Skip to content
2000
Volume 2, Issue 3
  • ISSN: 1574-8871
  • E-ISSN: 1876-1038

Abstract

Genomic instability during hepatocarcinogenesis causes changes in signal transduction network. Strategies for identification of new markers/therapeutic targets include discovery of early molecular changes during hepatocarcinogenesis, relevant to preneoplastic lesions progression to full malignancy in rodent models, and evaluation of these changes in human hepatocellular carcinomas (HCCs). Activation of ERB receptor family, MAPK, JAK-STAT, β-Catenin cascades, c-Myc targets, iNOS-IKK/MAT1A-NF-kB axis, Ornithine decarboxylase, Cyclins and CDKs occurs in human and rodent hepatocarcinogenesis. This is associated with downregulation of the cell cycle inhibitors p16INK4A and p53 and TGF-β/SMAD signaling. Oncosuppressor genes, including p16INK4A, E-CAD, and DLC-1 are often hypermethylated in humans and rodents. Moreover, protection of cell cycle from p16INK4A inhibition by upregulation of CDC37, HSP90, and CRM1 correlates to HCC progression. A body of evidence indicates that inhibition of key genes of aforementioned signaling pathways by antisense or siRNA approaches or specific inhibitors restraints growth of in vitro cultured or in vivo xenografted HCCs. Efforts are currently dedicated to improve transduction efficiency. HCC cells may escape gene therapy by various mechanisms. Attempts to overcome this difficulty include discovery of new therapeutic targets, gene therapy directed to different molecular targets essential for tumor cell survival and specifically directed to HCC subtypes.

Loading

Article metrics loading...

/content/journals/rrct/10.2174/157488707781662715
2007-09-01
2025-09-02
Loading full text...

Full text loading...

/content/journals/rrct/10.2174/157488707781662715
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test