Skip to content
2000
image of Establishment of Automated Biobanking Systems: Technical Considerations

Abstract

Biobanks, repositories of biological samples and associated data, are crucial for advancing our understanding of disease biology. They facilitate long-term sample storage while enabling efficient retrieval for research. However, traditional biobanking practices often struggle to maintain sample quality and uniformity due to repetitive handling and temperature fluctuations during storage and retrieval. The advent of high-throughput “-omics” technologies has further amplified the operational demands on biobanks, necessitating increased scale and agility. Automation offers a solution to these challenges, enabling biobanks to meet the demands of modern research while preserving sample integrity. This review explores the key considerations for establishing an automated biobank, including design principles, essential components, and integration strategies. We discuss various automated storage and retrieval systems, liquid handling platforms, and environmental monitoring tools. Furthermore, we examine the impact of automation on sample quality, data management, and overall biobank efficiency. This review aims to provide a comprehensive overview of automated biobanking, highlighting its potential to revolutionize research and personalized medicine.

Loading

Article metrics loading...

/content/journals/rrct/10.2174/0115748871391584250721165835
2025-07-31
2025-09-14
Loading full text...

Full text loading...

References

  1. Coppola L. Cianflone A. Grimaldi A.M. Incoronato M. Bevilacqua P. Messina F. Baselice S. Soricelli A. Mirabelli P. Salvatore M. Biobanking in health care: Evolution and future directions. J. Transl. Med. 2019 17 1 172 10.1186/s12967‑019‑1922‑3 31118074
    [Google Scholar]
  2. Nair A.P.S. Biobanks: Will the idea change Indian life? Asian Bioeth. Rev. 2017 9 379 391 10.1007/s41649‑017‑0032‑x
    [Google Scholar]
  3. Ollier W. Sprosen T. Peakman T. UK Biobank: From concept to reality. Pharmacogenomics 2005 6 6 639 646 10.2217/14622416.6.6.639 16143003
    [Google Scholar]
  4. Mayrhofer M.T. Holub P. Wutte A. Litton J.E. BBMRI-ERIC: The novel gateway to biobanks. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2016 59 3 379 384 10.1007/s00103‑015‑2301‑8 26860601
    [Google Scholar]
  5. Abayomi A. Christoffels A. Grewal R. Karam L.A. Rossouw C. Staunton C. Swanepoel C. van Rooyen B. Challenges of biobanking in South Africa to facilitate indigenous research in an environment burdened with human immunodeficiency virus, tuberculosis, and emerging noncommunicable diseases. Biopreserv. Biobank. 2013 11 6 347 354 10.1089/bio.2013.0049 24835364
    [Google Scholar]
  6. Reznik O.N. Kuzmin D.O. Reznik A.O. Biobanks as the basis for developing biomedicine: Problems and prospects. Mol. Biol. 2017 51 5 761 771 10.7868/S0026898417050020 29116062
    [Google Scholar]
  7. Linsen L. Van Landuyt K. Ectors N. Automated sample storage in biobanking to enhance translational research: The bumpy road to implementation. Front. Med. 2020 6 309 10.3389/fmed.2019.00309 31998730
    [Google Scholar]
  8. Plebani M. Quality indicators to detect pre-analytical errors in laboratory testing. Clin. Biochem. Rev. 2012 33 3 85 88 22930602
    [Google Scholar]
  9. Malik S. Kumar P. Yadav C.P. Kumar D. Kumar A. Histone chaperones as potential epidrug targets against cancer. Nucleosides Nucleotides Nucleic Acids 2025 2025 1 15 10.1080/15257770.2025.2476597 40059533
    [Google Scholar]
  10. Annaratone L. De Palma G. Bonizzi G. Sapino A. Botti G. Berrino E. et al. Basic principles of biobanking: From biological samples to precision medicine for patients. Virchows Arch. 2021 479 233 246 10.1007/s00428‑021‑03151‑0
    [Google Scholar]
  11. Mackenzie F. Biobanking trends, challenges, and opportunities. Pathobiology 2014 81 5-6 245 251 10.1159/000369825 25792213
    [Google Scholar]
  12. Fthenou E. Al Emadi A. Mahal F.F. Chettupuzhakaran L.T. Al Thani A. Afifi N. Conception, implementation, and integration of heterogenous information technology infrastructures in the Qatar biobank. Biopreserv. Biobank. 2019 17 6 494 505 10.1089/bio.2019.0067 31833809
    [Google Scholar]
  13. Mendy M. Caboux E. Lawlor R.T. Wright J. Wild C.P. Common minimum technical standards and protocols for biobanks dedicated to cancer research. IARC Technical Publications 2017
    [Google Scholar]
  14. Castillo-Pelayo T. Babinszky S. LeBlanc J. Watson P.H. The importance of biobanking in cancer research. Biopreserv. Biobank. 2015 13 3 172 177 10.1089/bio.2014.0061 26035006
    [Google Scholar]
  15. Kozlakidis Z. Vandenberg O. Maintaining a focus on biobanking science and innovation. Biopreserv. Biobank. 2022 20 3 209 210 10.1089/bio.2022.29108.zjk 35703952
    [Google Scholar]
  16. Dollé L. Bekaert S. High-quality biobanks: Pivotal assets for reproducibility of OMICS-data in biomedical translational research. Proteomics 2019 19 21-22 1800485 10.1002/pmic.201800485 31321888
    [Google Scholar]
  17. Perakakis N. Yazdani A. Karniadakis G.E. Mantzoros C. Omics, big data and machine learning as tools to propel understanding of biological mechanisms and to discover novel diagnostics and therapeutics. Metabolism 2018 87 A1 A9 10.1016/j.metabol.2018.08.002 30098323
    [Google Scholar]
  18. Sajid M. Srivastava S. Kumar A. Kumar A. Singh H. Bharadwaj M. Bacteriome of moist smokeless tobacco products consumed in India with emphasis on the predictive functional potential. Front. Microbiol. 2021 12 784841 10.3389/fmicb.2021.784841 35003015
    [Google Scholar]
  19. Watson P.H. Biospecimen complexity—The next challenge for cancer research biobanks? Clin. Cancer Res. 2017 23 4 894 898 10.1158/1078‑0432.CCR‑16‑1406 27551001
    [Google Scholar]
  20. Lewis C. McQuaid S. Hamilton P.W. Salto-Tellez M. McArt D. James J.A. Building a ‘Repository of Science’: The importance of integrating biobanks within molecular pathology programmes. Eur. J. Cancer 2016 67 191 199 10.1016/j.ejca.2016.08.009 27677055
    [Google Scholar]
  21. Malsagova K. Kopylov A. Stepanov A. Butkova T. Sinitsyna A. Izotov A. Kaysheva A. Biobanks-A platform for scientific and biomedical research. Diagnostics 2020 10 7 485 10.3390/diagnostics10070485 32708805
    [Google Scholar]
  22. Considerations B.A. Genet. Eng. Biotechnol. News 2019 39 S14 S15 10.1089/gen.39.S6.06
    [Google Scholar]
  23. Campbell L.D. Astrin J.J. DeSouza Y. Giri J. Patel A.A. Rawley-Payne M. Rush A. Sieffert N. The 2018 Revision of theISBER Best Practices: Summary of changes and the editorial team’s development process. Biopreserv. Biobank. 2018 16 1 3 6 10.1089/bio.2018.0001 29393664
    [Google Scholar]
  24. Quach B.C. Bray M.J. Gaddis N.C. Liu M. Palviainen T. Minica C.C. Zellers S. Sherva R. Aliev F. Nothnagel M. Young K.A. Marks J.A. Young H. Carnes M.U. Guo Y. Waldrop A. Sey N.Y.A. Landi M.T. McNeil D.W. Drichel D. Farrer L.A. Markunas C.A. Vink J.M. Hottenga J.J. Iacono W.G. Kranzler H.R. Saccone N.L. Neale M.C. Madden P. Rietschel M. Marazita M.L. McGue M. Won H. Winterer G. Grucza R. Dick D.M. Gelernter J. Caporaso N.E. Baker T.B. Boomsma D.I. Kaprio J. Hokanson J.E. Vrieze S. Bierut L.J. Johnson E.O. Hancock D.B. Expanding the genetic architecture of nicotine dependence and its shared genetics with multiple traits. Nat. Commun. 2020 11 1 5562 10.1038/s41467‑020‑19265‑z 33144568
    [Google Scholar]
  25. Muñoz M. Pong-Wong R. Canela-Xandri O. Rawlik K. Haley C.S. Tenesa A. Evaluating the contribution of genetics and familial shared environment to common disease using the UK Biobank. Nat. Genet. 2016 48 9 980 983 10.1038/ng.3618 27428752
    [Google Scholar]
  26. Carkett M.M.-C.B.W.C.S.A. Banking on bio. 2021 Available from: https://innovationfrontier.org/banking-on-bio/
  27. Henderson M.K. Kozlakidis Z. Coronavirus and biobanking: The collective global experiences of the first wave and bracing during the second. Biopreserv. Biobank. 2020 18 6 481 482 10.1089/bio.2020.29077.mjk 33147072
    [Google Scholar]
  28. Raghav P.K. Kalyanaraman K. Kumar D. Human cell receptors: Potential drug targets to combat COVID-19. Amino Acids 2021 53 6 813 842 10.1007/s00726‑021‑02991‑z 33950300
    [Google Scholar]
  29. Matharoo-Ball B. Diop M. Kozlakidis Z. Harmonizing the COVID-19 sample biobanks: Barriers and opportunities for standards, best practices and networks. Biosafety Health 2022 4 4 280 282 10.1016/j.bsheal.2022.06.003 35844964
    [Google Scholar]
  30. Mandhan P. Sharma M. Pandey S. Chandel N. Chourasia N. Moun A. Sharma D. Sukar R. Singh N. Mathur S. Kotnala A. Negi N. Gupta A. Kumar A. Suresh Kumar R. Kumar P. Singh S. A regional pooling intervention in a high-throughput COVID-19 diagnostic laboratory to enhance throughput, save resources and time over a period of 6 months. Front. Microbiol. 2022 13 858555 10.3389/fmicb.2022.858555 35756046
    [Google Scholar]
  31. Al Kuwari H. Al Thani A. Al Marri A. Al Kaabi A. Abderrahim H. Afifi N. Qafoud F. Chan Q. Tzoulaki I. Downey P. Ward H. Murphy N. Riboli E. Elliott P. The Qatar biobank: Background and methods. BMC Public Health 2015 15 1 1208 10.1186/s12889‑015‑2522‑7 26635005
    [Google Scholar]
  32. Salman A. Baber R. Hannigan L. Habermann J.K. Henderson M.K. Mayrhofer M.T. Afifi N. Qatar biobank milestones in building a successful biobank. Biopreserv. Biobank. 2019 17 6 485 486 10.1089/bio.2019.0083 31833810
    [Google Scholar]
  33. Gao B. Shu Z. Ren S. Gao D. Biobanking: A foundation of life-science research and advancement. Biosafety Health 2022 4 5 285 289 10.1016/j.bsheal.2022.09.003
    [Google Scholar]
  34. Kinkorová J. Biobanks in the era of personalized medicine: Objectives, challenges, and innovation. EPMA J. 2015 7 1 4 10.1186/s13167‑016‑0053‑7 26904153
    [Google Scholar]
  35. Chaturvedi S Srinivas KR Muthuswamy V Biobanking and privacy in India. J. Law Med. Ethics 2016 44 1 45 57 10.1177/1073110516644198 27256123
    [Google Scholar]
  36. Gottweis H. Gaskell G. Starkbaum J. Connecting the public with biobank research: Reciprocity matters. Nat. Rev. Genet. 2011 12 11 738 739 10.1038/nrg3083 22005975
    [Google Scholar]
  37. De Souza Y.G. Greenspan J.S. Biobanking past, present and future. AIDS 2013 27 3 303 312 10.1097/QAD.0b013e32835c1244 23135167
    [Google Scholar]
  38. Harati M.D. Williams R.R. Movassaghi M. Hojat A. Lucey G.M. Yong W.H. An introduction to starting a biobank. Methods Mol. Biol. 2019 1897 7 16 10.1007/978‑1‑4939‑8935‑5_2 30539430
    [Google Scholar]
  39. Garg K. Kumar A. Kizhakkethil V. Kumar P. Singh S. Overlap in oncogenic and pro-inflammatory pathways associated with areca nut and nicotine exposure. Cancer Pathog. Ther. 2024 2 3 187 194 10.1016/j.cpt.2023.09.003
    [Google Scholar]
  40. Kumar P. Rani A. Singh S. Kumar A. Recent advances on DNA and omics-based technology in Food testing and authentication: A review. J. Food Saf. 2022 42 4 e12986 10.1111/jfs.12986
    [Google Scholar]
  41. Peeling R.W. Boeras D. Wilder-Smith A. Sall A. Nkengasong J. Need for sustainable biobanking networks for COVID-19 and other diseases of epidemic potential. Lancet Infect. Dis. 2020 20 10 e268 e273 10.1016/S1473‑3099(20)30461‑8 32717208
    [Google Scholar]
  42. Mendy M. Caboux E. Sylla B.S. Dillner J. Chinquee J. Wild C. Infrastructure and facilities for human biobanking in low- and middle-income countries: A situation analysis. Pathobiology 2014 81 5-6 252 260 10.1159/000362093 25792214
    [Google Scholar]
  43. Hallmans G. Vaught J.B. Best practices for establishing a biobank. Methods in Biobanking Humana Press Totowa, NJ 2011 241 260 10.1007/978‑1‑59745‑423‑0_13
    [Google Scholar]
  44. Hubel A. Spindler R. Skubitz A.P.N. Storage of human biospecimens: Selection of the optimal storage temperature. Biopreserv. Biobank. 2014 12 3 165 175 10.1089/bio.2013.0084 24918763
    [Google Scholar]
  45. Nussbeck S.Y. Skrowny D. O’Donoghue S. Schulze T.G. Helbing K. How to design biospecimen identifiers and integrate relevant functionalities into your biospecimen management system. Biopreserv. Biobank. 2014 12 3 199 205 10.1089/bio.2013.0085 24955734
    [Google Scholar]
  46. Kofanova O.A. Mommaerts K. Betsou F. Tube polypropylene: A neglected critical parameter for protein adsorption during biospecimen storage. Biopreserv. Biobank. 2015 13 4 296 298 10.1089/bio.2014.0082 26186497
    [Google Scholar]
  47. Minegishi N. Nishijima I. Nobukuni T. Kudo H. Ishida N. Terakawa T. Kumada K. Yamashita R. Katsuoka F. Ogishima S. Suzuki K. Sasaki M. Satoh M. Yamamoto M. Biobank establishment and sample management in the tohoku medical megabank project. Tohoku J. Exp. Med. 2019 248 1 45 55 10.1620/tjem.248.45 31130587
    [Google Scholar]
  48. Grizzle W.E. Sexton K.C. Commentary on improving biospecimen utilization by classic biobanks: identifying past and minimizing future mistakes. Biopreserv. Biobank. 2019 17 3 243 247 10.1089/bio.2018.0080 30508389
    [Google Scholar]
  49. Huang S.F. Huang Y.C. Chang F.Y. Lin J.C. Chiu C.H. Chen C.W. Wang F.D. Chiu Y.L. Cheng S.H. Cheng C.Y. Lin Y.C. Chen C.P. Huang C.H. Liu P.Y. Lee Y.T. Lee C.H. Chen Y.S. Sy C.L. Tseng Y.T. Hsu C.T. Tseng C.C. Lee Y.L. Liu C.E. Sytwu H.K. Rapid establishment of a COVID-19 biobank in NHRI by National Biobank Consortium of Taiwan. Biomed. J. 2020 43 4 314 317 10.1016/j.bj.2020.05.018 32563697
    [Google Scholar]
  50. Zhang S. Wu J. Zhou J.Y. Di Yu H. Yin Y. Zhao H.B. Establishment and management of obstetric and gynecologic biobank 3.0. Fudan Univ. J. Med. Sci. 2023 50 3 456 461 10.3969/j.issn.1672‑8467.2023.03.019
    [Google Scholar]
  51. Gottweis H. Zatloukal K. Biobank governance: Trends and perspectives. Pathobiology 2007 74 206 211 10.1159/000104446
    [Google Scholar]
  52. Matera-Witkiewicz A. Gleńska-Olender J. Uhrynowska-Tyszkiewicz I. Witoń M. Zagórska K. Ferdyn K. et al. Manual of biobank quality management Springer International Publishing Cham 2023 10.1007/978‑3‑031‑12559‑1
    [Google Scholar]
  53. Gramatiuk S. Macheiner T. Mitchell C. Sargsyan K. Ethical and legal principles in the field of biobanking. Biobanks in Low- and Middle-Income Countries: Relevance, Setup and Management Springer 2022 Jan 21 25 10.1007/978‑3‑030‑87637‑1_4 2022
    [Google Scholar]
  54. Rychnovská D. Anticipatory governance in biobanking: Security and risk management in digital health. Sci. Eng. Ethics 2021 27 3 30 10.1007/s11948‑021‑00305‑w 33881646
    [Google Scholar]
  55. Bergenstråhle K. Betsou F. Simeon-Dubach D. Update of ISBER SAT based on ISBER best practices, 4th edition, addendum on LN2-based cryogenic storage, and ISO 20387. Cryobiology 2020 97 287 10.1016/j.cryobiol.2020.10.148
    [Google Scholar]
  56. Campbell L.D. Astrin J.J. Brody R. de Souza Y. Giri J.G. Patel A.A. Recommendations for repositories fourth edition. 2018 Available from: https://cdn.ymaws.com/www.isber.org/resource/resmgr/best_practices_4th_edition/isber_best_practices_recomme.pdf
  57. O’Doherty K.C. Burgess M.M. Edwards K. Gallagher R.P. Hawkins A.K. Kaye J. McCaffrey V. Winickoff D.E. From consent to institutions: Designing adaptive governance for genomic biobanks. Soc. Sci. Med. 2011 73 3 367 374 10.1016/j.socscimed.2011.05.046 21726926
    [Google Scholar]
  58. Richter G. Krawczak M. Lieb W. Wolff L. Schreiber S. Buyx A. Broad consent for health care–embedded biobanking: Understanding and reasons to donate in a large patient sample. Genet. Med. 2018 20 1 76 82 10.1038/gim.2017.82 28640237
    [Google Scholar]
  59. Staunton C. Slokenberga S. Mascalzoni D. The GDPR and the research exemption: Considerations on the necessary safeguards for research biobanks. Eur. J. Hum. Genet. 2019 27 8 1159 1167 10.1038/s41431‑019‑0386‑5 30996335
    [Google Scholar]
  60. Mate S. Kampf M. Rödle W. Kraus S. Proynova R. Silander K. Ebert L. Lablans M. Schüttler C. Knell C. Eklund N. Hummel M. Holub P. Prokosch H.U. Pan-European data harmonization for biobanks in ADOPT BBMRI-ERIC. Appl. Clin. Inform. 2019 10 4 679 692 10.1055/s‑0039‑1695793 31509880
    [Google Scholar]
  61. Khalique F. Khan S.A. Nosheen I. A framework for public health monitoring, analytics and research. IEEE Access 2019 7 101309 101326 10.1109/ACCESS.2019.2930730
    [Google Scholar]
  62. Gao Z. Tan J. Wang S. Yu H. Zhou Z. Zhang Y. Zhou M. Xia X. Yao F. Huang J. The xiangya ocular tumor bank: A disease-specific biobank for advancing translational research into ocular tumors. Front. Med. 2022 8 774624 10.3389/fmed.2021.774624 35155464
    [Google Scholar]
  63. Shikha S. Jogi M.K. Jha R. Kumar R.A. Sah T. Singh P. Sagar R. Kumar A. Marwal R. Ponnusamy K. Agarwal S.M. Kumar R.S. Arif N. Bharadwaj M. Singh S. Kumar P. Genome sequencing of SARS-CoV-2 omicron variants in Delhi reveals alterations in immunogenic regions in spike glycoprotein. Front. Immunol. 2023 14 1209513 10.3389/fimmu.2023.1209513 37849762
    [Google Scholar]
  64. Millwood IY Walters RG Collection, processing, and management of biological samples in biobank studies. Population Biobank Studies: A Practical Guide Springer Singapore Singapore 2020 77 97 10.1007/978‑981‑15‑7666‑9_4
    [Google Scholar]
  65. Yadav BK Bihari C Biobanking initiatives to develop a national liver disease biobank facility in India. Per. Med. 2018 15 6 531 541 10.2217/pme‑2018‑0019 30394189
    [Google Scholar]
  66. Linsen L. T’Joen V. Van Der Straeten C. Van Landuyt K. Marbaix E. Bekaert S. Ectors N. Biobank quality management in the BBMRI.be network. Front. Med. 2019 6 141 10.3389/fmed.2019.00141 31294024
    [Google Scholar]
  67. International Organization for Standardization (ISO) 9001:2015(en) Quality management systems - Requirements. 2015 Available from: https://www.iso.org/obp/ui/#iso:std:iso:9001:ed-5:v1:en
  68. Baber R. Kiehntopf M. Automation in biobanking from a laboratory medicine perspective. J. Lab. Med. 2019 43 6 329 338 [Internet]. 10.1515/labmed‑2019‑0151
    [Google Scholar]
  69. ISO/IEC 17025 General requirements for the competence of testing and calibration laboratories. International Organization for Standardization 2005
    [Google Scholar]
  70. International Organization for Standardization (ISO) 15189:2012(en) Medical laboratories - Requirements for quality and competence. 2012 Available from: https://www.iso.org/obp/ui/#iso:std:iso:15189:ed-3:v2:en
  71. Ray S. Moiyadi A. Srivastava S. Biorepositories for cancer research in developing countries. Nat. Rev. Clin. Oncol. 2013 10 8 434 436 10.1038/nrclinonc.2013.119 23836317
    [Google Scholar]
  72. Betsou F. Rimm D.L. Watson P.H. Womack C. Hubel A. Coleman R.A. Horn L. Terry S.F. Zeps N. Clark B.J. Miranda L.B. Hewitt R.E. Elliott G.D. What are the biggest challenges and opportunities for biorepositories in the next three to five years? Biopreserv. Biobank. 2010 8 2 81 88 10.1089/bio.2010.8210 24845936
    [Google Scholar]
  73. Fuchs Y.F. Brunner J. Weigelt M. Schieferdecker A. Morgenstern R. Sturm A. Winter B. Jambor H. Stölzel F. Ruhnke L. von Bonin M. Rücker-Braun E. Heidenreich F. Fuchs A. Bonifacio E. Bornhäuser M. Poitz D.M. Altmann H. Next generation biobanking: Employing a robotic system for automated mononuclear cell isolation. Biopreserv. Biobank. 2023 21 1 106 110 10.1089/bio.2021.0181 36251308
    [Google Scholar]
  74. Lin J.C. Hsiao W.W.W. Fan C.T. Transformation of the Taiwan Biobank 3.0: Vertical and horizontal integration. J. Transl. Med. 2020 18 1 304 10.1186/s12967‑020‑02451‑4 32762757
    [Google Scholar]
  75. Frascarelli C. Bonizzi G. Musico C.R. Mane E. Cassi C. Guerini Rocco E. Farina A. Scarpa A. Lawlor R. Reggiani Bonetti L. Caramaschi S. Eccher A. Marletta S. Fusco N. Revolutionizing cancer research: The impact of artificial intelligence in digital biobanking. J. Pers. Med. 2023 13 9 1390 10.3390/jpm13091390 37763157
    [Google Scholar]
  76. Battineni G. Hossain M.A. Chintalapudi N. Amenta F. A survey on the role of artificial intelligence in biobanking studies: A systematic review. Diagnostics 2022 12 5 1179 10.3390/diagnostics12051179 35626333
    [Google Scholar]
  77. van Draanen J. Davidson P. Bour-Jordan H. Bowman-Carpio L. Boyle D. Dubinett S. Gardner B. Gardner J. McFall C. Mercola D. Nakazono T. Soares S. Stoppler H. Tempero M. Vandenberg S. Wan Y.J. Dry S. Assessing researcher needs for a virtual biobank. Biopreserv. Biobank. 2017 15 3 203 210 10.1089/bio.2016.0009 27929677
    [Google Scholar]
/content/journals/rrct/10.2174/0115748871391584250721165835
Loading
/content/journals/rrct/10.2174/0115748871391584250721165835
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test