Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry - Anti-Cancer Agents) - Volume 19, Issue 10, 2019
Volume 19, Issue 10, 2019
-
-
The Emerging Role of CSN6 in Biological Behavior and Cancer Progress
Authors: Zun Mao, Cheng Chen and Dong-Sheng PeiBackground: The Constitutive Photomorphogenesis 9 (COP9) signalosome (CSN) subunit 6 (CSN6) noticeably acts as a regulator of the degradation of cancer-related proteins, which contributes to cancerogenesis. The aims of this paper are to expound the research advances of CSN6, particularly focusing on roles of CSN6 in the regulation of biological behavior and cancer progress. Methods: Literature from PubMed and Web of Science databases about biological characteristics and application of CSN6 published in recent years was collected to conduct a review. Results: CSN6, not only the non-catalytic Mpr1p and Pad1p N-terminal (MPN) subunit of CSN, but also a relatively independent protein molecule, has received great attention as a regulator of a wide range of developmental processes by taking part in the ubiquitin-proteasome system and signal transduction, as well as regulating genome integrity and DNA damage response. In addition, phosphorylation of CSN6 increases the stability of CSN6, thereby promoting its regulatory capacity. Moreover, CSN6 is overexpressed in many types of cancer compared with normal tissues and is involved in the regulation of several important intracellular pathways, consisting of cell proliferation, migration, invasion, transformation, and tumorigenesis. Conclusion: We mainly present insights into the function and research development of CSN6, hoping that it can help guide the treatment of developmental defects and improve clinical care, especially in the regulation of cancer signaling pathways.
-
-
-
Microsomal Prostaglandin E2 Synthase-1 as a New Macromolecular Drug Target in the Prevention of Inflammation and Cancer
Authors: Bahadır Bülbül and İlkay KüçükgüzelBackground: Cancer is one of the most life-threatening diseases worldwide. Since inflammation is considered to be one of the known characteristics of cancer, the activity of PGE2 has been paired with different tumorigenic steps such as increased tumor cell proliferation, resistance to apoptosis, increased invasiveness, angiogenesis and immunosuppression. Objective: It has been successfully demonstrated that inhibition of mPGES-1 prevented inflammation in preclinical studies. However, despite the crucial roles of mPGEs-1 and PGE2 in tumorigenesis, there is not much in vivo study on mPGES-1 inhibition in cancer therapy. The specificity of mPGEs-1 enzyme and its low expression level under normal conditions makes it a promising drug target with a low risk of side effects. Methods: A comprehensive literature search was performed for writing this review. An updated view on PGE2 biosynthesis, PGES isoenzyme family and its pharmacology and the latest information about inhibitors of mPGES-1 have been discussed. Results: In this study, it was aimed to highlight the importance of mPGES-1 and its inhibition in inflammationrelated cancer and other inflammatory conditions. Information about PGE2 biosynthesis, its role in inflammationrelated pathologies were also provided. We kept the noncancer-related inflammatory part short and tried to bring together promising molecules or scaffolds. Conclusion: The information provided in this review might be useful to researchers in designing novel and potent mPGES-1 inhibitors for the treatment of cancer and inflammation.
-
-
-
The Possibility of Preventive and Therapeutic Use of Green Tea Catechins in Prostate Cancer
More LessBackground: Prostate cancer is one of the most frequent types of cancer. Despite the existence of various treatment strategies, treatment of prostate cancer still presents serious difficulties (especially in advanced stages). Polyphenols have been extensively assessed in terms of their potential use for prostate cancer treatment and prevention. Catechins are among the most well-known polyphenols in this respect. Objective: In this review, we summarize clinical study results concerning catechin applications with regard to prostate cancer treatment and prevention. We discuss some of the main mechanisms of the anticarcinogenic action of catechins. Conclusion: The main mechanisms of the anticarcinogenic action of catechins are subdivided into two major types: (i) direct action on cancer cells and (ii) indirect effect based on catechins’s impact on the microenvironment of cancer cells, particularly in relation to the immune system. At this level catechins might reduce tumor-associated inflammation and immune tolerance.
-
-
-
Evaluation of Antitumor Activity and Hepatoprotective Effect of Mitomycin C Solubilized in Chamomile Oil Nanoemulsion
Authors: Waad A. Al-Otaibi, Mayson H. Alkhatib and Abdulwahab N. WaliPurpose: The present study aimed to investigate the antitumor activity and hepatoprotective effect of the MTC, when combined with CHAM oil nanoemulsion (NE), (CHAM-MTC) on the tumor growth. Materials/Methods: The in vitro study assessed the antineoplastic effect of CHAM-MTC on the MCF-7 breast cancer cells while the in vivo therapeutic effectiveness and toxicities of CHAM-MTC were evaluated in Ehrlich Ascites Carcinoma (EAC) bearing mice. One hundred female Swiss albino mice, divided equally into non-EAC group (negative control), untreated EAC group (positive control) and three EAC groups received once intraperitoneal injection of 0.2ml CHAM-NE, 0.2ml Normal Saline (NS) contained MTC (1mg/kg) and 0.2ml CHAM-NE mixed with MTC (1mg/kg), respectively. Results: The in vitro results indicated that CHAM-NE could potentiate the effect of MTC in sub-effective concentrations since the half-maximal inhibitory concentration (IC50) was reduced by a factor of 21.94 when compared to the MTC-NS. The in vivo study revealed that mice treated with CHAM-MTC showed a significant increase in the median survival time (MST= 37 days) when compared to the MTC-NS treated group (MST= 29.50 days). In addition, CHAM-MTC showed protective ability against the oxidative stress and hepatic damage induced by EAC and MTC treatment. Conclusion: The combination of MTC with CHAM-NE could be valuable in enhancing the therapeutic efficacy of MTC against EAC and in eliminating MTC-induced hepatotoxicity.
-
-
-
Synthesis, Spectroscopic Properties, Crystal Structure And Biological Evaluation of New Platinum Complexes with 5-methyl-5-(2-thiomethyl)ethyl Hydantoin
Background: The accidental discovery of Cisplatin’s growth-inhibiting properties a few decades ago led to the resurgence of interest in metal-based chemotherapeutics. A number of well-discussed factors such as severe systemic toxicity and unfavourable physicochemical properties further limit the clinical application of the platinating agents. Great efforts have been undertaken in the development of alternative platinum derivatives with an extended antitumor spectrum and amended toxicity profile as compared to the reference drug cisplatin. The rational design of conventional platinum analogues and the re-evaluation of the empirically derived “structure- activity” relationships allowed for the synthesis of platinum complexes with great diversity in structural characteristics, biochemical stability and antitumor properties. Methods: The new compounds have been studied by elemental analyses, IR, NMR and mass spectral analyses. The structures of the organic compound and one of the new mixed/ammine Pt(II) complexes were studied by X-ray diffraction analysis. The cytotoxic effects of the compounds were studied vs. the referent antineoplastic agent cisplatin against four human tumour cell lines using the standard MTT-dye reduction assay for cell viability. The most promising complex 3 was investigated for acute toxicity in male and female H-albino-mice models. Results: A new organic compound (5-methyl-5-(2-thiomethyl)ethyl hydantoin) L bearing both S- and Ncoordinating sites and three novel platinum complexes, 1, 2 and 3 were synthesized and studied. Spectral and structural characterization concluded monodentate S-driven coordination of the ligand L to the metal center in complexes 1 and 2, whereas the same was acted as a bidentate N,S-chelator in complex 3. Ligand L crystallizes in the tetragonal space group I41/a (No 88) with one molecule per asymmetric unit. While complex 3 crystallizes in the monoclinic space group P21/c (No 14) with one molecule per asymmetric unit. In the same complex 3, the platinum ion coordinates an L ligand, a chloride ion and an ammonia molecule. In the in vitro experiments, the tested L and complexes 1 and 2 exhibited negligible cytotoxic activity in all tumor models. Accordingly, complex 3 is twice as potent as cisplatin in the HT-29 cells and is at least as active as cisplatin on the MDA-MB-231 breast cancer cell line. In the in vivo toxicity estimation of complex 3 no signs of common toxicity were observed. Conclusion: The Pt(II)-bidentate complex 3 exhibited significant cytotoxic potential equaling or surpassing that of the reference drug cisplatin in all the tested tumor models. Negligible anticancer activity on the screened tumor types has been shown by the ligand L and its Pt(II) and Pt(IV) complexes 1 and 2, respectively. Our study on the acute toxicity of the most active complex 3 proved it to be non-toxic in mice models.
-
-
-
Triphenylethylene-Coumarin Hybrid TCH-5c Suppresses Tumorigenic Progression in Breast Cancer Mainly Through the Inhibition of Angiogenesis
Authors: Naipeng Cui, Dan-Dan Lin, Yang Shen, Jian-Guo Shi, Bing Wang, Ming-Zhi Zhao, Lishuang Zheng, Hua Chen and Jian-Hong ShiBackground: Coumarins are a wide group of naturally occurring compounds which exhibit a wide range of biological properties such as anti-cancer activities. Here, we characterized the biological functions of three Triphenylethylene-Coumarin Hybrids (TCHs) both in cell culture and nude mouse model. Methods: Cell proliferation assay was performed in the cell cultures of both EA.hy926 endothelial cell and breast cancer cell lines treated with different concentrations of compound TCH-10b, TCH-5a and TCH-5c. Flowcytometry assay and Western blotting were used to further investigate the effect and mechanism of TCH-5c on EA.hy926 cell proliferation and cell cycle. The effects of TCH-5c on endothelial cell migration and angiogenesis were determined using cytoskeleton staining, migration assay and tube formation assay. Inhibition of breast cancer cell line derived VEGF by TCH-5c was shown through ELISA and the use of conditioned media. SK-BR-3 xenograft mouse model was established to further study the anti-tumorigenic role of compound TCH-5c in vivo. Results: We found that compound TCH-5c has inhibitory effects on both vascular endothelial cells and breast cancer cell lines. Compound TCH-5c inhibited proliferation, resulted in cell death, increased p21 protein expression to induce G0/G1 arrest and changed endothelial cell cytoskeleton organization and migration in EA.hy926 endothelial cells. Compound TCH-5c also inhibited breast cancer cell line derived VEGF secretion, decreased breast cancer cell-induced endothelial cell tube formation in vitro and suppressed SK-BR-3 breast cancer cell-initiated tumor formation in vivo. Conclusion: Our study demonstrates that the coumarin derivative TCH-5c exerts its anti-cancer effects by 1. inhibiting endothelial cell proliferation, migration. 2. suppressing tube formation and angiogenesis induced by breast cancer cells in vitro and in vivo. Our results have potential implications in developing new approaches against breast cancer.
-
-
-
Antitumour and Toxicity Evaluation of a Ru(II)-Cyclopentadienyl Complex in a Prostate Cancer Model by Imaging Tools
Background: Ruthenium complexes have been extensively investigated for their prospective value as alternatives to cisplatin. Recently, we reported the in vitro anticancer properties of a family of organometallic ruthenium( II)-cyclopentadienyl complexes and have explored their mechanism of action. Objective: The purpose of this study was to evaluate the in vivo antitumour efficacy and toxicity of one of these Ru(II) compounds, [RuCp(mTPPMSNa)(2,2′-bipy)][CF3SO2] (TM85) which displayed an interesting spectrum of activity against several cancer cells. Methods: Studies to assess the antitumour activity and toxicity were performed in a metastatic prostate (PC3) mice model using ICP-MS, nuclear microscopy, elemental analysis and Transmission Electron Microscopy (TEM). Results: TM85 showed low systemic toxicity but no significant tumour reduction, when administered at tolerated dose (20mg/kg) over 10 days. Ru was mainly retained in the liver and less in kidneys, with low accumulation in tumour. Increased bilirubin levels, anomalous Ca and Fe concentrations in liver and mitochondria alterations were indicative of liver injury. The hepatotoxicity observed was less severe than that of cisplatin and no nephrotoxicity was found. Conclusion: Under the experimental conditions of this study, TM85 is less toxic than cisplatin, induces similar tumour reduction and avoids the formation of metastatic foci. No renal toxicity was observed by the analysis of creatinine levels and the effective renal plasma flow by 99mTc-MAG3 clearance. Hence, it can be considered a valuable compound for further studies in the field of Ru-based anticancer drugs.
-
-
-
Synthesis, Characterization, Quantum-Chemical Calculations and Cytotoxic Activity of 1,8-Naphthalimide Derivatives with Non-Protein Amino Acids
Background: The 1,8-Naphthalimides constitute an important class of biologically active, DNAbinding compounds. There are no available data on the synthesis of 1,8-naphthalimide derivatives with nonprotein amino acids and their biological activity. The aim of this paper was to determine the synthesis, structural characterization and cytotoxic activity of new 1-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)cycloalkane-1- carboxylic acids with 5-, 6-, 7-, 8- and 12-membered rings as well as 2-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)- yl)adamantane-2-carboxylic acid and 1-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)-1,2,3,4-tetrahydronaphthalene- 1-carboxylic acid. Methods: The target compounds were obtained by an interaction of 1,8-naphthalic anhydride with a series of non-protein amino acids. The optimized geometry and harmonic vibrational frequencies have been calculated by DFT employing B3LYP functional using 6-31G(d,p) basis set. An ab initio (MP2 and Hartee-Fock) and DFT (different functionals) using several basis sets have been applied for NMR calculations. The cytotoxic effects of the synthesized compounds are assessed against two human tumor cell lines, namely K-562 (chronic myeloid leukemia) and HUT-78 (cutaneous T-cell lymphoma) after 72 h exposure, using the MTT-dye reduction assay. The apoptogenic effects and the ability to modulate the NFΚB-signaling pathways were determined using commercially available ELISA kits. Results: All compounds inhibited the growth of malignant cells at micromolar concentrations whereby compound 4b (1-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)cyclohexane-1-carboxylic acid) demonstrated superior activity in both cell lines with IC50 values comparable to those of the reference anticancer drug melphalan. Conclusion: New 1,8-naphthalimide derivatives with non-protein amino acids were successfully synthesized. Quantum-chemical calculations were performed to elucidate the structure of the newly synthesized compounds. There is a proper alignment between theoretical and experimental results. The cytotoxicity of the synthesized products against two human tumor cell lines, namely K-562 and HUT-78 was evaluated. All compounds inhibited the growth of malignant cells at micromolar concentrations. The pharmacodynamics evaluation of compound 4b showed that its cytotoxicity is mediated by induction of apoptosis and inhibition of NFΚB-signaling.
-
-
-
Evaluation of Pyrano[3,2 C] Quinoline Analogues as Anticancer Agents
Authors: Kuldip D. Upadhyay and Anamik K. ShahBackground: Quinoline analogues exhibited diversified biological activities depending on the structure type. A number of natural products with pyrano[3,2-c]quinolone structural motifs and patented chromenes were reported as promising cytotoxic agents. Objective: The present study is aimed to evaluate a new series of pyrano[3,2-c]quinoline scaffolds derived from the fusion of bioactive quinolone pharmacophore with structurally diverse aryl substituted chromene for its cytotoxicity. Methods: A library of pyrano[3,2-c]quinoline analogues was prepared from one-pot multi component synthesis using various aromatic aldehydes, malononitrile and 2,4-dihydroxy-1-methylquinoline. The new synthetics were primarily screened for its cytotoxicity (IC50) against different human cancer cell lines in vitro. The promising synthetics were further evaluated in vitro for their potency against different kinase activity. The promising compounds were finally tested for their in vivo efficacy in SCID type mice HCT-116 tumor model. Results: The screening results revealed that compounds 4c, 4f, 4i and 4j showed promising activity in in vitro study. However, compound 4c was found to be the most potent candidate with 23% tumor growth inhibition in HCT-116 tumor mice model. Conclusion: The structure activity relationship suggested that 3-substitution on the aryl ring at C4 position of the pyrano[3,2 c]quinolone moiety seems to have an important position for cytotoxicity activity. However, 3- chloro substitution at C4 aryl ring showed a significant alteration of the bioactive conformer of the parent scaffold and outcome with compound 4c as the most potent candidate of the series.
-
-
-
Interactome Analysis of the Differentially Expressed Proteins in Uterine Leiomyoma
Authors: Tahreem Sahar, Aruna Nigam, Shadab Anjum, Farheen Waziri, Shipie Biswas, Swatantra K. Jain and Saima WajidBackground: Recent advances in proteomics present enormous opportunities to discover proteome related disparities and thus understanding the molecular mechanisms related to a disease. Uterine leiomyoma is a benign monoclonal tumor, located in the pelvic region, and affecting 40% of reproductive aged female. Objective: Identification and characterization of the differentially expressed proteins associated with leiomyogenesis by comparing uterine leiomyoma and normal myometrium. Methods: Paired samples of uterine leiomyoma and adjacent myometrium retrieved from twenty-five females suffering from uterine leiomyoma (n=50) were submitted to two-dimensional electrophoresis (2-DE), matrixassisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and to reverse transcription polymerase chain reaction (RT-PCR). Results: Comparison of protein patterns revealed seven proteins with concordantly increased spot intensities in leiomyoma samples. E3 ubiquitin-protein ligase MIB2 (MIB2), Mediator of RNA polymerase II transcription subunit 10 (MED10), HIRA-interacting protein (HIRP3) and Fatty acid binding protein brain (FABP7) were found to be upregulated. While, Biogenesis of lysosome-related organelles complex 1 subunit 2 (BL1S2), Shadow of prion protein (SPRN) and RNA binding motif protein X linked like 2 (RMXL2) were found to be exclusively present in leiomyoma sample. The expression modulations of the corresponding genes were further validated which corroborated with the 2-DE result showing significant upregulation in leiomyoma. We have generated a master network showing the interactions of the experimentally identified proteins with their close neighbors and further scrutinized the network to prioritize the routes leading to cell proliferation and tumorigenesis. Conclusion: This study highlights the importance of identified proteins as potential targets for therapeutic purpose. This work provides an insight into the mechanism underlying the overexpression of the proteins but warrants further investigations.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
Most Read This Month
