonin administration. Conclusion: For the first time, this study has shown that melatonin has protective effects against radiationinduced genotoxicity in peripheral blood lymphocytes of patients undergoing abdomen-pelvis CT examinations. Therefore, melatonin can be considered as a promising candidate for reducing DSBs in patients undergoing abdomen-pelvis CT examinations.
-
-
-
The Effect of p53-R249S on the Suppression of Hepatocellular Carcinoma Cells Survival Induced by Podophyllum Derivatives
Authors: Huan Chen, Mingyang Zhang, Ziping Wang, Lingqi Li, Qiqi Li and Huai WangBackground: Hepatocellular Carcinoma (HCC), the second leading cause of cancer-related mortality with over half a million new cases diagnosed annually in the world, accounts for nearly 70% of cancer deaths in parts of Asia and Africa. Podophyllum, one of the important members of the lignane class of natural products derived from plants in Podophyllum peltatum L., has been shown to suppress tumor growth in various cancers. However, the effects of Podophyllum compounds on HCC and the mechanisms for its tumor-suppressive function remain unknown. Methods: A molecular docking study was employed to the analysis of the interaction between compounds and their targeted proteins. Cell proliferation was measured by MTT assay. Western blot analysis was used to evaluate protein expression. qRT-PCR was performed to assess RNA expression. Results: Molecular docking analysis was consistent with the beneficial effect of fluorine atom substituent in the 3-position of 2-aminopyridine in our previous study. Also, P-3F and D-3F displayed the most potent cytotoxicities against PLC/PRF/5 with p53-R249S and weakest inhibition of L02 (normal liver cell) growth. However, these derivatives had no effect on the suppression of HepG2 (wild-type p53) and Hep3B (p53-null) proliferation significantly. Further study showed that both compounds increase γ-H2AX expression in PLC/PRF/5 cell, along with repression of the c-Myc activation, purportedly by induction of p53 level and transcriptional activation. Conclusion: The results suggested that podophyllum derivatives containing fluorine atom in the 3-position of 2- aminopyridine could inhibit the growth of HCC harboring p53-R249S by restoring the activity of p53 with decreasing the level of c-Myc.
-
-
-
The Effect of a Newly Synthesized Ferrocene Derivative against MCF-7 Breast Cancer Cells and Spheroid Stem Cells through ROS Production and Inhibition of JAK2/STAT3 Signaling Pathway
Authors: Mitra Nourbakhsh, Shabnam Farzaneh, Adeleh Taghikhani, Afshin Zarghi and Shokoofe NooriBackground: Breast Cancer Stem Cells (BCSCs) possess the ability of self-renewal and cellular heterogeneity, and therefore, play a key role in the initiation, propagation and clinical outcome of breast cancer. It has been shown that ferrocene complexes have remarkable potential as anticancer drugs. Objective: The present study was conducted to investigate the effects of a novel ferrocene complex, 1- ferrocenyl-3-(4-methylsulfonylphenyl)propen-1-one (FMSP) on MCF-7 breast cancer cell line and its derived mammospheres with cancer stem cell properties. Methods: Mammospheres were developed from MCF-7 cells and validated by the evaluation of CD44 and CD24 cell surface markers by flow cytometry as well as of the expression of genes that are associated with stem cell properties by real-time PCR. Cells viability was assessed by a soluble tetrazolium salt (MTS) after the treatment of cells with various concentrations of FMSP. Apoptosis was evaluated by flow cytometry analysis of annexin V and PI labeling of cells. Reactive Oxygen Species (ROS) production was measured using a cellpermeable, oxidant-sensitive fluorescence probe (carboxy-H2DCFDA). The involvement of the JAK2/STAT3 pathway was also investigated by western blotting. Results: FMSP could successfully prevent mammosphere formation from differentiated MCF-7 cells and significantly down-regulated the expression of genes involved in the production of the stem cell properties including Wnt1, Notch1, β -catenin, SOX2, CXCR4 and ALDH1A1. FMSP decreased cell viability in both MCF-7 cells and spheroid cells, although MCF-10A cells were unaffected by this compound. Apoptosis was also dramatically induced by FMSP, via ROS production but independent of CD95 activation. Phosphorylation levels of JAK2 and STAT3 were also found to be significantly attenuated even in the presence of IL-6, the putative activator of the JAK/STAT pathway. Conclusion: FMSP can effectively target BCSCs via ROS production and modulation of major signaling pathways that contribute to the stemness of breast cancer cells, and therefore, might be considered a promising anticancer agent after in vivo studies.
-
-
-
Molecular Docking Studies and Inhibition Properties of Some Antineoplastic Agents against Paraoxonase-I
Authors: Yeliz Demir, Cüneyt Türkeş and Şükrü BeydemirBackground: Currently, most of the drugs used in clinical applications show their pharmacological influences by inhibiting or activating enzymes. Therefore, enzyme inhibitors have an essential place in the drug design for many diseases. Objective: The current study aimed to contribute to this growing drug design field (i.e., medicine discovery and development) by analyzing enzyme-drug interactions. Methods: For this reason, Paraoxonase-I (PON1) enzyme was purified from fresh human serum by using rapid chromatographic techniques. Additionally, the inhibition effects of some antineoplastic agents were researched on the PON1. Results: The enzyme was obtained with a specific activity of 2603.57 EU/mg protein. IC50 values for pemetrexed disodium, irinotecan hydrochloride, dacarbazine, and azacitidine were determined to be 9.63μM, 30.13μM, 53.31μM, and 21.00mM, respectively. These agents found to strongly inhibit PON1, with Ki constants ranging from 8.29±1.47μM to 23.34±2.71mM. Dacarbazine and azacitidine showed non-competitive inhibition, while other drugs showed competitive inhibition. Furthermore, molecular docking was performed using maestro for these agents. Among these, irinotecan hydrochloride and pemetrexed disodium possess the binding energy of -5.46 and -8.43 kcal/mol, respectively. Conclusion: The interaction studies indicated that these agents with the PON1 possess binding affinity.
-
-
-
Theoretical Analysis for the Safe Form and Dosage of Amygdalin Product
Authors: Vasil Tsanov and Hristo TsanovIndroduction: This article presents a theoretical analysis of the safe form and dosage of the amygdalin derivative. By making a precise socio-anthropological analysis of the life of the ancient people of Botra (Hunza people, Burusho/Brusho people), a hypothesis has been postulated through a number of modern quantum-mechanical, molecular-topological and bio analytical checks, and has also been confirmed by two proofs. Methods: The proposed hypothesis underwent theoretical and logical analysis to confirm and/or reject it. The methodological scheme was: determining the optimal chemical formula, determination of the pharmaceutical molecular form and determination of the drug dose. Results: A convenient, harmless, form of amygdalin derivative is available that has the same biological and chemical activity and could be used in conservative clinical oncology. The article also presents a theoretical comparative analysis of biochemical reactivity in in vivo and in vitro media, by which we also determine the recommended dosage for patient administration. A comparative analysis of the data, obtained in published clinical studies of amygdalin, is presented, summarizing a scheme of the anti-tumor activity of the proposed molecular form. Conclusion: The hydrolyzed to amide / carboxylic acid cyano / nitrile glycosides are potential drugs. Their biological activity remains unchanged, but their toxicity is many times lower than unmodified native molecules. We claim that this study we have conducted on amygdalin / dhurrin-derived amide is the only study on this molecular form. Other substances in these groups with pronounced biological activity (including anti-tumor) are the hydrolyzed nitrile groups by Prunasin, Lucumin, Vicianin, Sambunigrin, Dhurrin, Taxiphyllin, Zierin, Preteacin, p-Glucosyloxymandelonitrile, Linamarin, Lotaustralin, Acaciapetalin, Triglochinin, Dejdaclin, Tetraphyllin A, Tetrallin B, Gynocardin etc., to their amide/carboxylic acid.
-
-
-
Anticancer Effects of Novel Tetrahydro-Dimethyl-Xanthene-Diones
More LessBackground: The derivatives of xanthene are known to have promising anticancer properties, in comparison to xanthene itself. Objective: The object of our study was to develop few xanthene derivatives (a family of fifteen novel 3,4,6,7- tetrahydro-3,3-dimethyl-9-phenyl-2H-xanthene-1,8(5H, 9H)-diones encoded as 4a-4m), which were effectively prepared through regioselective synthesis approach, and to test their anticancer effects. Methods: A series of cell lines were used in this study, first to assess the cytotoxicity and then the drug efficacy of target compounds, consecutively. Prior to MTT assay, the compounds were analysed for their antioxidant properties, since oxidative stress is an important factor in the development of many cancer types. The anticancer properties of 4a-m have been assessed over in silico (molecular docking and ADMET assessments) and in vitro (MTT assay) methods. Results: Compounds 4h and 4i showed a relative percentage anticancer activity of 86.25±1.25 & 89.74±1.64 against BT474 (ER+HER2+), and 90.56±1.18 & 93.24±1.80 against MCF-7 (ER-HER2), respectively. Conclusion: The animal model and pre-clinical studies for 4h and 4i should be performed in order to develop them as future anticancer agents.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
Most Read This Month
