Skip to content
2000
Volume 25, Issue 12
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Objective

In this study, 25 synthetic cyclic lipopeptides (CLPs) were investigated for their anticancer potential against mouse melanoma (B16F10) cells, human prostate cancer (PC-3), human colorectal adenocarcinoma (HT-29) and mouse embryonic fibroblast (NIH3T3) cells.

Methods

The cytotoxic activity of investigated compounds was evaluated using MTT and CV assays. In order to examine the mechanism of action of the most potent compound cell cycle analysis, apoptosis assay, caspase activity, CFSE and DHR staining, DAF-FM, autophagy and immunocytochemistry caspase-3 assays were performed.

Results

During the fast screening, compound , was identified as prospective active CLP against B16F10 cell line at 10 µM concentration. MTT and CV assays exhibited at least four times higher cytotoxic potential of (IC = 8.4±1.3 µM, MTT; 10.6±1.1 µM, CV) in comparison to control drug natural occurring CLP surfactin (IC = 50.3±0.6 µM, MTT; 40.4±0.3 µM, CV). The use of flow cytometry analysis confirmed that apoptosis was involved in the death of B16F10 cells after treatment with , as demonstrated also by DAPI staining. Caspase activity could be detected during cell death (ApoStat assay, immunocytochemistry caspase-3 assay). Compound provokes enhancement of nitric oxide (NO) production in B16F10 cells but does not trigger ROS/RNS generation or autophagy.

Conclusion

The study highlights that synthetic macrocycle has superior tumor-specificity and potential as an anticancer agent compared to surfactin and cisplatin. These findings could guide the development of more selective and less harmful macrocyclic lipopeptides for cancer therapy.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206351208250102114944
2025-01-23
2025-09-06
Loading full text...

Full text loading...

References

  1. MillerK.D. NogueiraL. DevasiaT. MariottoA.B. YabroffK.R. JemalA. KramerJ. SiegelR.L. Cancer treatment and survivorship statistics, 2022.CA Cancer J. Clin.202272540943610.3322/caac.2173135736631
    [Google Scholar]
  2. KimT. ParkS.Y. OhI.H. Exploring the relationship between physical activities and health-related factors in the health-related quality of life among people with disability in Korea.Int. J. Environ. Res. Public Health20221913783910.3390/ijerph1913783935805497
    [Google Scholar]
  3. HermansK.E.P.E. KazemzadehF. LoefC. JansenR.L.H. NagtegaalI.D. van den BrandtP.A. SchoutenL.J. Risk factors for cancer of unknown primary: A literature review.BMC Cancer202323131410.1186/s12885‑023‑10794‑637020279
    [Google Scholar]
  4. SalasS. CottetV. DossusL. FassierP. GinhacJ. Latino-MartelP. RomieuI. SchneiderS. SrourB. TouillaudM. TouvierM. AncellinR. Nutritional factors during and after cancer: Impacts on survival and quality of life.Nutrients20221414295810.3390/nu1414295835889914
    [Google Scholar]
  5. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.2183438572751
    [Google Scholar]
  6. GuptaS.L. BasuS. SoniV. JaiswalR.K. Immunotherapy: An alternative promising therapeutic approach against cancers.Mol. Biol. Rep.202249109903991310.1007/s11033‑022‑07525‑835759082
    [Google Scholar]
  7. StefanskaB. TuckerS.J. MacEwanD.J. Themed issue: ‘New avenues in cancer prevention and treatment’.Br. J. Pharmacol.2022179122789279410.1111/bph.1571535146753
    [Google Scholar]
  8. AtanasovA.G. ZotchevS.B. DirschV.M. SupuranC.T. Natural products in drug discovery: Advances and opportunities.Nat. Rev. Drug Discov.202120320021610.1038/s41573‑020‑00114‑z33510482
    [Google Scholar]
  9. ChopraB. DhingraA.K. Natural products: A lead for drug discovery and development.Phytother. Res.20213594660470210.1002/ptr.709933847440
    [Google Scholar]
  10. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010.J. Nat. Prod.201275331133510.1021/np200906s22316239
    [Google Scholar]
  11. LaiS. ZhangQ. JinL. Natural and man-made cyclic peptide-based antibiotics.Antibiotics20221214210.3390/antibiotics1201004236671244
    [Google Scholar]
  12. MorejónM.C. LaubA. KaluđerovićG.N. PuentesA.R. HmedatA.N. Otero-GonzálezA.J. RiveraD.G. WessjohannL.A. A multicomponent macrocyclization strategy to natural product-like cyclic lipopeptides: Synthesis and anticancer evaluation of surfactin and mycosubtilin analogues.Org. Biomol. Chem.201715173628363710.1039/C7OB00459A28406518
    [Google Scholar]
  13. JensenS.K. ThomsenT.T. OddoA. FranzykH. Løbner-OlesenA. HansenP.R. Novel cyclic lipopeptide antibiotics: Effects of acyl chain length and position.Int. J. Mol. Sci.20202116582910.3390/ijms2116582932823798
    [Google Scholar]
  14. SinghS. SequeiraR.A. KumarP. GhadgeV.A. VaghelaP. MohantyA.K. GhoshA. PrasadK. ShindeP.B. Selective partition of lipopeptides from fermentation broth: A green and sustainable approach.ACS Omega2022750466464665210.1021/acsomega.2c0558736570225
    [Google Scholar]
  15. FewerD.P. JokelaJ. HeiniläL. AesoyR. SivonenK. GalicaT. HrouzekP. HerfindalL. Chemical diversity and cellular effects of antifungal cyclic lipopeptides from Cyanobacteria.Physiol. Plant.2021173263965010.1111/ppl.1348434145585
    [Google Scholar]
  16. GeudensN. MartinsJ.C. Cyclic lipodepsipeptides from Pseudomonas spp.–biological swiss-army knives.Front. Microbiol.20189186710.3389/fmicb.2018.0186730158910
    [Google Scholar]
  17. MazzolaM. de BruijnI. CohenM.F. RaaijmakersJ.M. Protozoan-induced regulation of cyclic lipopeptide biosynthesis is an effective predation defense mechanism for Pseudomonas fluorescens.Appl. Environ. Microbiol.200975216804681110.1128/AEM.01272‑0919717630
    [Google Scholar]
  18. WójtowiczK. CzogallaA. TrombikT. ŁukaszewiczM. Surfactin cyclic lipopeptides change the plasma membrane composition and lateral organization in mammalian cells.Biochim. Biophys. Acta Biomembr.202118631218373010.1016/j.bbamem.2021.18373034419486
    [Google Scholar]
  19. DeyH. SimonovicD. Norberg-Schulz HagenI. VasskogT. FredheimE.G.A. BlenckeH.M. AnderssenT. StrømM.B. HaugT. Synthesis and antimicrobial activity of short analogues of the marine antimicrobial peptide turgencin A: Effects of SAR optimizations, Cys-Cys cyclization and lipopeptide modifications.Int. J. Mol. Sci.202223221384410.3390/ijms23221384436430320
    [Google Scholar]
  20. RenL. YuanZ. XieT. WuD. KangQ. LiJ. LiJ. Extraction and characterization of cyclic lipopeptides with antifungal and antioxidant activities from Bacillus amyloliquefaciens.J. Appl. Microbiol.202213363573358410.1111/jam.1579136000263
    [Google Scholar]
  21. RamadhaniD. MaharaniR. GazzaliA.M. MuchtaridiM. Cyclic peptides for the treatment of cancers: A review.Molecules20222714442810.3390/molecules2714442835889301
    [Google Scholar]
  22. FalangaA. NigroE. De BiasiM. DanieleA. MorelliG. GaldieroS. ScudieroO. Cyclic peptides as novel therapeutic microbicides: Engineering of human defensin mimetics.Molecules2017227121710.3390/molecules2207121728726740
    [Google Scholar]
  23. VoT.T.T. WeeY. ChengH.C. WuC.Z. ChenY.L. TuanV.P. LiuJ.F. LinW.N. LeeI.T. Surfactin induces autophagy, apoptosis, and cell cycle arrest in human oral squamous cell carcinoma.Oral Dis.202329252854110.1111/odi.1395034181793
    [Google Scholar]
  24. SarP. GhoshA. ScarsoA. SahaB. Surfactant for better tomorrow: applied aspect of surfactant aggregates from laboratory to industry.Res. Chem. Intermed.201945126021604110.1007/s11164‑019‑04017‑6
    [Google Scholar]
  25. InsuastyD. CastilloJ. BecerraD. RojasH. AboniaR. Synthesis of biologically active molecules through multicomponent reactions.Molecules202025350510.3390/molecules2503050531991635
    [Google Scholar]
  26. FarhidH. KhodkariV. NazeriM.T. JavanbakhtS. ShaabaniA. Multicomponent reactions as a potent tool for the synthesis of benzodiazepines.Org. Biomol. Chem.202119153318335810.1039/D0OB02600J33899847
    [Google Scholar]
  27. RegueraL. RiveraD.G. Multicomponent reaction toolbox for peptide macrocyclization and stapling.Chem. Rev.2019119179836986010.1021/acs.chemrev.8b0074430990310
    [Google Scholar]
  28. RobertsK.D. ZhuY. AzadM.A.K. HanM.L. WangJ. WangL. YuH.H. HorneA.S. PinsonJ.A. RuddD. VoelckerN.H. PatilN.A. ZhaoJ. JiangX. LuJ. ChenK. LomovskayaO. HeckerS.J. ThompsonP.E. NationR.L. DudleyM.N. GriffithD.C. VelkovT. LiJ. A synthetic lipopeptide targeting top-priority multidrug-resistant Gram-negative pathogens.Nat. Commun.2022131162510.1038/s41467‑022‑29234‑335338128
    [Google Scholar]
  29. MorejónM.C. New Multicomponent strategies to cyclic lipopeptides.PhD thesis (editor: L. A. Wessjohann). Universitäts-und Landesbibliothek Sachsen-Anhalt2018
    [Google Scholar]
  30. MorejónM. C. LaubA. WestermannB. RiveraD. G. WessjohannL. A. Solution and solid-phase macrocyclization of peptides by the ugi-smiles multicomponent reaction: Synthesis of N-arylbridged cyclic lipopeptides.Org. Lett.201618164096409910.1021/acs.orglett.6b02001
    [Google Scholar]
  31. KrajnovićT. KaluđerovićG.N. WessjohannL.A. MijatovićS. Maksimović-IvanićD. Versatile antitumor potential of isoxanthohumol: Enhancement of paclitaxel activity in vivo.Pharmacol. Res.2016105627310.1016/j.phrs.2016.01.01126784390
    [Google Scholar]
  32. HmedatA. N. MorejónM. C. RiveraD. G. PantelićN. Đ. WessjohannL. A. KaluđerovićG. N. J. J. o. t. S. C. S., In vitro anticancer studies of a small library of cyclic lipopeptides against the human cervix adenocarcinoma HeLa cells.J. Serb. Chem. Soc.202489447148410.2298/jsc240109018h
    [Google Scholar]
  33. BačenkováD. TrebuňováM. ZacharL. HudákR. IžaríkováG. ŠurínováK. ŽivčákJ. Analysis of same selected immunomodulatory properties of chorionic mesenchymal stem cells.Appl. Sci. 20201024904010.3390/app10249040
    [Google Scholar]
  34. PiochJ. BlomgranR. Optimized flow cytometry protocol for dihydrorhodamine 123-based detection of reactive oxygen species in leukocyte subpopulations in whole blood.J. Immunol. Methods202250711330810.1016/j.jim.2022.11330835760097
    [Google Scholar]
  35. AlmutaryA. SandersonB.J.S. The MTT and crystal violet assays: potential confounders in nanoparticle toxicity testing.Int. J. Toxicol.201635445446210.1177/109158181664890627207930
    [Google Scholar]
  36. CangaI. VitaP. OliveiraA.I. CastroM.Á. PinhoC. In vitro cytotoxic activity of African plants: A review.Molecules20222715498910.3390/molecules2715498935956938
    [Google Scholar]
  37. Gómez-BombarelliR. CalleE. CasadoJ. Mechanisms of lactone hydrolysis in neutral and alkaline conditions.J. Org. Chem.201378146868687910.1021/jo400258w23758295
    [Google Scholar]
  38. MorikawaM. HirataY. ImanakaT. A study on the structure–function relationship of lipopeptide biosurfactants.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20001488321121810.1016/S1388‑1981(00)00124‑411082531
    [Google Scholar]
  39. MorelA.F. MachadoE.C.S. MoreiraJ.J. MenezesA.S. MostardeiroM.A. ZanattaN. WessjohannL.A. Cyclopeptide alkaloids of Scutia buxifolia.Phytochemistry199847112512910.1016/S0031‑9422(97)00491‑39621457
    [Google Scholar]
  40. MorelA. MachadoE.C. WessjohannL.A. Cyclopeptide alkaloids of Discaria febrifuga (Rhamnaceae).Phytochemistry199539243143410.1016/0031‑9422(94)00924‑I
    [Google Scholar]
  41. EdelerD. KaluđerovićM.R. DojčinovićB. SchmidtH. KaluđerovićG.N. SBA-15 mesoporous silica particles loaded with cisplatin induce senescence in B16F10 cells.RSC Advances2016611211103111104010.1039/C6RA22596A
    [Google Scholar]
  42. NascimentoF.R. MouraT.A. BaetaJ.V.P.B. PublioB.C. FerreiraP.M.F. SantosA.A. FrançaA.A.P. RochaM.S. Diaz-MuñozG. DiazM.A.N. New antineoplastic agent based on a dibenzoylmethane derivative: Cytotoxic effect and direct interaction with DNA.Biophys. Chem.20182391610.1016/j.bpc.2018.04.00929753256
    [Google Scholar]
  43. EsmailzadehA. ShaneiA. AttaranN. HejaziS.H. HematiS. Biology, Sonodynamic therapy using dacarbazine-loaded AuSiO2 nanoparticles for melanoma treatment: An in-vitro study on the B16F10 murine melanoma cell line.Ultrasound Med. Biol.20224861131114210.1016/j.ultrasmedbio.2022.02.01535307236
    [Google Scholar]
  44. WangL. ZhaoX. FuJ. XuW. YuanJ. The role of tumour metabolism in cisplatin resistance.Front. Mol. Biosci.2021869179510.3389/fmolb.2021.69179534250022
    [Google Scholar]
  45. YerlikayaA. ErinN. Differential sensitivity of breast cancer and melanoma cells to proteasome inhibitor Velcade.Int. J. Mol. Med.199822681782310.3892/ijmm_0000009019020781
    [Google Scholar]
  46. VelatooruL.R. BagguC.B. JanapalaV.R. Spatane diterpinoid from the brown algae, Stoechospermum marginatum induces apoptosis via ROS induced mitochondrial mediated caspase dependent pathway in murine B16F10 melanoma cells.Mol. Carcinog.201655122222223510.1002/mc.2246326785383
    [Google Scholar]
  47. ChenZ. LiW. HuX. LiuM. Irradiance plays a significant role in photobiomodulation of B16F10 melanoma cells by increasing reactive oxygen species and inhibiting mitochondrial function.Biomed. Opt. Express2020111273910.1364/BOE.11.00002732010497
    [Google Scholar]
  48. CsukR. HellerL. SiewertB. GutnovA. SeidelmannO. WendischV. β-Nitro substituted carboxylic acids and their cytotoxicity.Bioorg. Med. Chem. Lett.201424164011401310.1016/j.bmcl.2014.06.02125001484
    [Google Scholar]
  49. LinS. KeZ. LiuK. ZhuS. LiZ. YinH. ChenZ. Identification of DAPI-stained normal, inflammatory, and carcinoma hepatic cells based on hyperspectral microscopy.Biomed. Opt. Express20221342082209010.1364/BOE.45100635519237
    [Google Scholar]
  50. HungS.Y. LinS.C. WangS. ChangT.J. TungY.T. LinC.C. HoC.T. LiS. Bavachinin induces G2/M cell cycle arrest and apoptosis via the ATM/ATR signaling pathway in human small cell lung cancer and shows an antitumor effect in the xenograft model.J. Agric. Food Chem.202169226260627010.1021/acs.jafc.1c0165734043345
    [Google Scholar]
  51. AlkahtaniS.A. AlshabiA.M. ShaikhI.A. OrabiM.A.A. Abdel-WahabB.A. WalbiI.A. HabeebM.S. KhateebM.M. ShettarA.K. HoskeriJ.H. In vitro cytotoxicity and spectral analysis-based phytochemical profiling of methanol extract of barleria hochstetteri, and molecular mechanisms underlying its apoptosis-inducing effect on breast and lung cancer cell lines.Separations202291029810.3390/separations9100298
    [Google Scholar]
  52. MaruokaM. ZhangP. MoriH. ImanishiE. PackwoodD. M. HaradaH. KosakoH. SuzukiJ. Caspase cleavage releases a nuclear protein fragment that stimulates phospholipid scrambling at the plasma membrane.Mol. Cell20218171397141010.1016/j.molcel.2021.02.025
    [Google Scholar]
  53. KıranT.R. OtluO. KarabulutA.B. Oxidative stress and antioxidants in health and disease.J. Lab. Med.202347111110.1515/labmed‑2022‑0108
    [Google Scholar]
  54. MintzJ. VedenkoA. RoseteO. ShahK. GoldsteinG. HareJ.M. RamasamyR. AroraH. Current advances of nitric oxide in cancer and anticancer therapeutics.Vaccines 2021929410.3390/vaccines902009433513777
    [Google Scholar]
  55. Gómez-VirgilioL. Silva-LuceroM.C. Flores-MorelosD.S. Gallardo-NietoJ. Lopez-ToledoG. Abarca-FernandezA.M. Zacapala-GómezA.E. Luna-MuñozJ. Montiel-SosaF. Soto-RojasL.O. Pacheco-HerreroM. Cardenas-AguayoM.C. Autophagy: A key regulator of homeostasis and disease: An overview of molecular mechanisms and modulators.Cells20221115226210.3390/cells1115226235892559
    [Google Scholar]
  56. WessjohannL. A. BarteltR. BrandtW. Natural and nature‐inspired macrocycles: A chemoinformatic overview and relevant examples.Practical Medicinal Chemistry with Macrocycles: Design, Synthesis, and Case StudiesWiley20177710010.1002/9781119092599.ch4
    [Google Scholar]
  57. WessjohannL.A. RuijterE. Garcia-RiveraD. BrandtW. What can a chemist learn from nature's macrocycles? -- A brief, conceptual view.Mol. Divers.200591-317118610.1007/s11030‑005‑1314‑x15789564
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206351208250102114944
Loading
/content/journals/acamc/10.2174/0118715206351208250102114944
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test