Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry - Anti-Cancer Agents) - Volume 20, Issue 13, 2020
Volume 20, Issue 13, 2020
-
-
Molecular Docking, Antioxidant, Anticancer and Antileishmanial Effects of Newly Synthesized Quinoline Derivatives
Background: Due to the pressing need and adverse effects associated with the available anti-cancer agents, an attempt was made to develop the new anti-cancer agents with better activity and lesser adverse effects. Objective: Synthetic approaches based on chemical modification of quinoline derivatives have been undertaken with the aim of improving anti-cancer agents’ safety profile. Methods: In the present study, quinoline derivatives 6-hydroxy-2-(4-methoxyphenyl) quinoline-4-carboxylic acid (M1) and 2-(4-chlorophenyl)-6-hydroxyquinoline-4-carboxylic acid (M3) were synthesized by the reaction of aldehyde and pyruvic acid. The complete reaction was indicated by thin-layer chromatography. Newly synthesized M1and M3were tested for in silico and in vitro studies. Results: M1 and M3 were docked against selected targets. Both the test compounds showed good affinity against all targets except the p300\CBP-associated factor target as there was no H-bond formed by M1. IC50 values of M1 and M3 against 1, 1-diphenyl-picrylhydrazyl free radical scavenging activity were 562 and 136.56ng/mL, respectively. In brine shrimp lethality assay, M1 and M3 showed IC50 value of 81.98 and 139.2ng/mL, respectively. IC50 values recorded for M1 and M3 in tumor inhibition activity were 129 and 219μg/mL, respectively. M1 and M3 exhibited concentration-dependent anti-cancer effects against human cell lines of hepatocellular carcinoma (HepG2) and colon cancer (HCT-116). Against HepG2 cells, M1 and M3 exhibited IC50 of 88.6 and 43.62μg/mL, respectively. M1 and M3 utilized against HCT-116 cell lines possessed IC50 values of 62.5 and 15.3μg/mL. M1 and M3 also showed an anti-leishmanial effect with IC50 values of 336.64 and 530.142μg/mL, respectively. Conclusion: From the results of pharmacological studies, we conclude that the newly synthesized compound showed enhanced anti-oxidant, anti-cancer and anti-leishmanial profile with good yield.
-
-
-
Beta-Caryophyllene Suppresses Ovarian Cancer Proliferation by Inducing Cell Cycle Arrest and Apoptosis
Authors: Santhosh Arul, Harinee Rajagopalan, Jivitesh Ravi and Haripriya DayalanBackground: Ovarian cancer is the fifth most common cause of cancer deaths among women with lesser prognostics. Current treatment options are chemotherapy with platinum and taxane based chemotherapy. β-Caryophyllene (BCP) an essential oil found in many plant species is known to possess an anti-proliferative effect. Objective: We aimed to investigate the antiproliferative, cytotoxic, and apoptotic role of BCP against ovarian cancer cells PA-1 and OAW 42. Methods: The antiproliferative effect of BCP was determined by MTT assay and cell viability by trypan blue exclusion assay. Cell cycle and live/dead cell analyses were performed by flow cytometry to determine cell cycle distribution and apoptosis, respectively. Results: Results of MTT assay proved the anti-proliferative effect of BCP in a dose and time-dependent manner in ovarian cancer cells. Cell cycle analysis showed that BCP induced S Phase arrest in OAW 42 cells. Results of apoptosis assay confirmed the apoptosis inducing potential of BCP in ovarian cancer cells. The apoptosis is mediated by caspase-3 activation and PARP cleavage. Conclusion: The results of our present study prove that BCP exerts its action partly by inducing cell cycle arrest and apoptosis in ovarian cancer. We conclude that BCP is a potential anti-cancer agent.
-
-
-
Preparation and Preliminary Evaluation of 68Ga-Acridine: An Attempt to Study the Potential of Radiolabeled DNA Intercalator as a PET Radiotracer for Tumor Imaging
Authors: Subhajit Ghosh, Tapas Das, Shishu K. Suman, Haladhar D. Sarma and Ashutosh DashIntroduction: Acridine is a well-known DNA intercalator and thereby gets easily inserted within DNA. As uncontrolled rapid cell division is one of the primary characteristics of the tumors, it is expected that acridine or its suitable derivatives will have preferential accumulation in the tumorous lesions. Therefore, an attempt was made to radiolabel an acridine derivative with 68Ga and study the potential of the 68Ga-acridine complex as a PET agent for tumor imaging. Methods: 9-aminoacridine was coupled with p-NCS-benzyl-DOTA to render it suitable for labeling with 68Ga. The purified acridine-DOTA conjugate was radiolabeled with 68Ga, eluted from a 68Ge/68Ga radionuclide generator. Various radiolabeling parameters were optimized and the stability of the radiolabeled preparation was studied. The biological behavior of the 68Ga-acridine complex was studied both in vitro and in vivo using Raji cell line and fibrosarcoma tumor bearing Swiss mice, respectively. Results: 68Ga-acridine complex was obtained with ~100% radiochemical purity under the optimized reaction conditions involving incubation of 2mg/mL of ligand at 100°C for 30 minutes. The complex maintained a radiochemical purity of >95% in normal saline and >65% in human blood serum at 3h post-incubation. In vitro cellular study showed (3.2±0.1)% uptake of the radiotracer in the Raji cells. Biodistribution study revealed significant tumor accumulation [(11.41±0.41)% injected activity in per gram] of the radiotracer within 1h postadministration along with uptake in other non-target organs such as, blood, liver, GIT kidney etc. Conclusion: The present study indicates the potential of 68Ga-acridine as a PET agent for imaging of tumorous lesions. However, further detailed evaluation of the agent is warranted to explore its actual potential.
-
-
-
Syntheses and Preliminary Evaluation of Dual Target PET Probe [18F]-NOTA-Gly3-E (2PEG4-RGD-WH701) for PET Imaging of Breast Cancer
Authors: Zijun Chen, Hao Fu, Hua Wu, Jinxiong Huang, Lanlin Yao, Xianzhong Zhang and Yesen LiPurpose: Tumor Necrosis Factor Receptor 1 (TNFR1) and integrin αvβ3 receptor are overexpressed in breast cancer. We hypothesized that a peptide ligand recognizing both receptors in a single receptor-binding probe would be advantageous. Here, we developed a novel 18F-labeled fusion peptide probe [18F]-NOTA-Gly3- E(2PEG4-RGD-WH701) targeting dual receptors (TNFR1 and αvβ3) and evaluated the diagnostic efficacy of this radioactive probe in both MDA-MB-231 and MCF-7 xenograft models in mice. Methods: The NOTA-conjugated RGD-WH701 analog was radiolabeled with 18F using NOTA-AlF chelation method. We used two PEG4 molecules and Glutamic acid (Glu) to covalently link c(RGDyK) with WH701. Gly3 was also added to further improve the water solubility and pharmacokinetic properties of the probe. The expression of TNFR1 and Integrin αvβ3 in MCF-7 and MDA-MB-231 cells was detected by western blot analysis and immunofluorescence staining. The tumor-targeting characteristics of [18F]-NOTA-Gly3-E(2PEG4-RGDWH701) were assessed in nude mice bearing MDA-MB-231 and MCF-7 xenografts. Results: HPLC analysis of the product NOTA-G3-E (2P4-RGD-WH701) revealed a purity >95%. The yield after attenuation correction was approximately 33.5%±2.8% (n=5), and the radiochemical purity was above 95%. The MDA-MB-231 tumor uptake of [18]-NOTA-Gly3-E(2PEG4-RGD-WH701) was 1.14±0.14%ID/g, as measured by PET at 40min postinjection (p.i.). In comparison, the tumor uptake of [18F]-NOTA-RGD and [18F]- NOTA-WH701 in MDA-MB-231 xenografts was 0.96±0.13%ID/g and 0.93±0.28%ID/g, respectively. The MCF-7 tumor uptake of [18F]-NOTA-Gly3-E(2PEG4-RGD-WH701) was 1.22±0.11%ID/g, as measured by PET at 40min postinjection (p.i.). In comparison, the tumor uptake of [18F]-NOTA-RGD and [18F]-NOTA-WH701 in MCF-7 xenografts was 0.99±0.18%ID/g and 0.57±0.08%ID/g, respectively. Conclusion: [18F]AlF-NOTA-Gly3-E(2PEG4-RGD-WH701) was successfully synthesized and labeled with 18F. The results from the microPET/CT and biodistribution studies of [18F]AlF-NOTA-Gly3-E(2PEG4-RGDWH701) showed that the tracer could specifically target TNFR1 and integrin αvβ3 receptors.
-
-
-
Anticancer Properties of Asian Water Monitor Lizard (Varanus salvator), Python (Malayopython reticulatus) and Tortoise (Cuora kamaroma amboinensis)
Authors: Shareni Jeyamogan, Naveed A. Khan, Kuppusamy Sagathevan and Ruqaiyyah SiddiquiBackground: Cancer contributes to significant morbidity and mortality despite advances in treatment and supportive care. There is a need for the identification of effective anticancer agents. Reptiles such as tortoise, python, and water monitor lizards are exposed to heavy metals, tolerate high levels of radiation, feed on rotten/germ-infested feed, thrive in unsanitary habitat and yet have prolonged lifespans. Such species are rarely reported to develop cancer, suggesting the presence of anticancer molecules/mechanisms. Methods: Here, we tested effects from sera of Asian water monitor lizard (Varanus salvator), python (Malayopython reticulatus) and tortoise (Cuora kamaroma amboinensis) against cancer cells. Sera were collected and cytotoxicity assays were performed using prostate cancer cells (PC3), Henrietta Lacks cervical adenocarcinoma cells (HeLa) and human breast adenocarcinoma cells (MCF7), as well as human keratinized skin cells (Hacat), by measuring lactate dehydrogenase release as an indicator for cell death. Growth inhibition assays were performed to determine the effects on cancer cell proliferation. Liquid chromatography mass spectrometry was performed for molecular identification. Results: The findings revealed that reptilian sera, but not bovine serum, abolished viability of Hela, PC3 and MCF7 cells. Samples were subjected to liquid chromatography mass spectrometry, which detected 57 molecules from V. salvator, 81 molecules from Malayopython reticulatus and 33 molecules from C. kamaroma amboinensis and putatively identified 9 molecules from V. salvator, 20 molecules from Malayopython reticulatus and 9 molecules from C. kamaroma amboinensis when matched against METLIN database. Based on peptide amino acid composition, binary profile, dipeptide composition and pseudo-amino acid composition, 123 potential Anticancer Peptides (ACPs) were identified from 883 peptides from V. salvator, 306 potential ACPs from 1074 peptides from Malayopython reticulatus and 235 potential ACPs from 885 peptides from C. kamaroma amboinensis. Conclusion: To our knowledge, for the first time, we reported comprehensive analyses of selected reptiles’ sera using liquid chromatography mass spectrometry, leading to the identification of potentially novel anticancer agents. We hope that the discovery of molecules from these animals will pave the way for the rational development of new anticancer agents.
-
-
-
The Apoptosis Mechanism of Epirubicin Combined with BCG on Human Bladder Cancer Cells
Authors: Yang Luo, Xiaoyi Fu, Bin Han, Fafu Zhang, Lihong Yuan, Hongsheng Men, Shulin Zhang, Sujuan Tian, Bin Dong and Minjie MengAims: The purpose of our study was to explore the combination effect of epirubicin and Bacillus Calmette Guerin (BCG) and its mechanism. Background: Bladder cancer is a threat to human health worldwide. Commonly used chemotherapy drugs and biotherapy have significant therapeutic effects on bladder cancer, but the mechanism and combined effects are still unclear. Objective: To evaluate the anti-cancer effect of epirubicin combined with BCG on human bladder cancer cells, our studies were carried out. Methods: The viability of human bladder cancer cells with epirubicin and/or BCG treatments was examined by Cell Counting Kit-8 (CCK-8) assay. Apoptosis and cell cycle phase were determined by flow cytometry analysis. Pre-apoptosis factors of caspase-3, p53, B-cell lymphoma 2 associated X protein (Bax) and anti-apoptosis factor of B-cell lymphoma 2 (Bcl-2) were detected by western blot. Results: The viability of human bladder cancer with epirubicin or BCG treatment was decreased and the viability with epirubicin combined with BCG treatment was decreased more, which were determined by CCK-8 assay. Both epirubicin and BCG increased the apoptosis rate of human bladder cancer and arrested more cells into G0/G1 phase, which were tested by flow cytometry. The expression of caspase-3, p53 and Bax was increased and the expression of Bcl-2 was decreased with epirubicin treatment on human bladder cells, which were analyzed by western blot. The expression of caspase-3 and p53 was increased with BCG treatment, which was examined by western blot. Conclusion: Epirubicin induced apoptosis in human bladder cancer cells by up-regulating the expression of proapoptotic factors (caspase-3, p53 and Bax) and down-regulating the expression of anti-apoptotic factor (Bcl-2). BCG promoted apoptosis of human bladder cancer cells by up-regulating the expression of caspase-3 and p53. BCG plays a potential role at the time of the combination of epirubicin and BCG on bladder cancer cells in early stage. Both epirubicin and BCG affected cell cycle distribution via arresting more bladder cancer cells at G0/G1 phase, which ultimately led bladder cancer proliferation in vitro and promoted apoptosis.
-
-
-
Paclitaxel Nanoparticles Induce Apoptosis and Regulate TXR1, CYP3A4 and CYP2C8 in Breast Cancer and Hepatoma Cells
Authors: Thoria Diab, Samar S. Alkafaas, Thanaa I. Shalaby and Mohamed HessienBackground and Objective: Although the anticancer potentials of water-insoluble drugs are improved by nanoformulation, other intervening factors may contribute in the drug efficacy. This work was designated to explore the effect of paclitaxel-loaded Poly(Lactic-co-Glycolic Acid) (PLGA) nanoparticles on the viability of cancer cells, the expression of Taxol Resistance gene I (TXR1) and paclitaxel metabolizing genes. Methods: Paclitaxel loaded PLGA Nanoparticles (PTX-NPs) were prepared, physically characterized and used in the treatment of breast adenocarcinoma cells (MCF-7) and hepatoma cells (HepG2). Cells viability and apoptosis were investigated. In parallel, RNA was isolated, reverse transcribed and used to monitor the expression levels of TXR1, CYP 3A4 and CYP2C8 genes. Results: PTX-NPs were characterized by transmission electron microscopy to be of a nano-size sphere-like shape. FTIR analysis revealed good coupling between PTX and PLGA. The encapsulation efficiency was 99% and the drug release demonstrated a progressive releasing phase followed by slower and sustained releasing phases. Although HepG2 cells demonstrated more resistance to PTX than MCF-7 cells, both cell types were more responsive to PTX-NPS compared to PTX. The IC50 values decreased from 19.3 to 6.7 in breast cancer cells and from 42.5 to 13.1μg/ml in hepatoma cells. The apoptosis was the key mechanism in both cells, where at least 44% of cells underwent apoptosis. The expression of TXR1 decreased when either cells were treated with PTX-NPs, respectively, meanwhile the expressions of CYP3A4 and CYP2C8 were increased. Conclusion: Taken together, this in vitro study reports the associations between the enhanced responsiveness of MCF-7 and HepG2 cells to PLGA-loaded paclitaxel nanoparticles and the accompanying decrease in the cells resistance to the PTX and its enhanced metabolism.
-
-
-
Design, Synthesis and Biological Evaluation of Novel 1,2,5-Oxadiazol-3-Carboximidamide Derivatives as Indoleamine 2, 3-Dioxygenase 1 (IDO1) Inhibitors
Authors: Zhifeng Xia, Yanyang Nan, Chang Liu, Guangyu Lin, Kedan Gu, Cheng Chen, Weili Zhao, Dianwen Ju and Xiaochun DongBackground and Objective: Indoleamine-2,3-dioxygenase 1 (IDO1), which catalyzes the degradation of L-tryptophan (L-Trp) to N-formyl kynurenine (NFK) in the first and rate-limiting step of Kynurenine (KYN) pathway has been identified as a promising therapeutic target for cancer immunotherapy. The small molecule Epacadostat developed by Incyte Corp is the most advanced IDO1 inhibitor in clinical trials. Methods: In this study, various amidine derivatives were individually installed as the polar capping group onto the amino ethylene side chain to replace the sulfamoylamino moiety of Epacadostat to develop novel IDO1 inhibitors. A series of novel 1,2,5-oxadiazol-3-carboximidamide derivatives were designed, prepared, and evaluated for their inhibitory activities against human IDO1 enzyme and cellular IDO1. Results: In vitro human IDO1 enzyme and cellular IDO1 assay results demonstrate that the inhibitory activities of compound 13a and 13b were comparable to Epacadostat, with the enzymatic IC50 values of 49.37nM and 52.12nM and cellular IC50 values of 12.34nM and 14.34nM, respectively. The anti-tumor efficacy of 13b is slightly better than Epacadosta in Lewis Lung Cancer (LLC) tumor-bearing mice model. Conclusion: 13b is a potent IDO1 inhibitor with therapeutic potential in tumor immunotherapy.
-
-
-
A Systematic Review and Meta-Analysis about the Effect of Bisphosphonates on the Risk of Skeletal-Related Event in Men with Prostate Cancer
Authors: Congcong Wu, Hua Jiang and Jianghua ChenBackground: Although the adjuvant therapy of bisphosphonates in prostate cancer is effective in improving bone mineral density, it is still uncertain whether bisphosphonates could decrease the risk of Skeletal- Related Event (SRE) in patients with prostate cancer. We reviewed and analyzed the effect of different types of bisphosphonates on the risk of SRE, defined as pathological fracture, spinal cord compression, radiation therapy to the bone, surgery to bone, hypercalcemia, bone pain, or death as a result of prostate cancer. Methods: A systemic literature search was conducted on PubMed and related bibliographies. The emphasis during data extraction was laid on the Hazard Ratio (HR) and the corresponding 95% Confidence Interval (CI) from every eligible Randomized Controlled Trial (RCT). HR was pooled with the fixed effects model, and preplanned subgroup analyses were performed. Results: 5 RCTs (n = 4651) were included and analyzed finally after screening 51 articles. The meta-analysis of all participants showed no significant decrease in the risk of SRE when adding bisphosphonates to control group (HR = 0.968, 95% CI = 0.874 - 1.072, p = 0.536) with low heterogeneity (I2 = 0.0% (d.f. = 4) p = 0.679). There was no significant improvement on SRE neither in the subgroups with Metastases (M1) or Castration-Sensitive Prostate Cancer (CSPC) (respectively HR = 0.968, 95% CI = 0.874 - 1.072, p = 0.536, I2 = 0.0% (d.f. = 4) p = 0.679; HR = 0.954, 95% CI = 0.837 - 1.088, p = 0.484, I2 = 0.0% (d.f. = 3) p = 0.534). Conclusion: Our study demonstrated that bisphosphonates could not statistically significantly reduce the risk of SRE in patients with prostate cancer, neither in the subgroups with M1 or CSPC.
-
-
-
The Killing of Human Neuroblastoma Cells by the Small Molecule JQ1 Occurs in a p53-Dependent Manner
Authors: Joseph Mazar, Caleb Gordon, Varun Naga and Tamarah J. WestmorelandBackground: MYCN amplification is a prognostic biomarker associated with poor prognosis of neuroblastoma in children. The overall survival of children with MYCN-amplified neuroblastoma has only marginally improved within the last 20 years. The Bromodomain and Extra-Terminal motif (BET) inhibitor, JQ1, has been shown to downregulate MYCN in neuroblastoma cells. Objective: To determine if JQ1 downregulation of MYCN in neuroblastomas can offer a target- specific therapy for this, difficult to treat, pediatric cancer. Methods: Since MYCN-amplified neuroblastoma accounts for as much as 40 to 50 percent of all high-risk cases, we compared the effect of JQ1 on both MYCN-amplified and non-MYCN-amplified neuroblastoma cell lines and investigated its mechanism of action. Results: In this study, we show that JQ1 can specifically target MYCN for downregulation, though this effect is not specific to only MYCN-amplified cells. And although we can confirm that the loss of MYCN alone can induce apoptosis, the exogenous rescue of MYCN expression can abrogate much of this cytotoxicity. More fascinating, however, was the discovery that the JQ1-induced knockdown of MYCN, which led to the loss of the human double minute 2 homolog (HDM2) protein, also led to the accumulation of tumor protein 53 (also known as TP53 or p53), which ultimately induced apoptosis. Likewise, the knockdown of p53 also blunted the cytotoxic effects of JQ1. Conclusion: These data suggest a mechanism of action for JQ1 cytotoxicity in neuroblastomas and offer a possible prognostic target for determining its efficacy as a therapeutic.
-
-
-
Biocompatible Delivery System for Metformin: Characterization, Radiolabeling and In Vitro Studies
Authors: Burcu Aydın, Eser Uçar, Volkan Tekin, Çiğdem İçhedef and Serap TeksözBackground: In recent years, the uses of nanotechnology in medicine have an increasing potential as an effective nanocarrier system. These systems are improved with the purpose of maximizing therapeutic activity and minimizing undesirable side-effects. Moreover, radiolabeled nanoparticles can be used as agents for diagnosis and therapeutic purposes in clinical applications. They have three main components: the core, the targeting biomolecule, and the radionuclide. Objective: It is aimed to synthesize Metformin (MET) loaded Solid Lipid Nanoparticles (MET-SLN) and radiolabeled with technetium-99m tricarbonyl core. Methods: The structure of synthesized nanoparticles was characterized by Fourier Transform Infrared Spectroscopy (FTIR). The particle size and morphology of nanoparticles were examined by Dynamic Light Scattering (DLS), and Scanning Electron Microscope (SEM). Quality control studies of radiolabeled MET-SLN [99mTc(CO)3-MET-SLN] were performed by High-Performance Liquid Radiochromatography (HPLRC) and Thin Layer Radiochromatography (TLRC). Results: The radiolabeling yield of [99mTc(CO)3-MET-SLN] was found to be 88%. In vitro studies have been performed on cancer lines(MCF7, MDA-MD-231 breast, and HEPG2 liver cancer cells) to determine the biological behavior of 99mTc(CO)3-MET-SLNs. Conclusion: The results showed that higher uptake values were observed on estrogen-positive MCF7 breast cancer cell line according to estrogen negative MDA-MB-231 breast cancer and HEPG2 liver cancer cell lines.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
Most Read This Month
