Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry - Anti-Cancer Agents) - Volume 19, Issue 11, 2019
Volume 19, Issue 11, 2019
-
-
Garlic and its Active Compounds: A Potential Candidate in The Prevention of Cancer by Modulating Various Cell Signalling Pathways
Authors: Saleh A. Almatroodi, Mohammed A. Alsahli, Ahmad Almatroudi and Arshad H. RahmaniBackground: Cancer is a multi-factorial disease including alterations in the cell signalling pathways. Currently, several drugs are in use to treat cancer but such drugs show negative side effects on normal cells and cause severe toxicity. Methods: The current research is mainly focused on medicinal plants with potential therapeutic efficacy in the treatment of cancer without any adverse effects on normal cells. In this regard, garlic and its active compounds including diallyl sulfide, diallyl trisulfide, ajoene, and allicin have been established to suppress the growth of cancer and killing of cancer cells. Result: The review focuses on garlic and its active compounds chemopreventive effect through modulating various cell signalling pathways. Additionally, garlic and its active compound were established to induce cell cycle arrest at the G0/G1 phase and G2/M phases in cancer cells, increase the expression of tumor suppressor genes, inhibit the angiogenesis process, induction of apoptosis and modulation of various other genetic pathways. Conclusion: This review sketches the diverse chemopreventive activities of garlic and their active ingredients in the management of cancer mainly focusing on cell signalling pathways.
-
-
-
Turning to Computer-aided Drug Design in the Treatment of Diffuse Large B-cell Lymphoma: Has it been Helpful?
Authors: Aimen K. Aljoundi, Clement Agoni, Fisayo A. Olotu and Mahmoud E.S. SolimanIntroduction: Amidst the numerous effective therapeutic options available for the treatment of Diffuse Large B-cell Lymphoma (DLBCL), about 30-40% of patients treated with first-line chemoimmunotherapy still experience a relapse or refractory DLBCL. This has necessitated a continuous search for new therapeutic agents to augment the existing therapeutic arsenal. Methods: The dawn of Computer-Aided Drug Design (CADD) in the drug discovery process has accounted for persistency in the application of computational approaches either alone or in combinatorial strategies with experimental methods towards the identification of potential hit compounds with high therapeutic efficacy in abrogating DLBCL. Results: This review showcases the interventions of structure-based and ligand-based computational approaches which have led to the identification of numerous small molecule inhibitors against implicated targets in DLBCL therapy, even though many of these potential inhibitors are piled-up awaiting further experimental validation and exploration. Conclusion: We conclude that a successful and a conscious amalgamation of CADD and experimental approaches could pave the way for the discovery of the next generation potential leads in DLBCL therapy with improved activities and minimal toxicities.
-
-
-
4t-CHQ a Spiro-Quinazolinone Benzenesulfonamide Derivative Induces G0/G1 Cell Cycle arrest and Triggers Apoptosis Through Down-Regulation of Survivin and Bcl2 in the Leukemia Stem-Like KG1-a Cells
Authors: Arezoo Rahimian, Majid Mahdavi, Reza Rahbarghazi and Hojjatollah N. CharoudehObjective: Many experiments have revealed the anti-tumor activity of spiro-quinazolinone derivatives on different cell types. Exposing KG1-a cells to N-(4- tert- butyl- 4'- oxo- 1'H- spiro [cyclohexane- 1, 2'- quinazoline]- 3'(4'H)- yl)- 4- methyl benzenesulfonamide (4t-CHQ), as an active sub-component of spiroquinazolinone benzenesulfonamides, the experiment investigated the possible mechanisms that manifest the role of 4t-CHQ in leukemic KG1-a progenitor cells. Mechanistically, the inhibitory effects of 4t-CHQ on KG1-a cells emerge from its modulating function on the expression of Bax/Bcl2 and survinin proteins. Methods: Cell viability was assessed using MTT assay. The IC50 value of cells was calculated to be 131.3μM, after 72h-incubation with 4t-CHQ, ranging from 10 to 150μM. Apoptotic changes were studied using Acridine Orange/Ethidium Bromide (AO/EB) staining. DNA fragmentation was analyzed by agarose gel electrophoresis method. To evaluate the percentage of apoptotic cells and cell growth dynamic apoptotic features, we performed Annexin V/PI double staining assay and cell cycle analysis by flow cytometry. Results: According to the results, apoptosis induction was initiated by 4t-CHQ in the KG1-a cells (at IC50 value). Cell dynamic analysis revealed that the cell cycle at the G1 phase was arrested after treatment with 4t- CHQ. Western blotting analysis showed enhancement in the expression ratio of Bax/Bcl-2, while the expression of survinin protein decreased in a time-dependent manner in the KG1-a cells. According to the docking simulation data, the effectiveness of 4t-CHQ on KG1-a cells commenced by its reactions with the functional domain of BH3 and Bcl2 and BIR domains of survivin protein. Conclusion: These results demonstrate a remarkable role of 4t- CHQ in arresting leukemia KG1-a stem cells both by induction of apoptosis as well as by down-regulating survivin and Bcl2 proteins.
-
-
-
Novel Thiazine Substituted 9-Anilinoacridines: Synthesis, Antitumour Activity and Structure Activity Relationships
Authors: R. Kalirajan, K. Gaurav, A. Pandiselvi, B. Gowramma and S. SankarBackground: 9-anilinoacridines are acting as DNA-intercalating agents which plays an important role as antitumor drugs, due to their anti-proliferative properties. Some anticancer agents contain 9- anilinoacridines such as amsacrine (m-AMSA), and nitracrine (Ledakrine) have been already developed. Methods: In this study, novel 9-anilinoacridines substituted with thiazines 4a-r were designed, synthesized, characterized by physical and spectral data and their cytotoxic activities against DLA cell lines were evaluated. Results: Among those compounds, 4b, c, e, g, i, j, k, m, o, p, q, r exhibited significant short term in vitro cytotoxic activity against Daltons lymphoma ascites (DLA) cells with CTC50 value of 0.18 to 0.31μM. The compounds 4b, c, e, g, i, j, k, m, o, p, q, r are also exhibited significant long term in vitro anti-tumour activity against human tumor cell lines, HEp-2 (laryngeal epithelial carcinoma) by Sulforhodamine B assay with CTC50 value of 0.20 to 0.39μM. The compounds 4b, i, j exhibited significant in vivo antitumor activity with % Increase in Life Span (ILS) 48-82%. Conclusion: Results obtained in this study clearly demonstrated that many of the thiazine substituted 9- anilinoacridines exert interesting anti-tumour activity. The compounds 4b, i, j have significant anti-tumour activity and useful drugs after further refinement. The above derivatives will encourage to design future antitumor agents with high therapeutic potentials.
-
-
-
Prognosis, Significance and Positive Correlation of Rab1A and p-S6K/Gli1 Expression in Gastric Cancer
Authors: Xinyu Shao, Zhengwu Cheng, Menglin Xu, Jiading Mao, Junfeng Wang and Chunli ZhouBackground: Gastric Cancer (GC) is a frequently common malignancy. Recent studies have reported Rab1A as an activator of mTORC1, and the mTOR1 pathway is involved in regulating Gli1 expression in several cancers. Only a few studies have been performed to explore the relationship between Rab1A and p-S6K/Gli1in GC. Methods: Immunohistochemistry (IHC) was performed to explore the association of Rab1A/p-S6K/Gli1 expression and prognosis in 117 GC tissue samples and adjacent normal tissues. Results: Our results indicated that Rab1A/p-S6K/Gli1 was significantly overexpressed in GC tissues. High expression of Rab1A was closely related to the tumor size and the depth of tumor invasion. In addition, Rab1A expression was closely related with p-S6K/Gli1 expression in GC, and high level of Rab1A/p-S6K/Gli1 caused worse prognosis of GC patients. The univariate and multivariate analysis indicated that the expression of Rab1A was an independent prognostic factor. Moreover, both high Rab1A and p-S6K expression led to a worse prognosis when compared to a single positive expression as well as both high Rab1A/Gli1 expression also led to a worse prognosis than the single positive expression of Rab1A/Gli1. Strikingly, the overexpression of p-S6K also led to a worse prognosis in Rab1A positive patients, as did Gli1. Conclusion: Our results indicate that Rab1A/mTOR/S6K/Gli1 axis played a crucial role in GC, which may provide a novel field on targeted therapy of GC, especially for mTORC1-targeted therapy-resistant cancers.
-
-
-
Novel Pyrazolo[3,4-d]pyrimidines as Potential Cytotoxic Agents: Design, Synthesis, Molecular Docking and CDK2 Inhibition
Authors: Mai Maher, Asmaa E. Kassab, Ashraf F. Zaher and Zeinab MahmoudBackground: Pyrazolo[3,4-d]pyrimidine scaffold was reported to possess potent cytotoxic and CDK2 inhibitory activity as analogue of roscovitine. Objective: To design and synthesize novel 1-(4-flourophenyl)pyrazolo[3,4-d]pyrimidine derivatives as bioisosters of roscovitine with potential cytotoxic and CDK2 inhibitory activity. Methods: A series of novel 1-(4-flourophenyl)pyrazolo[3,4-d]pyrimidines were designed and synthesized. Structural elucidation for all the newly synthesized compounds was achieved through performing MS, 1H NMR, 13C NMR and IR spectral techniques. Eight compounds were screened for their cytotoxic activity by National Cancer Institute (USA) against 60 different human cancer cell lines. Compounds 2a, 4, 6, 7b, 8a and 8b were further studied through the determination of their IC50 values against the most sensitive cell lines. The inhibitory activities of compounds 2a and 4 were evaluated against CDK2 enzyme. Results: Compound 4 exhibited the most prominent broad-spectrum cytotoxic activity against 42 cell lines representing all human cancer types showing growth inhibition percentages from 53.19 to 99.39. Compound 2a showed promising selectivity against several cell lines. Moreover, all the test compounds exhibited potent cytotoxic activity in nanomolar to micromolar range with IC50 values ranging from 0.58 to 8.32μM. Compound 2a showed significant cytotoxic activity against CNS (SNB-75), lung (NCI-H460) and ovarian (OVCAR-4) cancer cell lines with IC50 values 0.64, 0.78 and 1.9μM, respectively. Compound 4 showed promising potency against leukemia (HL-60) and CNS (SNB-75) cell lines (IC50 = 0.58 and 0.94μM, sequentially). Moreover, the antiproliferative activities of compounds 2a and 4 appeared to correlate well with their ability to inhibit CDK2 at sub-micromolar level (IC50 = 0.69 and 0.67μM, respectively) that were comparable to roscovitine (IC50=0.44μM). The Molecular docking results revealed that compound 4 interacted with the same key amino acids as roscovitine in the active site of CDK2 enzyme with a marked docking score (-14.1031 kcal/mol). Conclusion: 1-(4-Flourophenyl)pyrazolo[3,4-d]pyrimidine is a promising scaffold for the design and synthesis of potent cytotoxic leads.
-
-
-
Evaluation of New 99mTc(CO)3 + Radiolabeled Glycylglycine In Vivo
Authors: Ahmet M. Şenışık, Çiğdem İçhedef, Ayfer Y. Kılçar, Eser Uçar, Kadir Arı, Yasemin Parlak, Elvan S. Bilgin and Serap TeksözBackground: Peptide-based agents are used in molecular imaging due to their unique properties, such as rapid clearance from the circulation, high affinity and target selectivity. Many of the radiolabeled peptides have been clinically experienced with diagnostic accuracy. The aim of this study was to investigate in vivo biological behavior of [99mTc(CO)3(H2O)3]+ radiolabeled glycylglycine (GlyGly). Methods: Glycylglycine was radiolabeled with a high radiolabeling yield of 94.69±2%, and quality control of the radiolabeling process was performed by thin layer radiochromatography (TLRC) and High-Performance Liquid Radiochromatography (HPLRC). Lipophilicity study for radiolabeled complex (99mTc(CO)3-Gly-Gly) was carried out using solvent extraction. The in vivo evaluation was performed by both biodistribution and SPECT imaging. Results: The high radiolabelling yield of 99mTc(CO)3-GlyGly was obtained and verified by TLRC and HPLRC as well. According to the in vivo results, SPECT images and biodistribution data are in good accordance. The excretion route from the body was both hepatobiliary and renal. Conclusion: This study shows that 99mTc(CO)3-GlyGly has the potential to be used as a peptide-based imaging agent. Further studies, 99mTc(CO)3-GlyGly can be performed on tumor-bearing animals.
-
-
-
Bevacizumab Allows Preservation of Liver Function and its Regenerative Capacity after Major Hepatectomy
Background: Parallel to the safety of liver resections, new chemotherapy drugs have emerged for the control of liver metastases. However, there is unclear evidence about the combination of intensive BVZ-therapy and extended resections. The main aim was to analyse the impact of Bevacizumab (BVZ) in terms of liver safety and tolerability in two experimental models: a basal-toxicity situation and after major hepatectomy. Methods: Eighty male-Wistar rats were grouped as toxicity analysis (sham-operated rats-OS-) and regenerationafter- surgery analysis (hepatectomy rats-H-). Eight further subgroups were created according to sacrifice (6- hours-6h- or 24-hours-24h-) and dose (μg) of BVZ (none, 100, 200, 400). Several measurements were performed, including biochemical serum samples, histopathological analysis, cytokines (IL-6, TNF-α, TGF-β), oxidative-stress (GSH/GSSG, ATP), lipid-peroxidation (TBARS) and epidermal and vascular endothelium growth-factors (EGF and VEGF). Results: In the toxicity analysis, safe results with BVZ were observed, with no significant differences among the groups. A trend towards a lower oxidative status was observed in the OS 6 h-100, -200 and -400 versus the OS 6 h-none group. Similar results were observed in the hepatectomy model, with stable oxidative-stress-index and IL-6, TNF- α, and TGF- β levels. Despite higher lipid peroxidation status, overall regeneration was preserved. As expected, VEGF was almost undetectable in BVZ-treated groups after resection, but not in the non-resection group. Conclusion: It was concluded that liver status was not impaired by BVZ even at the high-dose. Similarly, liver regeneration after extended hepatectomy in BVZ-treated animals was well-preserved. Extended liver resections may be encouraged in BVZ-treated patients due to its excellent tolerability and good liver regeneration status.
-
-
-
A Cytotoxic Natural Product from Patrinia villosa Juss
Authors: Yangcheng Liu, Wei Liu, Changlan Chen, Zheng Xiang and Hongwei LiuBackground and Purpose: Patrinia villosa Juss is an important Chinese herbal medicine widely used for thousands of years, but few reports on the ingredients of the herb have been presented. In this study, we aim to isolate the bioactive compound from the plant. Material and Methods: The air-dried leaves of P. villosa (15kg) were extracted three times with 70% EtOH under reflux. The condensed extract was suspended in H2O and partitioned with light petroleum, dichloromethane and n-BuOH. The dichloromethane portion was then subjected to normal-phase silica gel column chromatography, ODS silica gel column chromatography and semi-preparative HPLC to yield compound 1. Cytotoxicities of 1 were assayed on HepG2, A549 and A2780 cell lines. The mechanism of apoptosis and cell cycle on A549 was confirmed subsequently. Results: A new impecylone (Impecylone A) was isolated from the leaves of Patrinia villosa Juss, and its structures were established using 1D, 2D-NMR spectra and HR-ESI-MS. Impecylone A could selectivity inhibit HepG2 and A549 cell lines. The compound could induce apoptosis of A549 and arrest the cell cycle at G2/M phase in a dose-dependent manner. Conclusion: Impecylone A is a novel compound from Patrinia villosa Juss and could be a potential antitumor agent especially in the cell lines of A549.
-
-
-
LHRH Targeted Chonderosomes of Mitomycin C in Breast Cancer: An In Vitro/In Vivo Study
Authors: Jaleh Varshosaz, Nasim Sarrami, Mahmoud Aghaei, Mehdi Aliomrani and Reza AziziBackground: Mitomycin C (MMC) is an anti-cancer drug used for the treatment of breast cancer with limited therapeutic index, extreme gastric adverse effects and bone marrow suppression. The purpose of the present study was the preparation of a dual-targeted delivery system of MMC for targeting CD44 and LHRH overexpressed receptors of breast cancer. Methods: MMC loaded LHRH targeted chonderosome was prepared by precipitation method and was characterized for their physicochemical properties. Cell cycle arrest and cytotoxicity tests were studied on cell lines of MCF-7, MDA-MB231 and 4T1 (as CD44 and LHRH positive cells) and BT-474 cell line (as CD44 negative receptor cells). The in vivo histopathology and antitumor activity of MMC-loaded chonderosomes were compared with free MMC in 4T1 cells inducing breast cancer in Balb-c mice. Results: MMC loaded LHRH targeted chonderosomes caused 3.3 and 5.5 fold more cytotoxicity on MCF-7 and 4T1 cells than free MMC at concentrations of 100μM and 10μM, respectively. However, on BT-474 cells the difference was insignificant. The cell cycle test showed no change for MMC mechanism of action when it was loaded in chonderosomes compared to free MMC. The in vivo antitumor studies showed that MMC loaded LHRH targeted chonderosomes were 6.5 fold more effective in the reduction of tumor volume than free MMC with the most severe necrosis compared to non-targeted chonderosomes in pathological studies on harvested tumors. Conclusion: The developed MMC loaded LHRH targeted chonderosomes were more effective in tumor growth suppression and may be promising for targeted delivery of MMC in breast cancer.
-
-
-
The Role of Vitamin D and Sunlight Incidence in Cancer
Authors: Alice B. Camara and Igor A. BrandaoBackground: Vitamin D (VD) deficiency affects individuals of different ages in many countries. VD deficiency may be related to several diseases, including cancer. Objective: This study aimed to review the relationship between VD deficiency and cancer. Methods: We describe the proteins involved in cancer pathogenesis and how those proteins can be influenced by VD deficiency. We also investigated a relationship between cancer death rate and solar radiation. Results: We found an increased bladder cancer, breast cancer, colon-rectum cancer, lung cancer, oesophagus cancer, oral cancer, ovary cancer, pancreas cancer, skin cancer and stomach cancer death rate in countries with low sunlight. It was also observed that amyloid precursor protein, ryanodine receptor, mammalian target of rapamycin complex 1, and receptor for advanced glycation end products are associated with a worse prognosis in cancer. While the Klotho protein and VD receptor are associated with a better prognosis in the disease. Nfr2 is associated with both worse and better prognosis in cancer. Conclusion: The literature suggests that VD deficiency might be involved in cancer progression. According to sunlight data, we can conclude that countries with low average sunlight have high cancers death rate. New studies involving transcriptional and genomic data in combination with VD measurement in long-term experiments are required to establish new relationships between VD and cancer.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
Most Read This Month
