Skip to content
2000
Volume 25, Issue 12
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

This study aims to enhance the delivery of polyphenols using nanotechnology.

Objective

To develop and evaluate liposomal formulations for improved delivery and stability of polyphenols, specifically focusing on Rutin.

Methods

Liposomal formulations were meticulously prepared the Thin-Film Hydration method. Comprehensive physical characterization was conducted, including stability assessments using Dynamic Light Scattering (DLS) and Thermogravimetric Analysis (TGA). The free radical scavenging activity was measured using the DPPH• assay, and MTT cell viability assays were performed to assess anti-proliferative effects.

Results

The results demonstrated a significant reduction in nanoparticle size from 123 nm to 116 nm and an increase in charge from -14 to -22 with rising Rutin concentrations. The formulation achieved enhanced homogeneity at a Rutin concentration of 2.0 mg/mL and showed higher stability. Incorporating Rutin improved the formulation's stability over 30 days, as evidenced by a decrease in the Differential Scanning Calorimetry peak temperature from 58.65°C to 54.42°C. Rutin-loaded and co-loaded nanoliposomes exhibited remarkable selectivity against PANC1 and MCF7 cell lines, with IC values of 2.13±0.35 μg/mL and 4.75±0.19 μg/mL, respectively.

Conclusion

PEGylated Rutin-loaded nanoliposomes offer a promising platform for biodegradable and biocompatible drug delivery systems, enhancing the bioavailability, solubility, and stability of the polyphenols.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206231749241209073759
2025-01-21
2025-09-05
Loading full text...

Full text loading...

References

  1. HareJ.I. LammersT. AshfordM.B. PuriS. StormG. BarryS.T. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective.Adv. Drug Deliv. Rev.2017108253810.1016/j.addr.2016.04.02527137110
    [Google Scholar]
  2. SantosV.G. GarciaC.R. MorenoP.E. Serrano PadillaA.E. Plascencia SalcedoJ.C. Central nervous system miliary brain metastasis secondary to breast cancer.Cureus2020128e964910.7759/cureus.964932923249
    [Google Scholar]
  3. RahibL. SmithB.D. AizenbergR. RosenzweigA.B. FleshmanJ.M. MatrisianL.M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States.Cancer Res.201474112913292110.1158/0008‑5472.CAN‑14‑015524840647
    [Google Scholar]
  4. Dela CruzC.S. TanoueL.T. MatthayR.A. Lung cancer: Epidemiology, etiology, and prevention.Clin. Chest Med.201132460564410.1016/j.ccm.2011.09.00122054876
    [Google Scholar]
  5. VishvakramaP. SharmaS. Liposomes: An overview.J. Drug Deliv. Ther.20144Suppl 34755
    [Google Scholar]
  6. RomaniA. IeriF. UrciuoliS. NoceA. MarroneG. NedianiC. BerniniR. Health effects of phenolic compounds found in extra-virgin olive oil, by-products, and leaf of Olea europaea L.Nutrients2019118177610.3390/nu1108177631374907
    [Google Scholar]
  7. RuzzoliniJ. ChioccioliS. MonacoN. PeppicelliS. AndreucciE. UrciuoliS. RomaniA. LuceriC. TortoraK. CaloriniL. CaderniG. NedianiC. BianchiniF. Oleuropein-rich leaf extract as a broad inhibitor of tumour and macrophage INOS in an Apc mutant rat model.Antioxidants20211010157710.3390/antiox1010157734679712
    [Google Scholar]
  8. Tresserra-RimbauA. ArranzS. Vallverdu-QueraltA. Dietary polyphenols in the prevention of stroke.Oxid. Med. Cell Longev.20172017746796210.1155/2017/7467962
    [Google Scholar]
  9. AlbogamiS. HassanA. Assessment of the efficacy of olive leaf (Olea europaea L.) extracts in the treatment of colorectal cancer and prostate cancer using in vitro cell models.Molecules20212613406910.3390/molecules2613406934279409
    [Google Scholar]
  10. Ahmad FarooqiA. FayyazS. SilvaA. SuredaA. NabaviS. MocanA. NabaviS. BishayeeA. Oleuropein and cancer chemoprevention: The link is hot.Molecules201722570510.3390/molecules2205070528468276
    [Google Scholar]
  11. CiafardiniG. MarsilioV. LanzaB. PozziN. Hydrolysis of oleuropein by Lactobacillus plantarum strains associated with olive fermentation.Appl. Environ. Microbiol.199460114142414710.1128/aem.60.11.4142‑4147.199416349442
    [Google Scholar]
  12. RishmawiS. HaddadF. DokmakG. KaramanR. A comprehensive review on the anti-cancer effects of oleuropein.Life (Basel)2022128114010.3390/life1208114036013319
    [Google Scholar]
  13. RahimanS. El-MetwallyT.H. ShrivastavaD. TantryM.N. TantryB.A. Oleuropein and oleic acid: A novel emerging dietary target for human chronic diseases.Indian J. Biochem. Biophys.2019564263268
    [Google Scholar]
  14. RuzzoliniJ. PeppicelliS. AndreucciE. BianchiniF. ScardigliA. RomaniA. La MarcaG. NedianiC. CaloriniL. Oleuropein, the main polyphenol of Olea europaea leaf extract, has an anti-cancer effect on human BRAF melanoma cells and potentiates the cytotoxicity of current chemotherapies.Nutrients20181012195010.3390/nu1012195030544808
    [Google Scholar]
  15. MoranJ.M. Leal-HernandezO. Canal-MaciasM.L. Roncero-MartinR. Guerrero-BonmattyR. AliagaI. ZamoranoJ.D.P. Antiproliferative properties of oleuropein in human osteosarcoma cells.Nat. Prod. Commun.201611410.1177/1934578X1601100418
    [Google Scholar]
  16. SharmaS. AliA. AliJ. SahniJ.K. BabootaS. Rutin: Therapeutic potential and recent advances in drug delivery.Expert Opin. Investig. Drugs20132281063107910.1517/13543784.2013.80574423795677
    [Google Scholar]
  17. KubatkaP. MazurakovaA. SamecM. KoklesovaL. ZhaiK. AL-IshaqR. KajoK. BiringerK. VybohovaD. BrockmuellerA. PecM. ShakibaeiM. GiordanoF.A. BüsselbergD. GolubnitschajaO. Flavonoids against non-physiologic inflammation attributed to cancer initiation, development, and progression—3PM pathways.EPMA J.202112455958710.1007/s13167‑021‑00257‑y34950252
    [Google Scholar]
  18. PandeyP. KhanF. QariH.A. OvesM. Rutin (Bioflavonoid) as cell signaling pathway modulator: Prospects in treatment and chemoprevention.Pharmaceuticals (Basel)20211411106910.3390/ph1411106934832851
    [Google Scholar]
  19. MarkopoulosC. VertzoniM. AgaliasA. MagiatisP. ReppasC. Stability of oleuropein in the human proximal gut.J. Pharm. Pharmacol.201061214314910.1211/jpp.61.02.000219178760
    [Google Scholar]
  20. GullónB. Lú-ChauT.A. MoreiraM.T. LemaJ.M. EibesG. Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability.Trends Food Sci. Technol.20176722023510.1016/j.tifs.2017.07.008
    [Google Scholar]
  21. GunasekaranT. HaileT. NigusseT. DhanarajuM.D. Nanotechnology: An effective tool for enhancing bioavailability and bioactivity of phytomedicine.Asian Pac. J. Trop. Biomed.20144Suppl. 1S1S710.12980/APJTB.4.2014C98025183064
    [Google Scholar]
  22. Abu HajlehM.N. Abu-HuwaijR. AL-SamydaiA. Al-HalasehL.K. Al-DujailiE.A. The revolution of cosmeceuticals delivery by using nanotechnology: A narrative review of advantages and side effects.J. Cosmet. Dermatol.202120123818382810.1111/jocd.1444134510691
    [Google Scholar]
  23. TsarbopoulosA. GikasE. PapadopoulosN. AligiannisN. KafatosA. Simultaneous determination of oleuropein and its metabolites in plasma by high-performance liquid chromatography.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2003785115716410.1016/S1570‑0232(02)00905‑412535848
    [Google Scholar]
  24. KuntićV. PejićN. IvkovićB. VujićZ. IlićK. MićićS. VukojevićV. Isocratic RP-HPLC method for rutin determination in solid oral dosage forms.J. Pharm. Biomed. Anal.200743271872110.1016/j.jpba.2006.07.01916920326
    [Google Scholar]
  25. Al-SamydaiA. AlshaerW. Al-DujailiE.A.S. AzzamH. AburjaiT. Preparation, characterization, and anticancer effects of capsaicin-loaded nanoliposomes.Nutrients20211311399510.3390/nu1311399534836251
    [Google Scholar]
  26. AnsariM. KazemipourM. FathiS. Development of a simple green extraction procedure and HPLC method for determination of oleuropein in olive leaf extract applied to a multi-source comparative study.J. Indian Chem. Soc.201183847
    [Google Scholar]
  27. LuM. QiuQ. LuoX. LiuX. SunJ. WangC. LinX. DengY. SongY. Phyto-phospholipid complexes (phytosomes): A novel strategy to improve the bioavailability of active constituents.Asian J. Pharm. Sci.201914326527410.1016/j.ajps.2018.05.01132104457
    [Google Scholar]
  28. AlshaerW. ZraikatM. AmerA. NsairatH. LafiZ. AlqudahD.A. Al QadiE. AlshelehT. OdehF. AlkarakiA. ZihlifM. BustanjiY. FattalE. AwidiA. Encapsulation of echinomycin in cyclodextrin inclusion complexes into liposomes: In vitro anti-proliferative and anti-invasive activity in glioblastoma.RSC Advances2019953309763098810.1039/C9RA05636J35529392
    [Google Scholar]
  29. ZhuY. WangM. ZhangJ. PengW. FirempongC.K. DengW. WangQ. WangS. ShiF. YuJ. XuX. ZhangW. Improved oral bioavailability of capsaicin via liposomal nanoformulation: Preparation, in vitro drug release and pharmacokinetics in rats.Arch. Pharm. Res.201538451252110.1007/s12272‑014‑0481‑725231341
    [Google Scholar]
  30. PatelR.B. SolorioL. WuH. KrupkaT. ExnerA.A. Effect of injection site on in situ implant formation and drug release in vivo.J. Control. Release2010147335035810.1016/j.jconrel.2010.08.02020728486
    [Google Scholar]
  31. AsharF. HaniU. OsmaniR.A.M. KazimS.M. SelvamuthukumarS. Preparation and optimization of ibrutinib-loaded nanoliposomes using response surface methodology.Polymers (Basel)20221418388610.3390/polym1418388636146030
    [Google Scholar]
  32. PanL. WangH. GuK. Nanoliposomes as vehicles for astaxanthin: Characterization, in vitro release evaluation and structure.Molecules20182311282210.3390/molecules2311282230380797
    [Google Scholar]
  33. MatusiewiczM. KosieradzkaI. NiemiecT. GrodzikM. AntushevichH. StrojnyB. GołębiewskaM. In vitro influence of extracts from snail Helix aspersa Müller on the colon cancer cell line Caco-2.Int. J. Mol. Sci.2018194106410.3390/ijms1904106429614018
    [Google Scholar]
  34. HongB. XueP. WuY. BaoJ. ChuahY.J. KangY. A concentration gradient generator on a paper-based microfluidic chip coupled with cell culture microarray for high-throughput drug screening.Biomed. Microdevices20161812110.1007/s10544‑016‑0054‑226864970
    [Google Scholar]
  35. MakiM.A.A. KumarP.V. CheahS.C. Siew WeiY. Al-NemaM. BayazeidO. MajeedA.B.B.A. Molecular modeling-based delivery system enhances everolimus-induced apoptosis in CaCo2 cells.ACS Omega2019458767877710.1021/acsomega.9b0010931459966
    [Google Scholar]
  36. Al-NemaM. GauravA. LeeM.T. OkechukwuP. NimmanpipugP. LeeV.S. Evaluation of the acute oral toxicity and antipsychotic activity of a dual inhibitor of PDE1B and PDE10A in rat model of schizophrenia.PLoS One20221712e027821610.1371/journal.pone.027821636454774
    [Google Scholar]
  37. CristianoM.C. BaroneA. MancusoA. TorellaD. PaolinoD. Rutin-loaded nanovesicles for improved stability and enhanced topical efficacy of natural compound.J. Funct. Biomater.20211247410.3390/jfb1204007434940553
    [Google Scholar]
  38. KızılbeyK. Optimization of rutin-loaded PLGA nanoparticles synthesized by single-emulsion solvent evaporation method.ACS Omega20194155556210.1021/acsomega.8b02767
    [Google Scholar]
  39. ZhangS. HanY. Preparation, characterisation and antioxidant activities of rutin-loaded zein-sodium caseinate nanoparticles.PLoS One2018133e019495110.1371/journal.pone.019495129579133
    [Google Scholar]
  40. Al-EkaidN.M. Al-SamydaiA. Al-deebI. NsairatH. KhleifatK. AlshaerW. Preparation, characterization, and anticancer activity of pegylated nano liposomal loaded with rutin against human carcinoma cells (HT‐29).Chem. Biodivers.20232011e20230116710.1002/cbdv.20230116737781742
    [Google Scholar]
  41. MahmoodT.H. Al-SamydaiA. SulaibiM.A. AlqaralehM. AbedA.I. ShalanN. AlsanabrahA. AlsotariS.T. NsairatH. AlshaerW. Development of pegylated nano‐phytosome formulation with oleuropein and rutin to compare anti‐colonic cancer activity with Olea europaea leaves extract.Chem. Biodivers.2023208e20230053410.1002/cbdv.20230053437498138
    [Google Scholar]
  42. Abu HajlehM.N. Al-limounM. Al-TarawnehA. HijazinT.J. AlqaralehM. KhleifatK. Al-MadanatO.Y. QaisiY.A. AlSarayrehA. Al-SamydaiA. QarallehH. Al-DujailiE.A.S. Synergistic effects of AgNPs and biochar: A potential combination for combating lung cancer and pathogenic bacteria.Molecules20232812475710.3390/molecules2812475737375312
    [Google Scholar]
  43. MorganA.B. MukhopadhyayP. A targeted review of bio-derived plasticizers with flame retardant functionality used in PVC.J. Mater. Sci.202257147155717210.1007/s10853‑022‑07096‑w
    [Google Scholar]
  44. Alper ÖztürkA. BaşaranE. ŞenelB. DemirelM. SarıcaŞ. Synthesis, characterization, antioxidant activity of Quercetin, Rutin and Quercetin-Rutin incorporated β-cyclodextrin inclusion complexes and determination of their activity in NIH-3T3, MDA-MB-231 and A549 cell lines.J. Mol. Struct.2023128213516910.1016/j.molstruc.2023.135169
    [Google Scholar]
  45. PrasadR. PrasadS.B. A review on the chemistry and biological properties of Rutin, a promising nutraceutical agent.Asian J. Pharm. Pharmacol.20195S112010.31024/ajpp.2019.5.s1.1
    [Google Scholar]
  46. KalaydinaR.V. BajwaK. QorriB. DeCarloA. SzewczukM.R. Recent advances in “smart” delivery systems for extended drug release in cancer therapy.Int. J. Nanomed.2018134727474510.2147/IJN.S16805330154657
    [Google Scholar]
  47. XuG. GuH. HuB. TongF. LiuD. YuX. ZhengY. GuJ. PEG-b-(PELG-g-PLL) nanoparticles as TNF-α nanocarriers: Potential cerebral ischemia/reperfusion injury therapeutic applications.Int. J. Nanomed.2017122243225410.2147/IJN.S13084228356740
    [Google Scholar]
  48. NouriZ. FakhriS. NouriK. WallaceC.E. FarzaeiM.H. BishayeeA. Targeting multiple signaling pathways in cancer: The rutin therapeutic approach.Cancers (Basel)2020128227610.3390/cancers1208227632823876
    [Google Scholar]
  49. VieiraN.F. SerafiniL.N. NovaisP.C. NetoF.S.L. CirinoM.L.A. KempR. ArdenghJ.C. SaggioroF.P. GasparA.F. SankarankuttyA.K. JúniorJ.R.L. TirapelliD.P.C. dos SantosJ.S. The role of circulating miRNAs and CA19-9 in pancreatic cancer diagnosis.Oncotarget202112171638165010.18632/oncotarget.2803834434493
    [Google Scholar]
  50. DanaeiM. DehghankholdM. AtaeiS. Hasanzadeh DavaraniF. JavanmardR. DokhaniA. KhorasaniS. MozafariM.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems.Pharmaceutics20181025710.3390/pharmaceutics1002005729783687
    [Google Scholar]
  51. SatariA. GhasemiS. HabtemariamS. AsgharianS. LorigooiniZ. Rutin: A flavonoid as an effective sensitizer for anticancer therapy; insights into multifaceted mechanisms and applicability for combination therapy.Evid. Based Complement. Alternat. Med.20212021991317910.1155/2021/9913179
    [Google Scholar]
  52. PinzaruI. ChioibasR. MarcoviciI. CoricovacD. SusanR. PredutD. GeorgescuD. DeheleanC. Rutin exerts cytotoxic and senescence-inducing properties in human melanoma cells.Toxics20219922610.3390/toxics909022634564377
    [Google Scholar]
  53. HuaS. Comparison of in vitro dialysis release methods of loperamide-encapsulated liposomal gel for topical drug delivery.Int. J. Nanomed.2014973574410.2147/IJN.S5580524511230
    [Google Scholar]
  54. SiddiqueF. AqdasA. BashirM. NadeemS. RawatR. AhmadS. AnwaarA. AroraR. KaurM. GulatiM. YadavS. VargasC. CruzD-L. SwarnkarS. GuptaP. WalP. BehlT. OjhaS. Harnessing the potential of natural products in cancer treatment: A comprehensive review.J. Biol. Regul. Homeost. Agents202438873897
    [Google Scholar]
  55. FuP. ShiP. LiX. LiW. LiH. WuZ. One-pot synthesis of ultrasmall ferric ion coupled mitoxantrone nanoparticles for high bioavailability and effective chemo-ferroptosis combination therapy of breast cancer.J. Drug Deliv. Sci. Technol.20249110518710.1016/j.jddst.2023.105187
    [Google Scholar]
  56. WhitnallM. HowardJ. PonkaP. RichardsonD.R. A class of iron chelators with a wide spectrum of potent antitumor activity that overcomes resistance to chemotherapeutics.Proc. Natl. Acad. Sci. USA200610340149011490610.1073/pnas.060497910317003122
    [Google Scholar]
  57. VettaM.D. GonzálezL. NogueiraJ.J. Hydrogen bonding regulates the rigidity of liposome‐encapsulated chlorin photosensitizers.ChemistryOpen20187647548310.1002/open.20180005029938159
    [Google Scholar]
  58. KerdudoA. DingasA. FernandezX. FaureC. Encapsulation of rutin and naringenin in multilamellar vesicles for optimum antioxidant activity.Food Chem.2014159121910.1016/j.foodchem.2014.03.00524767021
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206231749241209073759
Loading
/content/journals/acamc/10.2174/0118715206231749241209073759
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): cancer; drug delivery; oleuropein; PEGylated nanoliposomes; rutin; stability
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test