Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry - Anti-Cancer Agents) - Volume 19, Issue 7, 2019
Volume 19, Issue 7, 2019
-
-
Multi-Targeting Anticancer Agents: Rational Approaches, Synthetic Routes and Structure Activity Relationship
Authors: Harbinder Singh, Nihar Kinarivala and Sahil SharmaWe live in a world with complex diseases such as cancer which cannot be cured with one-compound one-target based therapeutic paradigm. This could be due to the involvement of multiple pathogenic mechanisms. One-compound-various-targets stratagem has become a prevailing research topic in anti-cancer drug discovery. The simultaneous interruption of two or more targets has improved the therapeutic efficacy as compared to the specific targeted based therapy. In this review, six types of dual targeting agents along with some interesting strategies used for their design and synthesis are discussed. Their pharmacology with various types of the molecular interactions within their specific targets has also been described. This assemblage will reveal the recent trends and insights in front of the scientific community working in dual inhibitors and help them in designing the next generation of multi-targeted anti-cancer agents.
-
-
-
Recent Synthetic Approaches and Biological Evaluations of Amino Hexahydroquinolines and Their Spirocyclic Structures
In this review, the recent synthetic approaches of amino hexahydroquinolines and their spirocyclic structures were highlighted. The synthetic routes include, two-components, three-components or fourcomponents reactions. The two-component [3+3] atom combination reaction represents the simplest method. It involves Michael addition of the electron rich β-carbon of β-enaminones to the activated double bond of cinnamonitriles followed by cyclization to yield hexahydroquinoline compounds. The bioactivity profiles and SAR studies of these compounds were also reviewed with emphasis to the utility of these substances as antimicrobial, anticancer and antitubercular agents, as well as calcium channel modulators.
-
-
-
Synthesis and Investigation of Therapeutic Potential of Isoform-Specific HDAC8 Inhibitors for the Treatment of Cutaneous T Cell Lymphoma
Authors: Appavoo Umamaheswari, Ayarivan Puratchikody and Natarajan HariBackground: The available treatment option for any type of cancer including CTCL is chemotherapy and radiation therapy which indiscriminately persuade on the normal cells. One way out for selective destruction of CTCL cells without damaging normal cells is the use of histone deacetylase inhibitors (HDACi). Despite promising results in the treatment of CTCL, these HDACi have shown a broadband inhibition profile, moderately selective for one HDAC class but not for a particular isotype. The prevalence of drug-induced side effects leaves open a narrow window of speculation that the decreased therapeutic efficacy and observed side effects may be most likely due to non specific HDAC isoform inhibition. The aim of this paper is to synthesis and evaluates HDAC8 isoform specific inhibitors. Methods: Based on the preliminary report on the design and in silico studies of 52 hydroxamic acid derivatives bearing multi-substituent heteroaromatic rings with chiral amine linker, five compounds were shortlisted and synthesized by microwave assisted approach and high yielding synthetic protocol. A series of in vitro assays in addition to HDAC8 inhibitory activity was used to evaluate the synthesised compounds. Results: Inhibitors 1e, 2e, 3e, 4e and 5e exerted the anti-proliferative activities against CTCL cell lines at 20- 100 μM concentrations. Both the pyrimidine- and pyridine-based probes exhibited μM inhibitory activity against HDAC8. The pyrimidine-based probe 1e displayed remarkable HDAC8 selectivity superior to that of the standard drug, SAHA with an IC50 at 0.1μM. Conclusion: Our study demonstrated that simple modifications at different portions of pharmacophore in the hydroxamic acid analogues are effective for improving both HDAC8 inhibitory activity and isoform selectivity. Potent and highly isoform-selective HDAC8 inhibitors were identified. These findings would be expedient for further development of HDAC8-selective inhibitors.
-
-
-
Synthesis of Oridonin Derivatives via Mizoroki-Heck Reaction and Click Chemistry for Cytotoxic Activity
Authors: Wei Hou, Qiuju Fan, Lin Su and Hongtao XuBackground: Natural products (NPs) are evolutionarily chosen “privileged structures” that have a profound impact upon the anticancer drug discovery and development progress. However, the search for new drugs based on structure modification of NPs has often been hindered due to the tedious and complicated synthetic pathways. Fortunately, Mizoroki-Heck reaction and copper-catalyzed alkyne-azide cycloaddition (CuAAC) could provide perfect strategies for selective modification on NPs even in the presence of liable functionalities. Objective: Here, we used oridonin, an ent-kaurane diterpenoid that showed a wide range of biological activities, as a parent molecule for the generation of analogues with anticancer activity. Methods: Derivatives of oridonin were generated based on the structure-activity relationship study of oridonin and synthesized via Mizoroki-Heck reaction and CuAAC. The cytotoxicity of new oridonin derivatives were evaluated on both cancer cells and normal cells. Furthermore, the apoptotic effect and cell cycle arrest effect of the selected potent analogue were evaluated by flow cytometry and western blotting analysis. Results: Two series of novel C-14 and C-17 modified derivatives of oridonin were obtained via Heck reaction and copper-catalyzed alkyne-azide cycloaddition (CuAAC), respectively. In vitro antiproliferative activities showed that the introduction of C-14 (2-triazole)acetoxyl- moiety could retain or enhance cytotoxicity, whereas the introduction of C-17 phenyl ring might exert negative effect. Further studies demonstrated that derivative 23 exhibited broad-spectrum antiproliferative activity, effectively overcame drug-resistance and showed weak cytotoxicity on non-cancer cells. Preliminary mechanistic studies indicated that 23 might cause G2/M phase arrest and induce apoptosis in PC-3 cells. Conclusion: Mizoroki-Heck reaction and CuAAC are perfect strategies for structure modification of complex natural products. The introduction of C-14 (2-triazole)acetoxyl- moiety could retain or enhance the cytotoxicity of oridonin, the introduction of C-17 phenyl group might exert negative effect on its cytotoxicity.
-
-
-
Novel 1,3,4-Triaryl Pyrazoles: Synthesis, QSAR Studies and Cytotoxicity against Breast Cancer
Authors: Magda M.F. Ismail, Amel M. Farrag and Marwa F. HarrasBackground: The existence of drug-resistance and lack of selectivity encourages scientists to search for novel and more selective cytotoxic agents. Objectives: In this work, novel 1,3,4-triarylpyrazole derivatives were synthesized to study their cytotoxicity on MCF7 (human breast Cell Line). In addition, QSAR studies were performed to show the relation between the cytotoxic activity and the structural features of our new synthesized pyrazole derivatives. Methods: Pyrazole-4-carbaldehyde derivative 3 was utilized as a starting material for the preparation of the new pyarazole derivatives. These target compounds were screened for their cytotoxic activity against MCF-7 followed by study cell cycle of the most active compounds. Finally, pharmacophore modeling and QSAR Studies was carried out. Results: Among these compounds; 5d and 8b showed the highest anti-proliferative activity (IC50 = 4.9 and 2.11 μM, respectively). Flow cytometric analysis showed that, compounds 5d and 8b arrested the cell cycle in addition to induction of apoptosis in MCF7 cells. Moreover, their stimulation effect on caspases 3/7 was examined to explore their mechanism of induction of apoptosis and the results showed that their proapoptotic activity could be due to the activation of caspases 3/7. Conclusion: Pyrazole derivatives 5d and 8b displayed potent bioactivities, indicating that these compounds could be considered as a new lead for more investigation in the future.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
Most Read This Month
