Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry - Anti-Cancer Agents) - Volume 19, Issue 16, 2019
Volume 19, Issue 16, 2019
-
-
CRISPR/Cas9 System and its Research Progress in Gene Therapy
Authors: Wenlou Liu, Chunsheng Yang, Yanqun Liu and Guan JiangGenome editing refers to changing the genome sequence of an organism by knockout, insertion, and site mutation, resulting in changes in the genetic information of the organism. The clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR-associated protein-9 nuclease (Cas9) system is a genome editing technique developed by the acquired immune system in the microbes, such as bacteria and archaebacteria, which targets and edits genome sequences according to the principle of complementary base pairing. This technique can be used to edit endogenous genomic DNA sequences in organisms accurately and has been widely used in fields, such as biotechnology, cancer gene therapy, and dermatology. In this review, we summarize the history, structure, mechanism, and application of CRISPR/Cas9 in gene therapy and dermatological diseases.
-
-
-
Zoning in on Tankyrases: A Brief Review on the Past, Present and Prospective Studies
Background: Tankyrases are known for their multifunctionalities within the poly(ADPribose) polymerases family and playing vital roles in various cellular processes which include the regulation of tumour suppressors. Tankyrases, which exist in two isoforms; Tankyrase 1 and 2, are highly homologous and an integral part of the Wnt β -catenin pathway that becomes overly dysregulated when hijacked by pro-carcinogenic machineries. Methods: In this review, we cover the distinct roles of the Tankyrase isoforms and their involvement in the disease pathogenesis. Also, we provide updates on experimentally and computationally derived antagonists of Tankyrase whilst highlighting the precedence of integrative computer-aided drug design methods towards the discovery of selective inhibitors. Results: Despite the high prospects embedded in the therapeutic targeting and blockade of Tankyrase isoforms, the inability of small molecule inhibitors to achieve selective targeting has remained a major setback, even until date. This explains numerous incessant drug design efforts geared towards the development of highly selective inhibitors of the respective Tankyrase isoforms since they mediate distinct aberrancies in disease progression. Therefore, considering the setbacks of conventional drug design methods, can computer-aided approaches actually save the day? Conclusion: The implementation of computer-aided drug design techniques in Tankyrase research could help complement experimental methods and facilitate ligand/structure-based design and discovery of small molecule inhibitors with enhanced selectivity.
-
-
-
Synthesis of Substituted Cinnamido Linked Quinazolinone Congeners as Potential Anticancer Agents via Mitochondrial Dependent Intrinsic Apoptotic Pathway
Authors: Kesari L. Manasa, Mohd A. Saifi, Yellaiah Tangella, Chandraiah Godugu and Mallika AlvalaBackground: The synthesis of novel heterocyclic scaffolds with amide functionality is a key research area due to their plethora of medicinal applications. The present study aims to explore the synthesis of new cinnamido linked quinazolinone congeners and their potential as anticancer agents. Methods: Cytotoxicity evaluation, Cell cycle analysis, JC-1 staining, ROS, Annexin V assays, AO/EB, DAPI nuclear staining, Colony-forming assay and Western blot analysis. Results: Among the synthesized compounds, 5eb and 5fc have shown promising cytotoxic activity with an IC50 value of 3.89±1.01μM and 4.05±0.62μM against HeLa cell lines. The flow-cytometry analysis demonstrated that the compound 5eb arrested the sub-G1 phase of the cell cycle and induced apoptosis. Furthermore, the compound 5eb triggered the collapse of mitochondrial membrane potential (ΔΨm), which was assessed by JC-1 staining and also induced the generation of Reactive Oxygen Species. An increase in the expression of proapoptotic proteins such as Bax, p53, cleaved PARP and cleaved caspase-3 by 5eb confirmed the activation of the mitochondrial-dependent intrinsic apoptosis pathway. Conclusion: Our results suggest that compound 5eb and 5fc of cinnamido linked quinazolinone derivatives could serve as potential leads in the development of novel chemotherapeutic agents.
-
-
-
Influence of New Synthetic Xanthones on the Proliferation and Migration Potential of Cancer Cell Lines In Vitro
Background: Natural plant metabolites and their semisynthetic derivatives have been used for years in cancer therapy. Xanthones are oxygenated heterocyclic compounds produced as secondary metabolites by higher plants, fungi or lichens. Xanthone core may serve as a template in the synthesis of many derivatives that have broad biological activities. Objective: This study synthesized a series of 17 new xanthones, and their anticancer potential was also evaluated. Methods: The anticancer potential was evaluated in vitro using a highly invasive T24 cancer cell line. Direct cytotoxic effects of the xanthones were established by IC50 estimation based on XTT assay. Results: 5 compounds of the total 17 showed significant cytotoxicity toward the studied cancer cultures and were submitted to further detailed analysis, including studies examining their influence on gelatinase A and B expression, as well as on the cancer cells migration and adhesion to an extracellular matrix. These analyses were carried out on five human tumor cell lines: A2780 (ovarian cancer), A549 (lung cancer), HeLa (cervical cancer), Hep G2 (liver cancer), and T24 (urinary bladder cancer). All the compounds, especially 4, showed promising anticancer activity: they exhibited significant cytotoxicity towards all the evaluated cell lines, including MCF-7 breast cancer, and hindered migration-motility activity of cancer cells demonstrating more potent activity than α-mangostin which served as a reference xanthone. Conclusion: These results suggest that our xanthone derivatives may be further analyzed in order to include them in cancer treatment protocols.
-
-
-
Design, In Silico Modelling, and Functionality Theory of Novel Folate Receptor Targeted Rutin Encapsulated Folic Acid Conjugated Keratin Nanoparticles for Effective Cancer Treatment
Objective: Site-specific and toxic-free drug delivery, is an interesting area of research. Nanoengineered drug delivery systems possess a remarkable potential for effective treatment of various types of cancers. Methods: In this study, novel Folic Acid (FA) conjugated keratin nanoparticles (NPs) were assembled with encapsulation and delivery of Rutin (Rt) into breast cancer cells through the overexpressed folate receptor. The biocompatible, Rt encapsulated FA conjugated keratin NPs (FA@Ker NPs) were successfully formulated by a modified precipitation technique. Their morphological shape and size, size distribution, stability, and physical nature were characterized and confirmed. The drug (Rt) encapsulation efficiency, loading capacity and release kinetics were also studied. Results: The observed results of molecular docking and density functionality theory of active drug (Rt) showed a strong interaction and non-covalent binding of the folate receptor and facilitation of endocytosis in breast cancer cells. Further, in vitro cytotoxic effect of FA@Ker NPs was screened against MCF-7 cancer cells, at 55.2 μg/mL of NPs and found to display 50% of cell death at 24h. Moreover, the NPs enhanced the uptake of Rt in MCF-7 cells, and the apoptotic effect of condensed nuclei and distorted membrane bodies was observed. Also, NPs entered into the mitochondria of MCF-7 cells and significantly increased the level of ROS which led to cell death. Conclusion: The developed FA@Ker NPs might be a promising way to enhance anti-cancer activity without disturbing normal healthy cells.
-
-
-
Hydroxytyrosol and Oleuropein Inhibit Migration and Invasion of MDA-MB-231 Triple-Negative Breast Cancer Cell via Induction of Autophagy
Authors: Hui-Yuan Lu, Jian-Sheng Zhu, Zhan Zhang, Wei-Jian Shen, Shan Jiang, Yun-Feng Long, Bin Wu, Tao Ding, Fei Huan and Shou-Lin WangBackground: Breast Cancer (BC) is the leading cause of cancer-related deaths among women. As such, novel chemotherapeutic agents are urgently needed, especially for Triple-Negative Breast Cancer (TNBC). Hydroxytyrosol (HT) and Oleuropein (OL) are rich in olive oil, which is associated with a low occurrence of BC. However, the effects and mechanisms of action of HT and OL in BC cells are still unclear. This study aimed to explore the molecular mechanisms underlying the antitumor effect of HT and OL in TNBC. Methods: TNBC MDA-MB-231 cells were treated with HT and OL in combination with Hepatocyte Growth Factor (HGF), rapamycin (Rapa, an inducer of autophagy) or 3-methyladenine (3-MA, an inhibitor of autophagy). Cell viability, migration, invasion, and autophagy signaling were analyzed by scratch assays, transwell migration assays, and Western blot analysis. Results: Treatment with HT or OL reduced MDA-MB-231 cell viability in a dose-dependent manner. MDAMB- 231 cells were more sensitive to HT treatment than OL treatment. Rapa treatment could significantly block HGF-induced MDA-MB-231 cell migration and invasion, suggesting that inhibition of autophagy could promote migration and invasion. Moreover, HT or OL treatment significantly suppressed HGF or 3-MA induced cell migration and invasion by reversing LC3-II/LC3-I and Beclin-1 downregulation and reversing p62 upregulation. Conclusion: These data indicated that HT and OL may inhibit migration and invasion of TNBC cells by activating autophagy. These findings provide potential therapeutic strategies that target autophagy to limit the pathogenesis and progression of BC.
-
-
-
Evaluation of the Synergism Mechanism of Tamoxifen and Docetaxel by Nanoparticles
Authors: Zhihong Zhu, Hao Pan, Yuenan Li and Weisan PanBackground: Our previous studies have shown that Docetaxel (DTX) and Tamoxifen (TMX) loaded nanoparticles(Co-NPs) could exhibit a synergistic effect on estrogen receptor positive cell lines. In the current study#140;we have studied the synergistic effect of Co-NPs and underlying possible molecular mechanism. Methods: Cell apoptosis assay, pharmacokinetic experiment and immunohistochemistry experiment were used to explore the synergistic effect and underlying possible mechanism in vitro and in vivo. Results: Cell apoptosis assay revealed that Co-NPs could mediate cell sensitization to a cytotoxic agent, resulting in remarkable cell apoptosis. In addition, pharmacokinetic experiment research showed that Co-NPs have longer circulation time in vivo, which could prolong the treatment time of the chemotherapeutic drugs. Immunohistochemistry experiment revealed that the Co-NPs could downregulate the expression of P-gp level to reduce the drugs’ efflux. Conclusion: The possible mechanism of the synergistic effect of DTX and TMX by Co-NPs was attributed to the longer in vivo circulation time, significantly increased rate of cell apoptosis and downregulated expression of P-gp level to the tumor cells.
-
-
-
Lemon Juice Mediated Synthesis of 3-Substituted Quinazolin-4(3H)-Ones and their Pharmacological Evaluation
Background: Compounds containing the quinazoline-4(3H)-one framework constitute an important class of fused N-heterocycles that are found in more than 200 naturally occurring alkaloids. These compounds also show a diverse range of pharmacological activities including antitumor properties. This prompted us to explore a series of quinazolin-4-(3H)-one derivatives having no substituent at C-2 as potential cytotoxic agents. Objective: The objective of this study was to synthesize and evaluate 3-substituted quinazolin-4(3H)-one derivatives for their potential cytotoxic properties. Methods: A convenient method has been developed for the rapid synthesis of this class of compounds under a mild and non-hazardous reaction condition in good yields. The methodology involved a three-component reaction employing isatoic anhydride, amines and glyoxylic acid as reactants in the presence of lemon juice in PEG- 400 at room temperature (25-30ºC) under ultrasound irradiation. All the synthesized compounds were screened via an MTT assay for their potential cytotoxic properties in vitro using the cancerous cell lines e.g. A549, A2780, HepG2, K562, MCF-7 and HCT-116 and a non-cancerous HEK293 cell line. Results: Several compounds such as 3a, 3b, 3d, 3e and 3f showed promising growth inhibition against these cancer cell lines but no significant effects on HEK293 cell line. The IC50 values of these compounds were comparable to doxorubicin whereas 3f significantly induced apoptosis in MCF-7 cells that also was comparable to doxorubicin. Conclusion: An ultrasound-assisted MCR facilitated by lemon juice has been developed to synthesize 3- substituted quinazolin-4(3H)-one derivatives that could act as potential anticancer agents.
-
-
-
In Vitro Antitumor Evaluation of Some Hybrid Molecules Containing Coumarin and Quinolinone Moieties
Background: Hybrid molecules furnished by merging two or more pharmacophores is an emerging concept in the field of medicinal chemistry and drug discovery. Currently, coumarin hybrids have attracted the keen attention of researchers to discover their therapeutic capability against cancer. Objective: The present study aimed to evaluate the in vitro antitumor activity of a new series of hybrid molecules containing coumarin and quinolinone moieties 4 and 5 against four cancer cell lines. Materials and Methods: A new series of hybrid molecules containing coumarin and quinolinone moieties, 4a-c and 5a-c, were synthesized and screened for their cytotoxicity against prostate PC-3, breast MCF-7, colon HCT- 116 and liver HepG2 cancer cell lines as well as normal breast Hs-371 T. Results: All the synthesized compounds were assessed for their in vitro antiproliferative activity against four cancer cell lines and several compounds were found to be active. Further in vitro cell cycle study of compounds 4a and 5a revealed MCF-7 cells arrest at G2 /M phase of the cell cycle profile and induction apoptosis at pre-G1 phase. The apoptosis-inducing activity was evidenced by up-regulation of Bax protein together with the downregulation of the expression of Bcl-2 protein. The mechanism of cytotoxic activity of compounds 4a and 5a correlated to its topoisomerase II inhibitory activity. Conclusion: Hybrid molecules containing coumarin and quinolinone moieties represents a scaffold for further optimization to obtain promising anticancer agents.
-
-
-
Jab1-siRNA Induces Cell Growth Inhibition and Cell Cycle Arrest in Gall Bladder Cancer Cells via Targeting Jab1 Signalosome
Background: The aberrant alteration in Jab1 signalosome (COP9 Signalosome Complex Subunit 5) has been proven to be associated with the progression of several carcinomas. However the specific role and mechanism of action of Jab1 signalosome in carcinogenesis of gall bladder cancer (GBC) are poorly understood. Objective: The main objective of our study was to elucidate the role and mechanism of Jab1 signalosome in gall bladder cancer by employing siRNA. Methods: Jab1 overexpression was identified in gall bladder cancer tissue sample. The role of Jab1-siRNA approach in cell growth inhibition and apoptotic induction was then examined by RT-PCR, Western Blotting, MTT, ROS, Hoechst and FITC/Annexin-V staining. Results: In the current study, we have shown that overexpression of Jab1 stimulated the proliferation of GBC cells; whereas downregulation of Jab1 by using Jab1-siRNA approach resulted incell growth inhibition and apoptotic induction. Furthermore, we found that downregulation of Jab1 induces cell cycle arrest at G1 phase and upregulated the expression of p27, p53 and Bax gene. Moreover, Jab1-siRNA induces apoptosis by enhancing ROS generation and caspase-3 activation. In addition, combined treatment with Jab1-siRNA and gemicitabine demonstrated an enhanced decline in cell proliferation which further suggested increased efficacy of gemcitabine at a very lower dose (5μM) in combination with Jab1-siRNA. Conclusion: In conclusion, our study strongly suggests that targeting Jab1 signalosome could be a promising therapeutic target for the treatment of gall bladder cancer.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
Most Read This Month
