Skip to content
2000
image of Immunoinformatics Approach for Optimization of Targeted Vaccine Design: New Paradigm in Clinical Trials and Healthcare Management

Abstract

Introduction

The immunoinformatics approach combines bioinformatics and computational tools, offering a revolutionary method for improving vaccine development by analyzing immune responses at the molecular level. Immunoinformatics enables the creation of customized vaccines designed for specific infections or cancer cells.

Objective

The primary objective of immunoinformatics is to enhance the vaccine development process by predicting and boosting the body’s immune response. It aims to identify potential immunogenic epitopes and biomarkers that are important for creating vaccines with greater specificity and efficacy, especially when dealing with large-scale data.

Methods

Immunoinformatics utilizes a combination of proteomic, genomic, and epigenomic data, as well as machine learning algorithms and artificial intelligence techniques. These tools predict how various immunological components, ., T-cell and B-cell epitopes, interact with the immune system. This approach allows researchers to avoid traditional trial-and-error methods, enabling the efficient identification of potential vaccine candidates. Additionally, personalized vaccines can be developed by considering individual genetic and immunological characteristics.

Results

The use of immunoinformatics techniques accelerates the screening of vaccine candidates, enhances patient stratification, and optimizes formulations for clinical trials. This approach has been shown to improve vaccine safety, efficacy, and development speed. It also holds promise for managing healthcare on a large scale by producing vaccines tailored to specific populations, thereby improving the overall effectiveness of vaccination programs.

Conclusion

Immunoinformatics represents a transformative approach to vaccine research, improving clinical trial efficiency and enabling the development of more reliable, flexible, and personalized vaccines. This approach has the potential to significantly enhance global healthcare outcomes by accelerating the vaccine development process and optimizing vaccination strategies.

Loading

Article metrics loading...

/content/journals/rrct/10.2174/0115748871374235250702065617
2025-07-16
2025-09-14
Loading full text...

Full text loading...

References

  1. Gomase V.S. Dhamane S.P. Kemkar K.R. Kakade P.G. Sakhare AD. Immunoproteomics: Approach to diagnostic and vaccine development. Protein Pept. Lett. 2024 31 10 773 795 10.2174/0109298665342261240912105111 39473104
    [Google Scholar]
  2. Gomase V.S. Dhamane S.P. Kakade P.G. Immunoproteomics: A review of techniques, applications, and advancements. Protein Pept. Lett. 2024 31 11 827 849 10.2174/0109298665333029240926092919 39506417
    [Google Scholar]
  3. Gomase V. Chitlange N. Changbhale S. Kale K. Prediction of Brugia malayi antigenic peptides: Candidates for synthetic vaccine design against lymphatic filariasis. Protein Pept. Lett. 2013 20 8 864 887 10.2174/0929866511320080004 23537185
    [Google Scholar]
  4. Gomase V. Prediction of antigenic epitopes of neurotoxin Bmbktx1 from Mesobuthus martensii. Curr. Drug Discov. Technol. 2006 3 3 225 229 10.2174/157016306780136817 17311567
    [Google Scholar]
  5. Gomase V.S. Kale K.V. Chikhale N.J. Changbhale S.S. Prediction of MHC binding peptides and epitopes from alfalfa mosaic virus. Curr. Drug Discov. Technol. 2007 4 2 117 125 10.2174/157016307781483441 17691913
    [Google Scholar]
  6. Nielsen M. Andreatta M. Peters B. Buus S. Immunoinformatics: Predicting peptide–MHC binding. Annu. Rev. Biomed. Data Sci. 2020 3 1 191 215 10.1146/annurev‑biodatasci‑021920‑100259 37427310
    [Google Scholar]
  7. Ramana J. Mehla K. Immunoinformatics and epitope prediction. Methods Mol. Biol. 2020 2131 155 171 10.1007/978‑1‑0716‑0389‑5_6 32162252
    [Google Scholar]
  8. Oli A.N. Obialor W.O. Ifeanyichukwu M.O. Immunoinformatics and vaccine development: An overview. ImmunoTargets Ther. 2020 9 13 30 10.2147/ITT.S241064 32161726
    [Google Scholar]
  9. Joon S. Singla R.K. Shen B. Vaccines and immunoinformatics for vaccine design. Adv. Exp. Med. Biol. 2022 1368 95 110 10.1007/978‑981‑16‑8969‑7_5 35594022
    [Google Scholar]
  10. Bahrami A.A. Payandeh Z. Khalili S. Zakeri A. Bandehpour M. Immunoinformatics: in silico approaches and computational design of a multi-epitope, immunogenic protein. Int. Rev. Immunol. 2019 38 6 307 322 10.1080/08830185.2019.1657426 31478759
    [Google Scholar]
  11. Khalili S. Jahangiri A. Borna H. Zanoos K.A. Amani J. Computational vaccinology and epitope vaccine design by immunoinformatics. Acta Microbiol. Immunol. Hung. 2014 61 3 285 307 10.1556/amicr.61.2014.3.4 25261943
    [Google Scholar]
  12. Hegde N.R. Gauthami S. Kumar H.M.S. Bayry J. The use of databases, data mining and immunoinformatics in vaccinology: Where are we? Expert Opin. Drug Discov. 2018 13 2 117 130 10.1080/17460441.2018.1413088 29226722
    [Google Scholar]
  13. Desai P. Tarwadi D. Pandya B. Yagnik B. Immunoinformatic identification of potential epitopes. Methods Mol. Biol. 2020 2131 265 275 10.1007/978‑1‑0716‑0389‑5_14 32162260
    [Google Scholar]
  14. Braz J.M. Batista M.V.A. Immunoinformatics-based design of multi-epitope DNA and mRNA vaccines against zika virus. Bioinform. Biol. Insights 2024 18 1 8 10.1177/11779322241257037 38827811
    [Google Scholar]
  15. Moise L. Gutiérrez A.H. Khan S. New immunoinformatics tools for swine: Designing epitope-driven vaccines, predicting vaccine efficacy, and making vaccines on demand. Front. Immunol. 2020 11 563362 10.3389/fimmu.2020.563362 33123135
    [Google Scholar]
  16. Carroll M. Rosenbaum E. Viswanathan R. Computational methods to predict conformational b-cell epitopes. Biomolecules 2024 14 8 983 10.3390/biom14080983 39199371
    [Google Scholar]
  17. Peters B. Nielsen M. Sette A. T cell epitope predictions. Annu. Rev. Immunol. 2020 38 1 123 145 10.1146/annurev‑immunol‑082119‑124838 32045313
    [Google Scholar]
  18. Lopez-Campos G. Bermejo-Martin J.F. Almansa R. Martin-Sanchez F. Immunoinformatics and systems biology in personalized medicine. Methods Mol. Biol. 2014 1184 457 475 10.1007/978‑1‑4939‑1115‑8_25 25048140
    [Google Scholar]
  19. Gao J. Kurgan L. Computational prediction of B cell epitopes from antigen sequences. Methods Mol. Biol. 2014 1184 197 215 10.1007/978‑1‑4939‑1115‑8_11 25048126
    [Google Scholar]
  20. Hua C.K. Gacerez A.T. Sentman C.L. Ackerman M.E. Choi Y. Bailey-Kellogg C. Computationally-driven identification of antibody epitopes. eLife 2017 6 29023 10.7554/eLife.29023 29199956
    [Google Scholar]
  21. Yashvardhini N. Kumar A. Jha D.K. Immunoinformatics identification of B- and T-cell epitopes in the RNA-dependent RNA polymerase of SARS-CoV-2. Can. J. Infect. Dis. Med. Microbiol. 2021 2021 1 8 10.1155/2021/6627141 33936347
    [Google Scholar]
  22. Mir S.A. Alaidarous M. Alshehri B. Immunoinformatics-based identification of B and T cell epitopes in RNA-dependent RNA polymerase of SARS-CoV-2. Vaccines 2022 10 10 1660 10.3390/vaccines10101660 36298525
    [Google Scholar]
  23. Chakraborty C. Sharma A.R. Bhattacharya M. Sharma G. Lee] SS. Immunoinformatics approach for the identification and characterization of T cell and B cell epitopes towards the peptide-based vaccine against SARS-CoV-2. Arch. Med. Res. 2021 52 4 362 370 10.1016/j.arcmed.2021.01.004 33546870
    [Google Scholar]
  24. Kakimi K. Karasaki T. Matsushita H. Sugie T. Advances in personalized cancer immunotherapy. Breast Cancer 2017 24 1 16 24 10.1007/s12282‑016‑0688‑1 27000871
    [Google Scholar]
  25. Kiyotani K. Chan H.T. Nakamura Y. Immunopharmacogenomics towards personalized cancer immunotherapy targeting neoantigens. Cancer Sci. 2018 109 3 542 549 10.1111/cas.13498 29288513
    [Google Scholar]
  26. Lundegaard C Lamberth K Harndahl M Buus S Lund O Nielsen M. M. NetMHC-3.0: Accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8– 11. Nucleic Acids Res 2008 36 Web Server issue W509 12
    [Google Scholar]
  27. Mendes M. Mahita J. Blazeska N. IEDB‐3D 2.0: Structural data analysis within the Immune Epitope Database. Protein Sci. 2023 32 4 4605 10.1002/pro.4605 36806329
    [Google Scholar]
  28. Vita R. Mahajan S. Overton J.A. The immune epitope database (IEDB): 2018 update. Nucleic Acids Res. 2019 47 D1 D339 D343 10.1093/nar/gky1006 30357391
    [Google Scholar]
  29. Zhao D. Lu K. Liu G. PEP-FOLD design, synthesis, and characteristics of finger-like polypeptides. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020 224 117401 10.1016/j.saa.2019.117401 31394393
    [Google Scholar]
  30. Beaufays J. Lins L. Thomas A. Brasseur R. In silico predictions of 3D structures of linear and cyclic peptides with natural and non‐proteinogenic residues. J. Pept. Sci. 2012 18 1 17 24 10.1002/psc.1410 22033979
    [Google Scholar]
  31. Clifford J.N. Høie M.H. Deleuran S. Peters B. Nielsen M. Marcatili P. BepiPred ‐3.0: Improved B‐cell epitope prediction using protein language models. Protein Sci. 2022 31 12 4497 10.1002/pro.4497 36366745
    [Google Scholar]
  32. Jespersen M.C. Peters B. Nielsen M. Marcatili P. BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. 2017 45 W1 W24-9 10.1093/nar/gkx346 28472356
    [Google Scholar]
  33. Huey R. Morris G.M. Olson A.J. Goodsell D.S. A semiempirical free energy force field with charge-based desolvation. J. Comput. Chem. 2007 28 6 1145 1152 10.1002/jcc.20634
    [Google Scholar]
  34. Eberhardt J. Santos-Martins D. Tillack A.F. Forli S. Autodock vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021 61 8 3891 3898 10.1021/acs.jcim.1c00203 34278794
    [Google Scholar]
  35. Goodsell D.S. Sanner M.F. Olson A.J. Forli S. The AutoDock suite at 30. Protein Sci. 2021 30 1 31 43 10.1002/pro.3934 32808340
    [Google Scholar]
  36. de Vries S.J. van Dijk M. Bonvin A.M.J.J. The HADDOCK web server for data-driven biomolecular docking. Nat. Protoc. 2010 5 5 883 897 10.1038/nprot.2010.32 20431534
    [Google Scholar]
  37. Ambrosetti F. Jandova Z. Bonvin A.M.J.J. Information-driven antibody-antigen modelling with HADDOCK. Methods Mol. Biol. 2023 2552 267 282 10.1007/978‑1‑0716‑2609‑2_14 36346597
    [Google Scholar]
  38. Ranaudo A. Giulini M. Ayuso A.P. Bonvin A.M.J.J. Modeling protein–glycan interactions with HADDOCK. J. Chem. Inf. Model. 2024 64 19 7816 7825 10.1021/acs.jcim.4c01372 39360946
    [Google Scholar]
  39. Hazai E. Kovács S. Demkó L. Bikádi Z. DockingServer: Molecular docking calculations online. Acta Pharm. Hung. 2009 79 1 17 21 19526678
    [Google Scholar]
  40. Potemkin V. Potemkin A. Grishina M. Internet resources for drug discovery and design. Curr. Top. Med. Chem. 2019 18 22 1955 1975 10.2174/1568026619666181129142127 30499394
    [Google Scholar]
  41. Singh H. Raghava G.P.S. ProPred: Prediction of HLA-DR binding sites. Bioinformatics 2001 17 12 1236 1237 10.1093/bioinformatics/17.12.1236 11751237
    [Google Scholar]
  42. Singh H. Raghava G.P.S. ProPred1: Prediction of promiscuous MHC Class-I binding sites. Bioinformatics 2003 19 8 1009 1014 10.1093/bioinformatics/btg108 12761064
    [Google Scholar]
  43. Hakenberg J. Nussbaum A.K. Schild H. MAPPP: MHC class I antigenic peptide processing prediction. Appl. Bioinformatics 2003 2 3 155 158 15130801
    [Google Scholar]
  44. Guan P. Doytchinova I.A. Zygouri C. Flower D.R. MHCPred: Bringing a quantitative dimension to the online prediction of MHC binding. Appl. Bioinformatics 2003 2 1 63 66 15130834
    [Google Scholar]
  45. Guan P. Hattotuwagama C.K. Doytchinova I.A. Flower D.R. MHCPred 2.0. Appl. Bioinformatics 2006 5 1 55 61 10.2165/00822942‑200605010‑00008 16539539
    [Google Scholar]
  46. Peters B. Sette A. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics 2005 6 1 132 10.1186/1471‑2105‑6‑132 15927070
    [Google Scholar]
  47. Nielsen M. Lundegaard C. Lund O. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinformatics 2007 8 1 238 10.1186/1471‑2105‑8‑238 17608956
    [Google Scholar]
  48. Dhanda S.K. Mahajan S. Paul S. IEDB-AR: Immune epitope database—analysis resource in 2019. Nucleic Acids Res. 2019 47 W1 W502-6 10.1093/nar/gkz452 31114900
    [Google Scholar]
  49. Yan Z. Kim K. Kim H. Next-generation IEDB tools: A platform for epitope prediction and analysis. Nucleic Acids Res. 2024 52 W1 W526-32 10.1093/nar/gkae407 38783079
    [Google Scholar]
  50. Gomase V.S. Tagore S. Phylogenomics: Evolution and genomics intersection. Int. J. Bioinform. Res. Appl. 2009 5 5 548 563 10.1504/IJBRA.2009.028682 19778869
    [Google Scholar]
  51. Gomase V. Tagore S. Changbhale S. Kale K. Pharmacogenomics. Curr. Drug Metab. 2008 9 3 207 212 10.2174/138920008783884830 18336223
    [Google Scholar]
  52. Gomase V. Kale K. Tagore S. Hatture S. Proteomics: Technologies for protein analysis. Curr. Drug Metab. 2008 9 3 213 220 10.2174/138920008783884740 18336224
    [Google Scholar]
  53. Sherkhane A.S. Gomase V.S. Immunoproteomics: Current approach for subunit vaccine design. Inter. J. Immunol. Stud. 2014 2 1 16 28 10.1504/IJIS.2014.066845
    [Google Scholar]
  54. Sherkhane A.S. Changbhale S.S. Gomase V.S. Quantitative immunoproteomics approach for the development of MHC Class I associated peptide antigens of alpha-cobra toxin from Naja kaouthia. J. Biotechnol. Biomater. 2014 4 169 22
    [Google Scholar]
  55. Gomase V.S. Chitlange N.R. Immunoproteomics approach for development of MHC binders and fragment-based peptide vaccines from Onchocerca volvulus. Drug Invent Today 2010 2 6 297 299
    [Google Scholar]
  56. Gomase V.S. Chitlange N.R. Immunoproteomics approach for development of MHC binders and fragment-based peptide vaccines from Treponema pallidum. J Biosci Tech 2010 1 2 84 89
    [Google Scholar]
  57. Saha S. Vashishtha S. Kundu B. Ghosh M. In-silico design of an immunoinformatics based multi-epitope vaccine against Leishmania donovani. BMC Bioinformatics 2022 23 1 319 10.1186/s12859‑022‑04816‑6 35931960
    [Google Scholar]
  58. Gomase V.S. Chitlange N.R. Antigen protein from Schistosoma mansoni- New paradigm of synthetic vaccine development. Int. J. Pharma Bio Sci. 2010 1 3 1 7
    [Google Scholar]
  59. Gomase V.S. Chitlange N.R. Immunoproteomics approach for synthetic vaccine development from Streptococcus dysgalactiae subsp. equisimilis. Int. J. Pharma Bio Sci. 2010 1 3 1 6
    [Google Scholar]
  60. Jahantigh H.R. Stufano A. Lovreglio P. Rezaee S.A. Ahmadi K. In silico identification of epitope-based vaccine candidates against HTLV-1. J. Biomol. Struct. Dyn. 2022 40 15 6737 6754 10.1080/07391102.2021.1889669 33648421
    [Google Scholar]
  61. Naderi W. Schreiner D. King C.G. T-cell–B-cell collaboration in the lung. Curr. Opin. Immunol. 2023 81 Apr 102284 10.1016/j.coi.2023.102284 36753826
    [Google Scholar]
  62. Zheng D. Liang S. Zhang C. B-cell epitope predictions using computational methods. Methods Mol. Biol. 2023 2552 239 254 10.1007/978‑1‑0716‑2609‑2_12 36346595
    [Google Scholar]
  63. Dashti F. Raisi A. Pourali G. A computational approach to design a multiepitope vaccine against H5N1 virus. Virol. J. 2024 21 1 67 10.1186/s12985‑024‑02337‑7 38509569
    [Google Scholar]
  64. Pradhan D. Yadav M. Verma R. Khan N.S. Jena L. Jain A.K. Discovery of T-cell driven subunit vaccines from zika virus genome: An immunoinformatics approach. Interdiscip. Sci. 2017 9 4 468 477 10.1007/s12539‑017‑0238‑3 29094318
    [Google Scholar]
  65. Guest J.D. Vreven T. Zhou J. An expanded benchmark for antibody-antigen docking and affinity prediction reveals insights into antibody recognition determinants. Structure 2021 29 6 606 621.e5 10.1016/j.str.2021.01.005 33539768
    [Google Scholar]
  66. Cruz V.L. Souza-Egipsy V. Gion M. Binding affinity of trastuzumab and pertuzumab monoclonal antibodies to extracellular HER2 domain. Int. J. Mol. Sci. 2023 24 15 12031 10.3390/ijms241512031 37569408
    [Google Scholar]
  67. Terai M. Sato T. Individualised neoantigen cancer vaccine therapy. Lancet 2024 403 10427 590 591 10.1016/S0140‑6736(23)02463‑7 38246193
    [Google Scholar]
  68. Sahin U. Türeci Ö. Personalized vaccines for cancer immunotherapy. Science 2018 359 6382 1355 1360 10.1126/science.aar7112 29567706
    [Google Scholar]
  69. Sun C. Xu S. Advances in personalized neoantigen vaccines for cancer immunotherapy. Biosci. Trends 2020 14 5 349 353 10.5582/bst.2020.03267 32908077
    [Google Scholar]
  70. Burton D.R. Advancing an HIV vaccine; advancing vaccinology. Nat. Rev. Immunol. 2019 19 2 77 78 10.1038/s41577‑018‑0103‑6 30560910
    [Google Scholar]
  71. Hashempour A. Khodadad N. Akbarinia S. Reverse vaccinology approaches to design a potent multiepitope vaccine against the HIV whole genome: Immunoinformatic, bioinformatics, and molecular dynamics approaches. BMC Infect. Dis. 2024 24 1 873 10.1186/s12879‑024‑09775‑2
    [Google Scholar]
  72. Igarashi Y. Sasada T. Cancer vaccines: Toward the next breakthrough in cancer immunotherapy. J. Immunol. Res. 2020 2020 1 13 10.1155/2020/5825401 33282961
    [Google Scholar]
  73. Ruzzi F. Semprini M.S. Scalambra L. Virus-like particle (VLP) vaccines for cancer immunotherapy. Int. J. Mol. Sci. 2023 24 16 12963 10.3390/ijms241612963 37629147
    [Google Scholar]
  74. Li X. You J. Hong L. Liu W. Guo P. Hao X. Neoantigen cancer vaccines: A new star on the horizon. Cancer Biol. Med. 2023 21 4 1 38 10.20892/j.issn.2095‑3941.2023.0395 38164734
    [Google Scholar]
  75. Le T. Sun C. Chang J. Zhang G. Yin X. mRNA Vaccine development for emerging animal and zoonotic diseases. Viruses 2022 14 2 401 10.3390/v14020401 35215994
    [Google Scholar]
  76. Poria R. Kala D. Nagraik R. Vaccine development: Current trends and technologies. Life Sci. 2024 336 122331 10.1016/j.lfs.2023.122331 38070863
    [Google Scholar]
  77. Roberts C.C. Emerging infectious disease laboratory and diagnostic preparedness to accelerate vaccine development. Hum. Vaccin. Immunother. 2019 15 10 2258 2263 10.1080/21645515.2019.1634992 31268394
    [Google Scholar]
  78. Ortega-Tirado D. Arvizu-Flores A.A. Velazquez C. Garibay-Escobar A. The role of immunoinformatics in the development of T-cell peptide-based vaccines against Mycobacterium tuberculosis. Expert Rev. Vaccines 2020 19 9 831 841 10.1080/14760584.2020.1825950 32945209
    [Google Scholar]
  79. Kaushik V G SK Gupta LR Immunoinformatics aided design and in-vivo validation of a cross-reactive peptide based multi-epitope vaccine targeting multiple serotypes of dengue virus. Front. Immunol. 2022 13 865180 10.3389/fimmu.2022.865180 35799781
    [Google Scholar]
  80. Thomas S. Abraham A. Baldwin J. Piplani S. Petrovsky N. Artificial intelligence in vaccine and drug design. Methods Mol. Biol. 2022 2410 131 146 10.1007/978‑1‑0716‑1884‑4_6 34914045
    [Google Scholar]
  81. Devi Y.D. Goswami H.B. Konwar S. Immunoinformatics mapping of potential epitopes in SARS-CoV-2 structural proteins. PLoS One 2021 16 11 0258645 10.1371/journal.pone.0258645 34780495
    [Google Scholar]
  82. Gong W. Pan C. Cheng P. Wang J. Zhao G. Wu X. Peptide-based vaccines for tuberculosis. Front. Immunol. 2022 13 830497 10.3389/fimmu.2022.830497 35173740
    [Google Scholar]
  83. Sluder A.E. Paul S.R. Moise L. Evaluation of a human T cell-targeted multi-epitope vaccine for q fever in animal models of Coxiella burnetii immunity. Front. Immunol. 2022 13 901372 10.3389/fimmu.2022.901372 35651616
    [Google Scholar]
  84. Zhu L. Cui X. Yan Z. Design and evaluation of a multi-epitope DNA vaccine against HPV16. Hum. Vaccin. Immunother. 2024 20 1 2352908 10.1080/21645515.2024.2352908 38780076
    [Google Scholar]
  85. Michael N.L. Clinical trial design: The nobility of randomization. Sci. Transl. Med. 2017 9 419 eaaq0810 10.1126/scitranslmed.aaq0810 29212710
    [Google Scholar]
  86. Changbhale S.S. Chitlange N.R. Gomase V.S. Kale K.V. An immunoinformatics approach to design synthetic peptide vaccine from Dendroaspis polylepis polylepis Dendrotoxin-K (DTX-K). J. Environ. Anal. Toxicol. 2012 2 7 157 22
    [Google Scholar]
  87. Dong R. Chu Z. Yu F. Zha Y. Contriving multi-epitope subunit of vaccine for COVID-19: Immunoinformatics approaches. Front. Immunol. 2020 11 1784 10.3389/fimmu.2020.01784 32849643
    [Google Scholar]
  88. Doytchinova I.A. Flower D.R. In silico prediction of cancer immunogens: Current state of the art. BMC Immunol. 2018 19 1 11 10.1186/s12865‑018‑0248‑x 29544447
    [Google Scholar]
  89. Dehghankhold M. Nezafat N. Farahmandnejad M. Abolmaali S.S. Tamaddon A.M. Immunoinformatic approach to design an efficient multi-epitope peptide vaccine against melanoma. Biotechnol. Appl. Biochem. 2024 72 1 164 186 10.1002/bab.2654 39245893
    [Google Scholar]
  90. Sacristán C. Combinatorial recipes for quantifying and predicting immune responses. Trends Immunol. 2023 44 7 485 486 10.1016/j.it.2023.05.008 37352837
    [Google Scholar]
  91. Teixidó C. Karachaliou N. González-Cao M. Morales-Espinosa D. Rosell R. Assays for predicting and monitoring responses to lung cancer immunotherapy. Cancer Biol. Med. 2015 12 2 87 95 10.7497/j.issn.2095‑3941.2015.0019
    [Google Scholar]
  92. Pang J. Yu Q. Chen Y. Yuan H. Sheng M. Tang W. Integrating single-cell RNA-seq to construct a Neutrophil prognostic model for predicting immune responses in non-small cell lung cancer. J. Transl. Med. 2022 20 1 531 10.1186/s12967‑022‑03723‑x 36401283
    [Google Scholar]
  93. Flower D.R. Immunoinformatics and the in silico prediction of immunogenicity. An introduction. Methods Mol. Biol. 2007 409 1 15 10.1007/978‑1‑60327‑118‑9_1 18449989
    [Google Scholar]
  94. Paul S. Pal A. Pyne N. In-silico designing of a multi-epitope vaccine against sars-cov2 and studying the interaction of the vaccine with alpha, beta, delta and omicron variants of concern. Curr. Drug Discov. Technol. 2023 20 1 090922208713 10.2174/1570163819666220909114900 36093818
    [Google Scholar]
  95. Morel P.A. Feili-Hariri M. Coates P.T. Thomson A.W. Dendritic cells, T cell tolerance and therapy of adverse immune reactions. Clin. Exp. Immunol. 2003 133 1 1 10 10.1046/j.1365‑2249.2003.02161.x 12823271
    [Google Scholar]
  96. Aichele P. Neumann-Haefelin C. Ehl S. Immunopathology caused by impaired CD8 + T‐cell responses. Eur. J. Immunol. 2022 52 9 1390 1395 10.1002/eji.202149528 35099807
    [Google Scholar]
  97. Khanolkar A. Elucidating T. Elucidating T cell and B cell responses to SARS-CoV-2 in humans: Gaining insights into protective immunity and immunopathology. Cells 2021 11 1 67 10.3390/cells11010067 35011627
    [Google Scholar]
  98. Straub T. Pircher H. Enhancing immunity prevents virus‐induced T‐cell‐mediated immunopathology in B cell‐deficient mice. Eur. J. Immunol. 2019 49 5 782 789 10.1002/eji.201847962 30793761
    [Google Scholar]
  99. Mishra S. Gomase V.S. Application of in silico approach in prediction of epitopes. Res. J. Biotechnol. 2021 16 2 206 214
    [Google Scholar]
  100. De Groot A.S. Immunome-derived vaccines. Expert Opin. Biol. Ther. 2004 4 6 767 772 10.1517/14712598.4.6.767 15174960
    [Google Scholar]
  101. Pattnaik A. Sahoo B.R. Pattnaik A.K. Current status of zika virus vaccines: Successes and challenges. Vaccines 2020 8 2 266 10.3390/vaccines8020266 32486368
    [Google Scholar]
  102. Kalita P. Padhi A.K. Tripathi T. Immunoinformatics protocol to design multi-epitope subunit vaccines. Methods Mol. Biol. 2023 2673 357 369 10.1007/978‑1‑0716‑3239‑0_25 37258927
    [Google Scholar]
  103. Riley E.M. The role of MHC- and non-MHC-associated genes in determining the human immune response to malaria antigens. Parasitology 1996 112 S1 S39 S51 (Suppl.) 10.1017/S0031182000076654 8684835
    [Google Scholar]
  104. Benest J. Rhodes S. Evans T.G. White R.G. Mathematical modelling for optimal vaccine dose finding: Maximising efficacy and minimising toxicity. Vaccines 2022 10 5 756 10.3390/vaccines10050756 35632511
    [Google Scholar]
  105. Shahzamani K. Mahmoudian F. Ahangarzadeh S. Vaccine design and delivery approaches for COVID-19. Int. Immunopharmacol. 2021 100 Nov 108086 10.1016/j.intimp.2021.108086 34454291
    [Google Scholar]
  106. Chavda V.P. Apostolopoulos V. COVID-19 vaccine design and vaccination strategy for emerging variants. Expert Rev. Vaccines 2022 21 10 1359 1361 10.1080/14760584.2022.2112571 35949150
    [Google Scholar]
  107. Li M. Wang H. Tian L. COVID-19 vaccine development: Milestones, lessons and prospects. Signal Transduct. Target. Ther. 2022 7 1 146 10.1038/s41392‑022‑00996‑y 35504917
    [Google Scholar]
  108. Magazine N. Zhang T. Bungwon A.D. Immune epitopes of sars-cov-2 spike protein and considerations for universal vaccine development. Immunohorizons 2024 8 3 214 226 10.4049/immunohorizons.2400003 38427047
    [Google Scholar]
  109. Tye E.X.C. Jinks E. Haigh T.A. Mutations in SARS-CoV-2 spike protein impair epitope-specific CD4+ T cell recognition. Nat. Immunol. 2022 23 12 1726 1734 10.1038/s41590‑022‑01351‑7 36456735
    [Google Scholar]
  110. Lim H.X. Masomian M. Khalid K. Kumar A.U. MacAry P.A. Poh C.L. Identification of B-cell epitopes for eliciting neutralizing antibodies against the SARS-COV-2 spike protein through bioinformatics and monoclonal antibody targeting. Int. J. Mol. Sci. 2022 23 8 4341 10.3390/ijms23084341 35457159
    [Google Scholar]
  111. Shemesh C.S. Hsu J.C. Hosseini I. Personalized cancer vaccines: Clinical landscape, challenges, and opportunities. Mol. Ther. 2021 29 2 555 570 10.1016/j.ymthe.2020.09.038 33038322
    [Google Scholar]
  112. Lin M.J. Svensson-Arvelund J. Lubitz G.S. Cancer vaccines: The next immunotherapy frontier. Nat. Cancer. 2022 3 8 911 926 10.1038/s43018‑022‑00418‑6 35999309
    [Google Scholar]
  113. Huang X. Zhang G. Tang T.Y. Gao X. Liang T.B. Personalized pancreatic cancer therapy: From the perspective of mRNA vaccine. Mil. Med. Res. 2022 9 1 53 10.1186/s40779‑022‑00416‑w 36224645
    [Google Scholar]
  114. Zhang X. Sharma P.K. Goedegebuure S.P. Gillanders W.E. Personalized cancer vaccines: Targeting the cancer mutanome. Vaccine 2017 35 7 1094 1100 10.1016/j.vaccine.2016.05.073 27449681
    [Google Scholar]
  115. Sayour E.J. Boczkowski D. Mitchell D.A. Nair S.K. Cancer mRNA vaccines: Clinical advances and future opportunities. Nat. Rev. Clin. Oncol. 2024 21 7 489 500 10.1038/s41571‑024‑00902‑1 38760500
    [Google Scholar]
  116. Katsikis P.D. Ishii K.J. Schliehe C. Challenges in developing personalized neoantigen cancer vaccines. Nat. Rev. Immunol. 2024 24 3 213 227 10.1038/s41577‑023‑00937‑y 37783860
    [Google Scholar]
  117. Richard G. Ruggiero N. Steinberg G.D. Martin W.D. De Groot A.S. Neoadjuvant personalized cancer vaccines: The final frontier? Expert Rev. Vaccines 2024 23 1 205 212 10.1080/14760584.2024.2303015 38189107
    [Google Scholar]
  118. Chu Y. Liu Q. Wei J. Liu B. Personalized cancer neoantigen vaccines come of age. Theranostics 2018 8 15 4238 4246 10.7150/thno.24387 30128050
    [Google Scholar]
  119. Liu Z. Lv J. Dang Q. Engineering neoantigen vaccines to improve cancer personalized immunotherapy. Int. J. Biol. Sci. 2022 18 15 5607 5623 10.7150/ijbs.76281 36263174
    [Google Scholar]
  120. Wu D.W. Jia S.P. Xing S.J. Personalized neoantigen cancer vaccines: Current progression, challenges and a bright future. Clin. Exp. Med. 2024 24 1 229 10.1007/s10238‑024‑01436‑7 39325256
    [Google Scholar]
  121. Huang L. He J. Immunotherapy with PD-1 and PD-L1 inhibitors for prostate cancer. Zhonghua Nan Ke Xue 2020 26 10 944 948 33382229
    [Google Scholar]
  122. Ding L. Dong H. Zhou T. PD‐1/PD‐L1 inhibitors‐based treatment for advanced renal cell carcinoma: Mechanisms affecting efficacy and combination therapies. Cancer Med. 2021 10 18 6384 6401 10.1002/cam4.4190 34382349
    [Google Scholar]
  123. Sunshine J. Taube J.M. PD-1/PD-L1 inhibitors. Curr. Opin. Pharmacol. 2015 23 32 38 10.1016/j.coph.2015.05.011 26047524
    [Google Scholar]
  124. Bhattacharya M. Sarkar A. Wen Z.H. Wu Y.J. Chakraborty C. Rational design of a multi-epitope vaccine using neoantigen against colorectal cancer through structural immunoinformatics and ml-enabled simulation approach. Mol. Biotechnol. 2024 ••• 1 7 10.1007/s12033‑024‑01242‑2 39190054
    [Google Scholar]
  125. Roudko V. Bozkus C.C. Greenbaum B. Lucas A. Samstein R. Bhardwaj N. Lynch Syndrome and MSI-H Cancers: From Mechanisms to “Off-The-Shelf” Cancer Vaccines. Front. Immunol. 2021 12 757804 10.3389/fimmu.2021.757804 34630437
    [Google Scholar]
  126. Heery C.R. Ibrahim N.K. Arlen P.M. Docetaxel alone or in combination with a therapeutic cancer vaccine (PANVAC) in patients with metastatic breast cancer: A randomized clinical trial. JAMA Oncol. 2015 1 8 1087 1095 10.1001/jamaoncol.2015.2736
    [Google Scholar]
  127. Eskandari A. Leow T.C. Rahman M.B.A. Oslan S.N. Advances in therapeutic cancer vaccines, their obstacles, and prospects toward tumor immunotherapy. Mol. Biotechnol. 2024 67 4 1336 1366 10.1007/s12033‑024‑01144‑3 38625508
    [Google Scholar]
  128. Cancer vaccine THERATOPE- Biomira. Drugs R D. 2003 4 4 236 240 10.2165/00126839‑200304040‑00004 12848588
    [Google Scholar]
  129. Adair S.J. Carr T.M. Fink M.J. Slingluff C.L. Hogan K.T. The TAG family of cancer/testis antigens is widely expressed in a variety of malignancies and gives rise to HLA-A2-restricted epitopes. J. Immunother. 2008 31 1 7 17 10.1097/CJI.0b013e318159f797 18157007
    [Google Scholar]
  130. Davies H. Bignell G.R. Cox C. Mutations of the BRAF gene in human cancer. Nature 2002 417 6892 949 954 10.1038/nature00766 12068308
    [Google Scholar]
  131. Newton-Bishop J. Bishop D. Harland M. Melanoma genomics. Acta Derm. Venereol. 2020 100 11 adv00138 10.2340/00015555‑3493 32346746
    [Google Scholar]
  132. Şahin S. Caglayan M.O. Üstündağ Z. Recent advances in aptamer-based sensors for breast cancer diagnosis: Special cases for nanomaterial-based VEGF, HER2, and MUC1 aptasensors. Mikrochim. Acta 2020 187 10 549 10.1007/s00604‑020‑04526‑x 32888061
    [Google Scholar]
  133. Ai L. Chen J. Yan H. Research status and outlook of PD-1/PD-L1 inhibitors for cancer therapy. Drug Des. Devel. Ther. 2020 14 3625 3649 10.2147/DDDT.S267433 32982171
    [Google Scholar]
  134. Pawłowska A. Suszczyk D. Okła K. Barczyński B. Kotarski J. Wertel I. Immunotherapies based on PD-1/PD-L1 pathway inhibitors in ovarian cancer treatment. Clin. Exp. Immunol. 2019 195 3 334 344 10.1111/cei.13255 30582756
    [Google Scholar]
  135. Keating C. The history of the RTS,S/AS01 malaria vaccine trial. Lancet 2020 395 10233 1336 1337 10.1016/S0140‑6736(20)30815‑1 32334695
    [Google Scholar]
  136. Otieno L. Guerra Mendoza Y. Adjei S. Safety and immunogenicity of the RTS,S/AS01 malaria vaccine in infants and children identified as HIV-infected during a randomized trial in sub-Saharan Africa. Vaccine 2020 38 4 897 906 10.1016/j.vaccine.2019.10.077 31708182
    [Google Scholar]
  137. Feng G.Q. Potential challenges for large-scale uses of RTS, S/AS01 vaccine in malaria-endemic areas. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi 2022 33 6 553 554 35128881
    [Google Scholar]
  138. Thai E. Murugan R. Binter Š. Molecular determinants of cross-reactivity and potency by VH3-33 antibodies against the Plasmodium falciparum circumsporozoite protein. Cell Rep. 2023 42 11 113330 10.1016/j.celrep.2023.113330 38007690
    [Google Scholar]
  139. Sedegah M. Kim Y. Ganeshan H. Identification of minimal human MHC-restricted CD8+ T-cell epitopes within the Plasmodium falciparum circumsporozoite protein (CSP). Malar. J. 2013 12 1 185 10.1186/1475‑2875‑12‑185 23738590
    [Google Scholar]
  140. Imai T. Suzue K. Ngo-Thanh H. Shimokawa C. Hisaeda H. Potential and limitations of cross-protective vaccine against malaria by blood-stage naturally attenuated parasite. Vaccines 2020 8 3 375 10.3390/vaccines8030375 32664476
    [Google Scholar]
  141. Pouniotis D.S. Proudfoot O. Bogdanoska V. Apostolopoulos V. Fifis T. Plebanski M. Dendritic cells induce immunity and long-lasting protection against blood-stage malaria despite an in vitro parasite-induced maturation defect. Infect. Immun. 2004 72 9 5331 5339 10.1128/IAI.72.9.5331‑5339.2004 15322030
    [Google Scholar]
  142. Douglas A.D. Williams A.R. Illingworth J.J. The blood-stage malaria antigen PfRH5 is susceptible to vaccine-inducible cross-strain neutralizing antibody. Nat. Commun. 2011 2 1 601 10.1038/ncomms1615 22186897
    [Google Scholar]
  143. Imai T. Ngo-Thanh H. Suzue K. Live vaccination with blood-stage Plasmodium yoelii 17xnl prevents the development of experimental cerebral malaria. Vaccines 2022 10 5 762 10.3390/vaccines10050762 35632518
    [Google Scholar]
  144. Carter D. Duthie M.S. Reed S.G. Adjuvants. Curr. Top. Microbiol. Immunol. 2018 428 103 127 10.1007/82_2018_112 30043342
    [Google Scholar]
  145. Bosaeed M. Kumar D. Seasonal influenza vaccine in immuno] compromised persons. Hum. Vaccin. Immunother. 2018 14 6 1311 1322 10.1080/21645515.2018.1445446 29485353
    [Google Scholar]
  146. Sekiya T. Ohno M. Nomura N. Selecting and using the appropriate influenza vaccine for each individual. Viruses 2021 13 6 971 10.3390/v13060971 34073843
    [Google Scholar]
  147. Campos-Outcalt D. Influenza vaccine update, 2021-22. J. Fam. Pract. 2021 70 8 399 402 10.12788/jfp.0277 34818176
    [Google Scholar]
  148. Influenza vaccine for 2024-2025. Med. Lett. Drugs Ther. 2024 66 1711 145 150 10.58347/tml.2024.1711a 39250341
    [Google Scholar]
  149. Lohia N. Baranwal M. An immunoinformatics approach in design of synthetic peptide vaccine against influenza virus. Methods Mol. Biol. 2020 2131 229 243 10.1007/978‑1‑0716‑0389‑5_11 32162257
    [Google Scholar]
  150. Villanueva M.T. An mRNA universal vaccine for influenza. Nat. Rev. Drug Discov. 2023 22 2 98 10.1038/d41573‑023‑00013‑z 36631700
    [Google Scholar]
  151. Estrada L.D. Schultz-Cherry S. Development of a universal influenza vaccine. J. Immunol. 2019 202 2 392 398 10.4049/jimmunol.1801054 30617121
    [Google Scholar]
  152. Cowling B.J. Okoli G.N. Influenza vaccine effectiveness and progress towards a universal influenza vaccine. Drugs 2024 84 9 1013 1023 10.1007/s40265‑024‑02083‑8 39167316
    [Google Scholar]
  153. Krammer F. Novel universal influenza virus vaccine approaches. Curr. Opin. Virol. 2016 17 95 103 10.1016/j.coviro.2016.02.002 26927813
    [Google Scholar]
  154. Gottlieb T. Ben-Yedidia T. Epitope-based approaches to a universal influenza vaccine. J. Autoimmun. 2014 54 15 20 10.1016/j.jaut.2014.07.005 25172355
    [Google Scholar]
  155. Kaufmann S.H.E. Tuberculosis vaccine development at a divide. Curr. Opin. Pulm. Med. 2014 20 3 294 300 10.1097/MCP.0000000000000041 24626237
    [Google Scholar]
  156. Bruffaerts N. Huygen K. Romano M. DNA vaccines against tuberculosis. Expert Opin. Biol. Ther. 2014 14 12 1801 1813 10.1517/14712598.2014.951630 25145964
    [Google Scholar]
  157. Mustafa A.S. In silico analysis and experimental validation of Mycobacterium tuberculosis -specific proteins and peptides of Mycobacterium tuberculosis for immunological diagnosis and vaccine development. Med. Princ. Pract. 2013 22 Suppl. 1 43 51 10.1159/000354206 24008694
    [Google Scholar]
  158. Rodo M.J. Rozot V. Nemes E. A comparison of antigen-specific T cell responses induced by six novel tuberculosis vaccine candidates. PLoS Pathog. 2019 15 3 e1007643 10.1371/journal.ppat.1007643 30830940
    [Google Scholar]
  159. Whitlow E. Mustafa A.S. Hanif S.N.M. An overview of the development of new vaccines for tuberculosis. Vaccines 2020 8 4 586 10.3390/vaccines8040586 33027958
    [Google Scholar]
  160. Meo S.A. Bukhari I.A. Akram J. Meo A.S. Klonoff D.C. COVID-19 vaccines: Comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and Moderna Vaccines. Eur. Rev. Med. Pharmacol. Sci. 2021 25 3 1663 1669 10.26355/eurrev_202102_24877 33629336
    [Google Scholar]
  161. Xia X. Detailed dissection and critical evaluation of the pfizer/biontech and moderna mrna vaccines. Vaccines 2021 9 7 734 10.3390/vaccines9070734 34358150
    [Google Scholar]
  162. Chakraborty A. Bayry J. Mukherjee S. Immunoinformatics approaches in designing vaccines against COVID-19. Methods Mol. Biol. 2023 2673 431 452 10.1007/978‑1‑0716‑3239‑0_29 37258931
    [Google Scholar]
  163. Boisguérin V. Castle J.C. Loewer M. Translation of genomics-guided RNA-based personalised cancer vaccines: Towards the bedside. Br. J. Cancer 2014 111 8 1469 1475 10.1038/bjc.2013.820 25314223
    [Google Scholar]
  164. Yan Q. Immunoinformatics and systems biology methods for personalized medicine. Methods Mol. Biol. 2010 662 203 220 10.1007/978‑1‑60761‑800‑3_10 20824473
    [Google Scholar]
  165. Pandey R.K. Bhatt T.K. Prajapati V.K. Novel immunoinformatics approaches to design multi-epitope subunit vaccine for malaria by investigating anopheles salivary protein. Sci. Rep. 2018 8 1 1125 10.1038/s41598‑018‑19456‑1 29348555
    [Google Scholar]
  166. Maharaj L. Adeleke V.T. Fatoba A.J. Immunoinformatics approach for multi-epitope vaccine design against P. falciparum malaria. Infect. Genet. Evol. 2021 92 Aug 104875 10.1016/j.meegid.2021.104875 33905890
    [Google Scholar]
  167. Momajadi L. Khanahmad H. Mahnam K. Designing a multi-epitope influenza vaccine: An immunoinformatics approach. Sci. Rep. 2024 14 1 25382 10.1038/s41598‑024‑74438‑w 39455641
    [Google Scholar]
  168. Sharma S. Kumari V. Kumbhar B.V. Mukherjee A. Pandey R. Kondabagil K. Immunoinformatics approach for a novel multi-epitope subunit vaccine design against various subtypes of Influenza A virus. Immunobiology 2021 226 2 152053 10.1016/j.imbio.2021.152053 33517154
    [Google Scholar]
  169. Kumar A. Sharma P. Arun A. Meena L.S. Development of peptide vaccine candidate using highly antigenic PE-PGRS family proteins to stimulate the host immune response against Mycobacterium tuberculosis H 37 Rv: An immuno-informatics approach. J. Biomol. Struct. Dyn. 2023 41 8 3382 3404 10.1080/07391102.2022.2048079 35293852
    [Google Scholar]
  170. Kumari R.S. Sethi G. Krishna R. Development of multi-epitope based subunit vaccine against Mycobacterium Tuberculosis using immunoinformatics approach. J. Biomol. Struct. Dyn. 2023 ••• 1 20 37880982
    [Google Scholar]
  171. Abdulla F. Adhikari U.K. Uddin M.K. Exploring T. Exploring T. B-cell epitopes and designing multi-epitope subunit vaccine targeting integration step of HIV-1 lifecycle using immunoinformatics approach. Microb. Pathog. 2019 137 Dec 103791 10.1016/j.micpath.2019.103791 31606417
    [Google Scholar]
  172. Hashempour A. Khodadad N. Bemani P. Design of multivalent-epitope vaccine models directed toward the world’s population against HIV-Gag polyprotein: Reverse vaccinology and immunoinformatics. PLoS One 2024 19 9 0306559 10.1371/journal.pone.0306559 39331650
    [Google Scholar]
  173. Morabito K.M. Graham B.S. Zika virus vaccine development. J. Infect. Dis. 2017 216 Suppl. 10 S957 S963 10.1093/infdis/jix464 29267918
    [Google Scholar]
  174. Antonelli A.C. Almeida V.P. da Fonseca S.G. Immunoinformatics vaccine design for zika virus. Methods Mol. Biol. 2023 2673 411 429 10.1007/978‑1‑0716‑3239‑0_28 37258930
    [Google Scholar]
  175. Ahmad S. Demneh F.M. Rehman B. In silico design of a novel multi-epitope vaccine against HCV infection through immunoinformatics approaches. Int. J. Biol. Macromol. 2024 267 Pt 2 131517 10.1016/j.ijbiomac.2024.131517 38621559
    [Google Scholar]
  176. Behmard E. Abdulabbas H.T. Abdalkareem Jasim S. Design of a novel multi-epitope vaccine candidate against hepatitis C virus using structural and nonstructural proteins: An immunoinformatics approach. PLoS One 2022 17 8 0272582 10.1371/journal.pone.0272582 36040967
    [Google Scholar]
  177. Das E. Samantaray M. Abrol K. Basumatari J. Pushan S.S. Ramaswamy A. Development of a multiple-epitope-based vaccine for hepatitis C virus genotypes 1a and 1b: An in-silico reverse vaccinology approach. In Silico Pharmacol. 2024 12 2 100 10.1007/s40203‑024‑00275‑4 39524457
    [Google Scholar]
  178. Basheer A. Jamal S.B. Alzahrani B. Faheem M. Development of a tetravalent subunit vaccine against dengue virus through a vaccinomics approach. Front. Immunol. 2023 14 1273838 10.3389/fimmu.2023.1273838 38045699
    [Google Scholar]
  179. Fadaka A.O. Sibuyi N.R.S. Martin D.R. Immunoinformatics design of a novel epitope-based vaccine candidate against dengue virus. Sci. Rep. 2021 11 1 19707 10.1038/s41598‑021‑99227‑7 34611250
    [Google Scholar]
  180. Naqvi S.T.Q. Yasmeen M. Ismail M. Muhammad S.A. Designing of potential polyvalent vaccine model for respiratory syncytial virus by system level immunoinformatics approaches. BioMed Res. Int. 2021 2021 9940010 10.1155/2021/9940010
    [Google Scholar]
  181. Nguyen T.L. Kim H. Integrating immunoinformatics and computational epitope prediction for a vaccine candidate against respiratory syncytial virus. Infect. Dis. Model. 2024 9 3 763 774 10.1016/j.idm.2024.04.005 38708060
    [Google Scholar]
  182. Tong A. Scholes-Robertson N. Hawley C. Patient-centred clinical trial design. Nat. Rev. Nephrol. 2022 18 8 514 523 10.1038/s41581‑022‑00585‑w 35668231
    [Google Scholar]
  183. Eberhard M.L. A legacy of impact in global health. Am. J. Trop. Med. Hyg. 2024 111 3 Suppl. 1 4 (Suppl.) 10.4269/ajtmh.24‑0357 39013389
    [Google Scholar]
  184. Herlitz A. Global health impact, priority and time. Devel World Bioeth. 2024 24 1 15 20 10.1111/dewb.12428 37823400
    [Google Scholar]
  185. Hassoun N. Global health impact: Human rights, access to medicines, and measurement. Developing World Bioeth. 2024 24 1 37 48 10.1111/dewb.12441 38324653
    [Google Scholar]
  186. Pickering L.K. Meissner H.C. Orenstein W.A. Cohn A.C. Principles of vaccine licensure, approval, and recommendations for use. Mayo Clin. Proc. 2020 95 3 600 608 10.1016/j.mayocp.2019.11.002 32063358
    [Google Scholar]
  187. Pickering L.K. Orenstein W.A. Sun W. Baker C.J. FDA licensure of and ACIP recommendations for vaccines. Vaccine 2017 35 37 5027 5036 10.1016/j.vaccine.2017.07.023 28765004
    [Google Scholar]
  188. Marshall V. Baylor N.W. Food and Drug Administration regulation and evaluation of vaccines. Pediatrics 2011 127 Suppl. 1 S23 S30 10.1542/peds.2010‑1722E 21502242
    [Google Scholar]
  189. Gomase V. Changbhale S. Patil S. Kale K. Metabolomics. Curr. Drug Metab. 2008 9 1 89 98 10.2174/138920008783331149 18220576
    [Google Scholar]
  190. Gomase V. Tagore S. Omics: An approach for drug targets. Curr. Drug Metab. 2008 9 3 189 10.2174/138920008783884722 18336219
    [Google Scholar]
  191. Elamin Elhasan L.M. Hassan M.B. Elhassan R.M. Epitope-based peptide vaccine design against fructose bisphosphate aldolase of candida glabrata- an immunoinformatics approach. J. Immunol. Res. 2021 2021 8280925 10.1155/2021/8280925
    [Google Scholar]
/content/journals/rrct/10.2174/0115748871374235250702065617
Loading
/content/journals/rrct/10.2174/0115748871374235250702065617
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test