Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry - Anti-Cancer Agents) - Volume 19, Issue 4, 2019
Volume 19, Issue 4, 2019
-
-
Hybridized Quinoline Derivatives as Anticancer Agents: Design, Synthesis, Biological Evaluation and Molecular Docking
Objective: Conjugating quinolones with different bioactive pharmacophores to obtain potent anticancer active agents. Methods: Fused pyrazolopyrimidoquinolines 3a-d, Schiff bases 5, 6a-e, two hybridized systems: pyrazolochromenquinoline 7 and pyrazolothiazolidinquinoline 8, different substituted thiazoloquinolines 13-15 and thiazolo[3,2-a]pyridine derivatives 16a-c were synthesized. Their chemical structures were characterized through spectral and elemental analysis, cytotoxic activity on five cancer cell lines, caspase-3 activation, tubulin polymerization inhibition and cell cycle analysis were evaluated. Results: Four compounds 3b, 3d, 8 and 13 showed potent activity than doxorubicin on HCT116 and three compounds 3b, 3d and 8 on HEPG2. These promising derivatives showed increase in the level of caspase-3. The trifloromethylphenyl derivatives of pyrazolopyrimidoquinolines 3b and 3d showed considerable tubulin polymerization inhibitory activity. Both compounds arrested cell cycle at G2/M phase and induced apoptosis. Conclusion: Compounds 3b and 3d can be considered as promising anticancer active agents with 70% of colchicine activity on tubulin polymerization inhibition and represent hopeful leads that deserve further investigation and optimization.
-
-
-
Cytotoxic Action of N-aryl, Furan-derived Aminophosphonates against HT29 and HCT116 Cancer Cell Lines
Background: The anticancer activity of aminophosphonic derivatives has been described extensively, some recent papers included furan-derived aminophosphonates and their cytostatic action against various cancer cells. Objective: A series of twelve furan-derived dibenzyl and diphenyl aminophosphonates 2a-f and 3a-f was synthesized and tested in aspect of their cytotoxic action on two cell lines of colorectal cancer: HT29 and HCT116. Seven of them are new compounds, while the rest five have already been published by us, together with their cytotoxic action against squamous esophageal cancer cells. Methods: To estimate the cytotoxicity effect of tested compounds MTT test was used. Pro-apoptotic activity of five selected compounds was evaluated using APC Annexin V Apoptosis Detection Kit on a flow cytometer. Quantification of caspases 3/7 activity was performed using Caspase-Glo® 3/7 Assay Kit. Results: Five of these aminophosphonates showed significant cytotoxicity higher than those of cisplatin. Simultaneous evaluation of their cytotoxicity against PBLs revealed that these compounds are rather not harmful for regular human lymphocytes. Tests on apoptosis vs. their necrotic actions on cells were performed with selected compounds showing the most significant cytotoxicity against cancer cells and all tested compounds did not induce significant increase of necrosis in cells, whereas they showed moderate-to-strong proapoptotic actions even at the lowest applied concentration. Caspase 3/7 activity results confirmed proapoptotic properties of tested aminophosphonates. Conclusion: From among studied compounds, dibenzyl N-phenyl substituted amino(2-furyl)methylphsophonates were found to be more potent compounds in aspect of their antiproliferative action than the corresponding diphenyl derivatives.
-
-
-
Novel Inhibitors of DNA Repair Enzyme TDP1 Combining Monoterpenoid and Adamantane Fragments
Background and Objective: The DNA repair enzyme tyrosyl-DNA-phosphodiesterase 1 (TDP1) is a current inhibition target to improve the efficacy of cancer chemotherapy. Previous studies showed that compounds combining adamantane and monoterpenoid fragments are active against TDP1 enzyme. This investigation is focused on the synthesis of monoterpenoid derived esters of 1-adamantane carboxylic acid as TDP1 inhibitors. Methods: New esters were synthesized by the interaction between 1-adamantane carboxylic acid chloride and monoterpenoid alcohols. The esters were tested against TDP1 and its binding to the enzyme was modeling. Results: 13 Novel ester-based TDP1 inhibitors were synthesized with yields of 21–94%; of these, nine esters had not been previously described. A number of the esters were found to inhibit TDP1, with IC50 values ranging from 0.86–4.08 μM. Molecular modelling against the TDP1 crystal structure showed a good fit of the active esters in the catalytic pocket, explaining their potency. A non-toxic dose of ester, containing a 3,7- dimethyloctanol fragment, was found to enhance the cytotoxic effect of topotecan, a clinically used anti-cancer drug, against the human lung adenocarcinoma cell line A549. Conclusion: The esters synthesized were found to be active against TDP1 in the lower micromolar concentration range, with these findings being corroborated by molecular modeling. Simultaneous action of the ester synthesized from 3,7-dimethyloctanol-1 and topotecan revealed a synergistic effect.
-
-
-
Adenosine Analogues as Opposite Modulators of the Cisplatin Resistance of Ovarian Cancer Cells
More LessBackground: Adenosine released by cancer cells in high amounts in the tumour microenvironment is one of the main immunosuppressive agents responsible for the escape of cancer cells from immunological control. Blocking adenosine receptors with adenosine analogues and restoring immune cell activity is one of the methods considered to increase the effectiveness of anticancer therapy. However, their direct effects on cancer cell biology remain unclear. Here, we determined the effect of adenosine analogues on the response of cisplatinsensitive and cisplatin-resistant ovarian cancer cells to cisplatin treatment. Methods: The effects of PSB 36, DPCPX, SCH58261, ZM 241385, PSB603 and PSB 36 on cisplatin cytotoxicity were determined against A2780 and A2780cis cell lines. Quantification of the synergism/ antagonism of the compounds cytotoxicity was performed and their effects on the cell cycle, apoptosis/necrosis events and cisplatin incorporation in cancer cells were determined. Results: PSB 36, an A1 receptor antagonist, sensitized cisplatin-resistant ovarian cancer cells to cisplatin from low to high micromolar concentrations. In contrast to PSB 36, the A2AR antagonist ZM 241385 had the opposite effect and reduced the influence of cisplatin on cancer cells, increasing their resistance to cisplatin cytotoxicity, decreasing cisplatin uptake, inhibiting cisplatin-induced cell cycle arrest, and partly restoring mitochondrial and plasma membrane potentials that were disturbed by cisplatin. Conclusion: Adenosine analogues can modulate considerable sensitivity to cisplatin of ovarian cancer cells resistant to cisplatin. The possible direct beneficial or adverse effects of adenosine analogues on cancer cell biology should be considered in the context of supportive chemotherapy for ovarian cancer.
-
-
-
Berberine Effects on NFΚB, HIF1A and NFE2L2/AP-1 Pathways in HeLa Cells
Background: Berberine has multitudinous anti-cancer stem cells effects making it a highly promising candidate substance for the next-generation cancer therapy. However, berberine modes of action predispose it to significant side-effects that probably limit its clinical testing and application. Materials and Methods: HeLa cells were treated with two concentrations of berberine (30 and 100 μM) for 24 hours to assess the functioning of the NFE2L2/AP-1, NFΚB and HIF1A pathways using 22 RNAs expression qPCR-based analysis. Results: Berberine effects appeared to be highly dose-dependent, with the lower concentration being capable of suppressing the NFΚB functioning and the higher concentration causing severe signaling side-effects seen in the HIF1A pathway and the NFE2L2 sub-pathways, and especially and more importantly in the AP-1 sub-pathway. Conclusion: The results of the study suggest that berberine has clinically valuable anti-NFΚB effects however jeopardized by its side effects on the HIF1A and especially NFE2L2/AP-1 pathways, its therapeutic window phenomenon and its cancer type-specificity. These, however, may be ameliorated using the cocktail approach, provided there is enough data on signaling effects of berberine.
-
-
-
Synthesis of Dual Target CPT-Ala-Nor Conjugates and Their Biological Activity Evaluation
Authors: Chang K. Zhao, Lang Xu, Xian H. Wang, Yu J. Bao and Yuhe WangBackground: Target therapy has been one of the important strategies in new drug discovery and the resulting drug resistance has also been a serious problem for concern. At the same time, there are several cancer genes or pathways operating within a given cancer. Given these two things, the combination therapy will be needed for optimal therapeutic effect. Objective: Camptothecin and norcantharidin were thus chosen to construct a dual anticancer drugs assemblies mainly because CPT was the DNA-topoisomerase I inhibitor and norcantharidin could also suppress the cancer cell growth by inhibiting protein phosphatase. The designed conjugate of camptothecin and norcantharidin linked by alanine was expected to have dual target drug properties. Methods: EDCI/DMAP was chosen as a coupling agent for the coupling of CPT with substituted norcantharidin derivatives and CCK-8 method was used to test the cytotoxicity and intensity on human hepatoma cell line HepG2. Two kinds of enzymes, Top I and CDC 25B were selected to screen the binding affinity in molecular level. Results: Nine of dual targets camptothecin derivatives were smoothly synthesized by twice coupling in the condition of EDCI/DMAP in moderate yield. All of the synthesized compounds were characterized by 1HNMR and 13CNMR spectrum and exhibited strong potent inhibition against Hep G2, SW480, BGC803, and PANC-1 cell line in vitro. The newly synthesized camptothecin compounds, such as 3j and 3i have strengthened inhibition activity compared to camptothecin and norcantharidin. Conclusion: We have successfully synthesized a series of novel camptothecin derivatives constructed from three components of camptothecin, alanine and norcantharidin. These compounds not only preserved strong activity against several cancer cell lines in vitro, but also exhibited potential binding affinity to target Top I and CDC 25B. Therefore, these conjugates linked by alanine could suppress cancer cell growth by inhibiting Top I and protein phosphatase simultaneously, which makes it much valuable as a novel bi-functional target drug candidate to develop in vivo.
-
-
-
Evaluation of A Novel GLP-1R Ligand for PET Imaging of Prostate Cancer
Authors: Yuanyuan Yue, Yuping Xu, Lirong Huang, Donghui Pan, Zhicheng Bai, Lizhen Wang, Runlin Yang, Junjie Yan, Huizhu Song, Xiaotian Li and Min YangBackground: Glucagon-like peptide 1 receptor (GLP-1R) is an important biomarker for diagnosis and therapy of the endocrine cancers due to overexpression. Recently, in human prostate cancer cell lines the receptor was also observed, therefore it may be a potential target for the disease. 18F-Al-NOTA-MAL-Cys39- exendin-4 holds great promise for GLP-1R. Therefore, the feasibility of the 18F-labeled exendin-4 analog for prostate cancer imaging was investigated. Methods: New probe 18F-Al-NOTA-MAL-Cys39-exendin-4 was made through one-step fluorination. Prostate cancer PC3 cell xenograft model mice were established to primarily evaluate the imaging properties of the tracer via small animal PET studies in vivo. Pathological studies and Western Blots were also performed. Results: PC-3 prostate xenografts were clearly imaged under baseline conditions. At 30 and 60 min postinjection, the tumor uptakes were 2.90±0.41%ID/g and 2.26±0.32 %ID/g respectively. The presence of cys39-exendin-4 significantly reduced the tumor uptake to 0.82±0.10 %ID/g at 60 min p.i. Findings of ex vivo biodistribution studies were similar to those of in vivo PET imaging. The tumors to blood and muscles were significantly improved with the increase of time due to rapid clearance of the tracer from normal organs. Low levels of radioactivity were also detected in the GLP-1R positive tumor and normal organs after coinjection with excessive unlabeled peptides. Immunohistochemistry and Western Blots results confirmed that GLP-1R was widely expressed in PC-3 prostate cancers. Conclusion: 18F-Al labeled exendin-4 analog might be a promising tracer for in vivo detecting GLP-1R positive prostate cancer with the advantage of facile synthesis and favorable pharmacokinetics. It may be useful in differential diagnosis, molecularly targeted therapy and prognosis of the cancers.
-
-
-
Analysis of Comparative Proteomic and Potent Targets of Peniciketal A in Human Acute Monocytic Leukemia
Authors: Xue Gao, Yuming Zhou, Hongliu Sun, Desheng Liu, Jing Zhang, Junru Zhang, Weizhong Liu and Xiaohong PanBackground: Peniciketal A (Pe-A), a spiroketal compound, shows potent anticancer activities in human acute monocytic leukemia. However, the detailed mechanisms and potent targets of Pe-A remain largely unexplored. Here, we investigated the differentially expressed proteins between the Pe-A-treated group and the control group on human acute monocytic leukemia cell line THP-1. Methods: The DEPs were analyzed by the liquid chromatography-tandem mass spectrometry (LC-MS/MS) with TMT label. The function and feature of the identified proteins were analyzed by the bioinformatic analysis. Western blotting was used to evaluate protein expression. Results: The DEPs were primarily sub located in the cytoplasm and the nucleus by regulating 21 pathways enriched through the Kyoto Encyclopedia of Genes and Genomes (KEGG). Moreover, we preliminarily demonstrated that glucose-6-phosphate 1-dehydrogenase (G6PD), prolow-density lipoprotein receptor-related protein 1 (LRP1) and Calreticulin (CALR) might be the potent targets of Pe-A on death induction of THP-1 cells. Conclusion: Collectively, this study not only provides a global proteomic profile as the supplementary data of our previous studies but also provides interesting information that Pe-A may exert more bio-activities.
-
-
-
Synthesis of New N1Arylpiperazine Substituted Xanthine Derivatives and Evaluation of their Antioxidant and Cytotoxic Effects
Background: Cancer is one of the leading causes of morbidity and mortality worldwide, with approximately 14 million new cases in 2012, with most of the clinically used drugs being ineffective. Methylxanthines have raised more interest in research on modifying their structure because of their diverse biological activity. In addition, the piperazine nucleus is one of the most important heterocycles exhibiting remarkable pharmacological activities. Methods: The structure of the obtained compounds was characterized and elucidated by IR, 1H and 13C NMR and LCMS spectral analysis. The purity of the substances was proven by corresponding melting points and elemental analysis. The antioxidant activity was evaluated by four common methods – DPPH, ABTS, FRAP and lipid peroxidation assay. The cytotoxic effects of the tested series were evaluated using the standard MTT-dye reduction assay on three tumour cell lines. Results: A series of new xanthine derivatives comprising an arylpiperazine moiety at N1 were synthesized. The cytotoxicity against human T-cell leukemia cell SKW-3, human acute myeloid leukemia HL-60 and human Bcell precursor leukemia cell REH was evaluated. The relationship between the structure and citotoxicity of the compounds was investigated by quantitative structure-activity relationship (QSAR) analysis and the important structural parameters were drawn. Conclusion: The highest antioxidant activity was demonstrated by compound 6c. The highest cytotoxic effect was observed for compound 6f. It was found that cytotoxicity against SKW-3 depends on the electron density distribution in the structures. Branching of the molecular skeleton and introduction of heteroatoms like fluorine and sulfur in the structures also significantly improved the antiproliferative activity of the compounds.
-
-
-
Synthesis and Reactivity of 6,8-Dibromo-2-ethyl-4H-benzo[d][1,3]oxazin-4-one Towards Nucleophiles and Electrophiles and Their Anticancer Activity
Authors: Maher A. El-hashash, Amira T. Ali, Rasha A. Hussein and Wael M. El-SayedBackground: The genetic heterogeneity of tumor cells and the development of therapy-resistant cancer cells in addition to the high cost necessitate the continuous development of novel targeted therapies. Methods: In this regard, 14 novel benzoxazinone derivatives were synthesized and examined for anticancer activity against two human epithelial cancer cell lines; breast MCF-7 and liver HepG2 cells. 6,8-Dibromo-2- ethyl-4H-benzo[d][1,3]oxazin-4-one was subjected to react with nitrogen nucleophiles to afford quinazolinone derivatives and other related moieties (3-12). Benzoxazinone 2 responds to attack with oxygen nucleophile such as ethanol to give ethyl benzoate derivative 13. The reaction of benzoxazinone 2 with carbon electrophile such as benzaldehyde derivatives afforded benzoxazinone derivatives 14a and 14b.The structure of the prepared compounds was confirmed with spectroscopic tools including IR, 1H-NMR, and 13C-NMR. Results: Derivatives 3, 9, 12, 13, and 14b exhibited high antiproliferative activity and were selective against cancer cells showing no toxicity in normal fibroblasts. Derivative 3 with NH-CO group in quinazolinone ring was effective only against breast cells, while derivative 12 with NH-CO group in imidazole moiety was only effective against liver cells probably through arresting cell cycle and enabling repair mechanisms. The other derivatives (9, 13, and 14b) had broader antiproliferative activity against both cell lines. These derivatives enhance the expression of the p53 and caspases 9 and 3 to varying degrees in both cell lines. Derivative 14b caused the highest induction in the investigated genes and was the only derivative to inhibit the EGFR activity. Conclusions: The unique features about derivative 14b could be attributed to its high lipophilicity, high carbon content, or its extended conjugation through planar aromatic system. More investigations are required to identify the lead compound(s) in animal models.
-
-
-
Design, Synthesis and Evaluation of Novel 3/4-((Substituted benzamidophenoxy) methyl)-N-hydroxybenzamides/propenamides as Histone Deacetylase Inhibitors and Antitumor Agents
Background: Histone Deacetylase (HDAC) inhibitors represent an extensive class of targeted anticancer agents. Among the most explored structure moieties, hydroxybenzamides and hydroxypropenamides have been demonstrated to have potential HDAC inhibitory effects. Several compounds of these structural classes have been approved for clinical uses to treat different types of cancer, such as givinostat (ITF2357) and belinostat (PXD-101). Aims: This study aims at developing novel HDAC inhibitors bearing N-hydroxybenzamides and Nhydroxypropenamides scaffolds with potential cytotoxicity against different cancer cell lines. Methods: Two new series of N-hydroxybenzamides and N-hydroxypropenamides analogues (4a-j, 6a-j) designed based on the structural features of nexturastat A, AR-42, and PXD-101, were synthesized and evaluated for HDAC inhibitory potency as well as cytotoxicity against three human cancer cell lines (SW620 (colorectal adenocarcinoma), PC3 (prostate adenocarcinoma), and NCI-H23 (adenocarcinoma, non-small cell lung cancer). Molecular simulations were finally carried out to gain more insight into the structure-activity relationships. Results: It was found that the N-hydroxypropenamides (6a-e) displayed very good HDAC inhibitory potency and cytotoxicity. Various compounds, e.g. 6a-e, especially compound 6e, were up to 5-fold more potent than suberanilohydroxamic acid (SAHA) in terms of cytotoxicity. These compounds also comparably inhibited HDACs with IC50 values in the sub-micromolar range. Docking experiments showed that these compounds bound to HDAC2 at the enzyme active binding site with the same binding mode of SAHA, but with higher binding affinities. Conclusions: The two series of N-hydroxybenzamides and N-hydroxypropenamides designed and synthesized were potential HDAC inhibitors and antitumor agents. Further development of these compounds should be warranted.
-
-
-
Synthesis and Biological Evaluation of Novel Heterocyclic Imines Linked Coumarin- Thiazole Hybrids as Anticancer Agents
Background: Human Galectin-1, a protein of lectin family showing affinity towards β-galactosides has emerged as a critical regulator of tumor progression and metastasis, by modulating diverse biological events including homotypic cell aggregation, migration, apoptosis, angiogenesis and immune escape. Therefore, galectin-1 inhibitors might represent novel therapeutic agents for cancer. Methods: A new series of heterocyclic imines linked coumarin-thiazole hybrids (6a-6r) was synthesized and evaluated for its cytotoxic potential against a panel of six human cancer cell lines namely, lung (A549), prostate (DU-145), breast (MCF-7 & MDA-MB-231), colon (HCT-15 & HT-29) using MTT assay. Characteristic apoptotic assays like DAPI staining, cell cycle, annexin V and Mitochondrial membrane potential studies were performed for the most active compound. Furthermore, Gal-1 inhibition was confirmed by ELISA and fluorescence spectroscopy. Results: Among all, compound 6g {3-(2-(2-(pyridin-2-ylmethylene) hydrazineyl) thiazol-4-yl)-2H-chromen-2- one} exhibited promising growth inhibition against HCT-15 colorectal cancer cells with an IC50 value of 1.28 ± 0.14 μM. The characteristic apoptotic morphological features like chromatin condensation, membrane blebbing and apoptotic body formation were clearly observed with compound 6g on HCT-15 cells using DAPI staining studies. Further, annexin V-FITC/PI assay confirmed effective early apoptosis induction by treatment with compound 6g. Loss of mitochondrial membrane potential and enhanced ROS generation were confirmed with JC-1 and DCFDA staining method, respectively by treatment with compound 6g, suggesting a possible mechanism for inducing apoptosis. Moreover, flow cytometric analysis revealed that compound 6g blocked G0/G1 phase of the cell cycle in a dose-dependent manner. Compound 6g effectively reduced the levels of Gal-1 protein in a dose-dependent manner. The binding constant (Ka) of 6g with Gal-1 was calculated from the intercept value which was observed as 1.9 x 107 M-1 by Fluorescence spectroscopy. Molecular docking studies showed strong interactions of compound 6g with Gal-1 protein. Conclusion: Our studies demonstrate the anticancer potential and Gal-1 inhibition of heterocyclic imines linked coumarin-thiazole hybrids.
-
-
-
A New Synthetic Spiroketal: Studies on Antitumor Activity on Murine Melanoma Model In Vivo and Mechanism of Action In Vitro
Background: In a previous study, we synthesised a new spiroketal derivative, inspired to natural products, that has shown high antiproliferative activity, potent telomerase inhibition and proapoptotic activity on several human cell lines. Objective: This work focused on the study of in vivo antitumor effect of this synthetic spiroketal on a murine melanoma model. In order to shed additional light on the origin of the antitumor effect, in vitro studies were performed. Methods: Spiroketal was administered to B16F10 melanoma mice at a dose of 5 mg/Kg body weight via intraperitoneum at alternate days for 15 days. Tumor volume measures were made every 2 days starting after 12 days from cells injection. The effects of the spiroketal on tumor growth inhibition, apoptosis induction, and cell cycle modification were investigated in vitro on B16 cells. HIF1α gene expression, the inhibition of cells migration and the changes induced in cytoskeleton conformation were evaluated. Results: Spiroketal displayed proapoptotic activity and high antitumor activity in B16 cells with nanomolar IC50. Moreover it has shown to inhibit cell migration, to strongly reduce the HIF1α expression and to induce strongly deterioration of cytoskeleton structure. A potent dose-dependent antitumor efficacy in syngenic B16/C57BL/6J murine model of melanoma was observed with the suppression of tumor growth by an average of 90% at a dose of 5 mg/kg. Conclusion: The synthesized spiroketal shows high antitumor activity in the B16 cells in vitro at nM concentration and a dose-dependent antitumor efficacy in syngenic B16/C57BL/6J mice. The results suggest that this natural product inspired spiroketal may have a potential application in melanoma therapy.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
Most Read This Month
