Skip to content
2000
image of Assessing the Efficacy of Small Molecule Drugs in Hutchinson-Gilford Progeria Syndrome: A Review of Clinical Trials

Abstract

Hutchinson–Gilford Progeria Syndrome (HGPS), or progeria, is an exceptionally rare disorder characterized by premature aging. It is primarily caused by a c.1824C>T point mutation in exon 11 of the gene, though other rare pathogenic variants have also been reported. This mutation leads to aberrant splicing, producing a farnesylated mutant form of lamin A known as progerin. Progerin accumulates abnormally in the nuclear lamina, triggering numerous cellular dysfunctions, including nuclear deformation, disrupted proteostasis, endoplasmic reticulum (ER) stress, replicative stress, increased reactive oxygen species (ROS) production, impaired DNA end-joining repair, mitochondrial dysfunction, and cellular senescence. These disruptions collectively manifest as a multisystem disorder characterized by failure to thrive, accelerated atherosclerosis, and severe complications such as myocardial infarction, heart failure, stroke, and risks associated with head trauma or surgical interventions. Farnesyltransferase inhibitors (FTIs) have shown potential in mitigating disease phenotypes in preclinical models, with lonafarnib achieving FDA approval in 2020 as the first—and currently only—drug for progeria treatment. This review focuses on the clinical trial outcomes of small-molecule therapeutics for progeria, with particular emphasis on emerging small molecules from recent research. These novel compounds, with their unique mechanisms of action, hold promise not only for improving disease management but potentially offering a cure for this devastating condition.

Loading

Article metrics loading...

/content/journals/rrct/10.2174/0115748871373056250530040447
2025-06-20
2025-10-09
Loading full text...

Full text loading...

References

  1. Piekarowicz K. Machowska M. Dzianisava V. Rzepecki R. Hutchinson-gilford progeria syndrome—current status and prospects for gene therapy treatment. Cells 2019 8 2 88 10.3390/cells8020088 30691039
    [Google Scholar]
  2. Marian A.J. Non-syndromic cardiac progeria in a patient with the rare pathogenic p.Asp300Asn variant in the LMNA gene. BMC Med. Genet. 2017 18 1 116 10.1186/s12881‑017‑0480‑x 29047356
    [Google Scholar]
  3. Capanni C. Schena E. Di Giampietro M.L. Montecucco A. Mattioli E. Lattanzi G. The role of prelamin A post-translational maturation in stress response and 53BP1 recruitment. Front. Cell Dev. Biol. 2022 10 1018102 10.3389/fcell.2022.1018102 36467410
    [Google Scholar]
  4. Zhang N. Hu Q. Sui T. Fu L. Zhang X. Wang Y. Zhu X. Huang B. Lu J. Li Z. Zhang Y. Unique progerin C-terminal peptide ameliorates Hutchinson–Gilford progeria syndrome phenotype by rescuing BUBR1. Nat. Aging 2023 3 2 185 201 10.1038/s43587‑023‑00361‑w 37118121
    [Google Scholar]
  5. Díez-Díez M. Amorós-Pérez M. de la Barrera J. Vázquez E. Quintas A. Pascual-Figal D.A. Dopazo A. Sánchez-Cabo F. Kleinman M.E. Gordon L.B. Fuster V. Andrés V. Fuster J.J. Clonal hematopoiesis is not prevalent in Hutchinson-Gilford progeria syndrome. Geroscience 2023 45 2 1231 1236 10.1007/s11357‑022‑00607‑2 35752705
    [Google Scholar]
  6. Kato H. Maezawa Y. Atherosclerosis and cardiovascular diseases in progeroid syndromes. J. Atheroscler. Thromb. 2022 29 4 439 447 10.5551/jat.RV17061 34511576
    [Google Scholar]
  7. Gordon L.B. Basso S. Maestranzi J. Aikawa E. Clift C.L. Cammardella A.G. Danesi T.H. del Nido P.J. Edelman E.R. Hamdy A. Hegde S.M. Kleinman M.E. Maschietto N. Mehra M.R. Mukundan S. Musumeci F. Russo M. Rybicki F.J. Shah P.B. Suarez W.A. Tuminelli K. Zaleski K. Prakash A. Gerhard-Herman M. Intervention for critical aortic stenosis in Hutchinson-Gilford progeria syndrome. Front. Cardiovasc. Med. 2024 11 1356010 10.3389/fcvm.2024.1356010 38725831
    [Google Scholar]
  8. Vakili S. Izydore E.K. Losert L. Cabral W.A. Tavarez U.L. Shores K. Xue H. Erdos M.R. Truskey G.A. Collins F.S. Cao K. Angiopoietin-2 reverses endothelial cell dysfunction in progeria vasculature. Aging Cell 2025 24 2 14375 10.1111/acel.14375 39422121
    [Google Scholar]
  9. Shores K.L. Truskey G.A. Mechanotransduction of the vasculature in Hutchinson-Gilford Progeria Syndrome. Front. Physiol. 2024 15 1464678 10.3389/fphys.2024.1464678 39239311
    [Google Scholar]
  10. Macías Á. Nevado R.M. González-Gómez C. Gonzalo P. Andrés-Manzano M.J. Dorado B. Benedicto I. Andrés V. Coronary and carotid artery dysfunction and KV7 overexpression in a mouse model of Hutchinson-Gilford progeria syndrome. Geroscience 2023 46 1 867 884 10.1007/s11357‑023‑00808‑3 37233881
    [Google Scholar]
  11. von Kleeck R. Castagnino P. Assoian R.K. Progerin mislocalizes myocardin-related transcription factor in hutchinson–guilford progeria syndrome. Vasc. Biol. 2022 4 1 1 10 10.1530/VB‑21‑0018 35441125
    [Google Scholar]
  12. Arun A. Nath A.R. Thankachan B. Unnikrishnan M.K. Hutchinson–Gilford progeria syndrome: Unraveling the genetic basis, symptoms, and advancements in therapeutic approaches. Ther. Adv. Rare Dis. 2024 5 26330040241305144 10.1177/26330040241305144 39691184
    [Google Scholar]
  13. Erdos M.R. Cabral W.A. Tavarez U.L. Cao K. Gvozdenovic-Jeremic J. Narisu N. Zerfas P.M. Crumley S. Boku Y. Hanson G. Mourich D.V. Kole R. Eckhaus M.A. Gordon L.B. Collins F.S. A targeted antisense therapeutic approach for Hutchinson–Gilford progeria syndrome. Nat. Med. 2021 27 3 536 545 10.1038/s41591‑021‑01274‑0 33707773
    [Google Scholar]
  14. Catarinella G. Nicoletti C. Bracaglia A. Procopio P. Salvatori I. Taggi M. Valle C. Ferri A. Canipari R. Puri P.L. Latella L. SerpinE1 drives a cell-autonomous pathogenic signaling in Hutchinson–Gilford progeria syndrome. Cell Death Dis. 2022 13 8 737 10.1038/s41419‑022‑05168‑y 36028501
    [Google Scholar]
  15. Gordon L.B. Kleinman M.E. Miller D.T. Neuberg D.S. Giobbie-Hurder A. Gerhard-Herman M. Smoot L.B. Gordon C.M. Cleveland R. Snyder B.D. Fligor B. Bishop W.R. Statkevich P. Regen A. Sonis A. Riley S. Ploski C. Correia A. Quinn N. Ullrich N.J. Nazarian A. Liang M.G. Huh S.Y. Schwartzman A. Kieran M.W. Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson–Gilford progeria syndrome. Proc. Natl. Acad. Sci. USA 2012 109 41 16666 16671 10.1073/pnas.1202529109 23012407
    [Google Scholar]
  16. Abutaleb N.O. Atchison L. Choi L. Bedapudi A. Shores K. Gete Y. Cao K. Truskey G.A. Lonafarnib and everolimus reduce pathology in iPSC-derived tissue engineered blood vessel model of Hutchinson-Gilford Progeria Syndrome. Sci. Rep. 2023 13 1 5032 10.1038/s41598‑023‑32035‑3 36977745
    [Google Scholar]
  17. Gordon L.B. Kleinman M.E. Massaro J. D’Agostino R.B. Sr Shappell H. Gerhard-Herman M. Smoot L.B. Gordon C.M. Cleveland R.H. Nazarian A. Snyder B.D. Ullrich N.J. Silvera V.M. Liang M.G. Quinn N. Miller D.T. Huh S.Y. Dowton A.A. Littlefield K. Greer M.M. Kieran M.W. Clinical trial of the protein farnesylation inhibitors lonafarnib, pravastatin, and zoledronic acid in children with Hutchinson-Gilford progeria syndrome. Circulation 2016 134 2 114 125 10.1161/CIRCULATIONAHA.116.022188 27400896
    [Google Scholar]
  18. Gordon L.B. Shappell H. Massaro J. D’Agostino R.B. Sr Brazier J. Campbell S.E. Kleinman M.E. Kieran M.W. association of lonafarnib treatment vs no treatment with mortality rate in patients with Hutchinson-Gilford progeria syndrome. JAMA 2018 319 16 1687 1695 10.1001/jama.2018.3264 29710166
    [Google Scholar]
  19. Suzuki M. Jeng L.J.B. Chefo S. Wang Y. Price D. Li X. Wang J. Li R.J. Ma L. Yang Y. Zhang X. Zheng N. Zhang K. Joseph D.B. Shroff H. Doan J. Pacanowski M. Smpokou P. Donohue K. Joffe H.V. FDA approval summary for lonafarnib (Zokinvy) for the treatment of Hutchinson-Gilford progeria syndrome and processing-deficient progeroid laminopathies. Genet. Med. 2023 25 2 100335 10.1016/j.gim.2022.11.003 36507973
    [Google Scholar]
  20. Kang S. Yoon M.H. Ahn J. Kim J.E. Kim S.Y. Kang S.Y. Joo J. Park S. Cho J.H. Woo T.G. Oh A.Y. Chung K.J. An S.Y. Hwang T.S. Lee S.Y. Kim J.S. Ha N.C. Song G.Y. Park B.J. Progerinin, an optimized progerin-lamin A binding inhibitor, ameliorates premature senescence phenotypes of Hutchinson-Gilford progeria syndrome. Commun. Biol. 2021 4 1 5 10.1038/s42003‑020‑01540‑w 33398110
    [Google Scholar]
  21. Kang S. Seo S. Song E.J. Kweon O. Jo A. Park S. Woo T.G. Kim B.H. Oh G.T. Park B.J. Progerinin, an inhibitor of progerin, alleviates cardiac abnormalities in a model mouse of Hutchinson–Gilford progeria syndrome. Cells 2023 12 9 1232 10.3390/cells12091232 37174632
    [Google Scholar]
  22. Kang SM Development of a new drug for progeria syndrome; past, present and future. Arch. Gerontol. Geriatr. Res. 2020 5 1 022 025 10.17352/aggr.000020
    [Google Scholar]
  23. Kim B.H. Woo T.G. Kang S.M. Park S. Park B.J. Splicing variants, protein-protein interactions, and drug targeting in hutchinson-gilford progeria syndrome and small cell lung cancer. Genes 2022 13 2 165 10.3390/genes13020165 35205210
    [Google Scholar]
  24. Bikkul M.U. Clements C.S. Godwin L.S. Goldberg M.W. Kill I.R. Bridger J.M. Farnesyltransferase inhibitor and rapamycin correct aberrant genome organisation and decrease DNA damage respectively, in Hutchinson–Gilford progeria syndrome fibroblasts. Biogerontology 2018 19 6 579 602 10.1007/s10522‑018‑9758‑4 29907918
    [Google Scholar]
  25. Pande S. Ghosh D.K. Nuclear proteostasis imbalance in laminopathy-associated premature aging diseases. FASEB J. 2023 37 8 23116 10.1096/fj.202300878R 37498235
    [Google Scholar]
  26. Vidak S. Serebryannyy L.A. Pegoraro G. Misteli T. Activation of endoplasmic reticulum stress in premature aging via the inner nuclear membrane protein SUN2. Cell Rep. 2023 42 5 112534 10.1016/j.celrep.2023.112534 37210724
    [Google Scholar]
  27. Yue X. Cui J. Sun Z. Liu L. Li Y. Shao L. Feng Q. Wang Z. Hambright W.S. Cui Y. Huard J. Mu Y. Mu X. Nuclear softening mediated by Sun2 suppression delays mechanical stress-induced cellular senescence. Cell Death Discov. 2023 9 1 167 10.1038/s41420‑023‑01467‑1 37198162
    [Google Scholar]
  28. Coll-Bonfill N. Mahajan U. Shashkova E.V. Lin C.J. Mecham R.P. Gonzalo S. Progerin induces a phenotypic switch in vascular smooth muscle cells and triggers replication stress and an aging-associated secretory signature. Geroscience 2023 45 2 965 982 10.1007/s11357‑022‑00694‑1 36482259
    [Google Scholar]
  29. Joudeh L.A. DiCintio A.J. Ries M.R. Gasperson A.S. Griffin K.E. Robbins V.P. Bonner M. Nolan S. Black E. Waldman A.S. Corruption of DNA end-joining in mammalian chromosomes by progerin expression. DNA Repair 2023 126 103491 10.1016/j.dnarep.2023.103491 37018982
    [Google Scholar]
  30. Joudeh L.A. Schuck P.L. Van N.M. Progerin can induce DNA damage in the absence of global changes in replication or cell proliferation. PLoS ONE 2024 19 2 e0315084 10.1371/journal.pone.0315084
    [Google Scholar]
  31. Lamis A. Siddiqui S.W. Ashok T. Patni N. Fatima M. Aneef A.N. Hutchinson-gilford progeria syndrome: A literature review. Cureus 2022 14 8 28629 36196312
    [Google Scholar]
  32. Qi H. Wu Y. Zhang W. Yu N. Lu X. Liu J. The syntaxin-binding protein STXBP5 regulates progerin expression. Sci. Rep. 2024 14 1 23376 10.1038/s41598‑024‑74621‑z 39379476
    [Google Scholar]
  33. Carollo P.S. Barra V. Chromatin epigenetics and nuclear lamina keep the nucleus in shape: Examples from natural and accelerated aging. Biol. Cell 2023 115 1 2200023 10.1111/boc.202200023 36117150
    [Google Scholar]
  34. Liu B. Ghosh S. Yang X. Zheng H. Liu X. Wang Z. Jin G. Zheng B. Kennedy B.K. Suh Y. Kaeberlein M. Tryggvason K. Zhou Z. Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria. Cell Metab. 2012 16 6 738 750 10.1016/j.cmet.2012.11.007 23217256
    [Google Scholar]
  35. Zhang L.X. Li C.X. Kakar M.U. Khan M.S. Wu P.F. Amir R.M. Dai D.F. Naveed M. Li Q.Y. Saeed M. Shen J.Q. Rajput S.A. Li J.H. Resveratrol (RV): A pharmacological review and call for further research. Biomed. Pharmacother. 2021 143 112164 10.1016/j.biopha.2021.112164 34649335
    [Google Scholar]
  36. Ngubo M. Chen Z. McDonald D. Karimpour R. Shrestha A. Yockell-Lelièvre J. Laurent A. Besong O.T.O. Tsai E.C. Dilworth F.J. Hendzel M.J. Stanford W.L. Progeria‐based vascular model identifies networks associated with cardiovascular aging and disease. Aging Cell 2024 23 7 14150 10.1111/acel.14150 38576084
    [Google Scholar]
  37. Wang M. Zhang J. Qiu J. Ma X. Xu C. Wu Q. Xing S. Chen X. Liu B. Doxycycline decelerates aging in progeria mice. Aging Cell 2024 23 7 14188 10.1111/acel.14188 38686927
    [Google Scholar]
  38. Villa-Bellosta R. ATP-based therapy prevents vascular calcification and extends longevity in a mouse model of Hutchinson–Gilford progeria syndrome. Proc. Natl. Acad. Sci. USA 2019 116 47 23698 23704 10.1073/pnas.1910972116 31690656
    [Google Scholar]
  39. Schäkel L. Schmies C.C. Idris R.M. Luo X. Lee S.Y. Lopez V. Mirza S. Vu T.H. Pelletier J. Sévigny J. Namasivayam V. Müller C.E. Nucleotide analog ARL67156 as a lead structure for the development of CD39 and dual CD39/CD73 ectonucleotidase inhibitors. Front. Pharmacol. 2020 11 1294 10.3389/fphar.2020.01294 33013365
    [Google Scholar]
  40. Villa-Bellosta R. Dietary magnesium supplementation improves lifespan in a mouse model of progeria. EMBO Mol. Med. 2020 12 10 12423 10.15252/emmm.202012423 32875720
    [Google Scholar]
  41. Harhouri K. Navarro C. Depetris D. Mattei M.G. Nissan X. Cau P. De Sandre-Giovannoli A. Lévy N. MG 132‐induced progerin clearance is mediated by autophagy activation and splicing regulation. EMBO Mol. Med. 2017 9 9 1294 1313 10.15252/emmm.201607315 28674081
    [Google Scholar]
  42. Hamczyk M.R. Villa-Bellosta R. Quesada V. Gonzalo P. Vidak S. Nevado R.M. Andrés-Manzano M.J. Misteli T. López-Otín C. Andrés V. Progerin accelerates atherosclerosis by inducing endoplasmic reticulum stress in vascular smooth muscle cells. EMBO Mol. Med. 2019 11 4 9736 10.15252/emmm.201809736 30862662
    [Google Scholar]
  43. Gabriel D. Roedl D. Gordon L.B. Djabali K. Sulforaphane enhances progerin clearance in H utchinson– G ilford progeria fibroblasts. Aging Cell 2015 14 1 78 91 10.1111/acel.12300 25510262
    [Google Scholar]
  44. Baralić K. Živanović J. Marić Đ. Bozic D. Grahovac L. Antonijević Miljaković E. Ćurčić M. Buha Djordjevic A. Bulat Z. Antonijević B. Đukić-Ćosić D. Sulforaphane—A compound with potential health benefits for disease prevention and treatment: Insights from pharmacological and toxicological experimental studies. Antioxidants 2024 13 2 147 10.3390/antiox13020147 38397745
    [Google Scholar]
  45. Xiong Z.M. Choi J.Y. Wang K. Zhang H. Tariq Z. Wu D. Ko E. LaDana C. Sesaki H. Cao K. Methylene blue alleviates nuclear and mitochondrial abnormalities in progeria. Aging Cell 2016 15 2 279 290 10.1111/acel.12434 26663466
    [Google Scholar]
  46. Muela-Zarzuela I. Suarez-Rivero J.M. Boy-Ruiz D. López-Pérez J. Sotelo-Montoro M. del Mar Navarrete-Alonso M. Collado I.G. Botubol-Ares J.M. Sanz A. Cordero M.D. The NLRP3 inhibitor Dapansutrile improves the therapeutic action of lonafarnib on progeroid mice. Aging Cell 2024 23 9 14272 10.1111/acel.14272 39192596
    [Google Scholar]
  47. Liu C. Arnold R. Henriques G. Djabali K. Inhibition of JAK-STAT signaling with baricitinib reduces inflammation and improves cellular homeostasis in progeria cells. Cells 2019 8 10 1276 10.3390/cells8101276 31635416
    [Google Scholar]
  48. Benarroch L. Cohen E. Atalaia A. Ben Yaou R. Bonne G. Bertrand A.T. Preclinical advances of therapies for laminopathies. J. Clin. Med. 2021 10 21 4834 10.3390/jcm10214834 34768351
    [Google Scholar]
  49. Turner A.B. Gerner E. Firdaus R. Echeverz M. Werthén M. Thomsen P. Almqvist S. Trobos M. Role of sodium salicylate in Staphylococcus aureus quorum sensing, virulence, biofilm formation and antimicrobial susceptibility. Front. Microbiol. 2022 13 931839 10.3389/fmicb.2022.931839 35992652
    [Google Scholar]
  50. Bramwell L.R. Harries L.W. Senescence, regulators of alternative splicing and effects of trametinib treatment in progeroid syndromes. Geroscience 2023 46 2 1861 1879 10.1007/s11357‑023‑00933‑z 37751047
    [Google Scholar]
  51. Selvarani R. Mohammed S. Richardson A. Effect of rapamycin on aging and age-related diseases—past and future. Geroscience 2021 43 3 1135 1158 10.1007/s11357‑020‑00274‑1 33037985
    [Google Scholar]
  52. Lee D.J.W. Hodzic Kuerec A. Maier A.B. Targeting ageing with rapamycin and its derivatives in humans: A systematic review. Lancet Healthy Longev. 2024 5 2 e152 e162 10.1016/S2666‑7568(23)00258‑1 38310895
    [Google Scholar]
  53. Kreienkamp R. Croke M. Neumann M.A. Bedia-Diaz G. Graziano S. Dusso A. Dorsett D. Carlberg C. Gonzalo S. Vitamin D receptor signaling improves Hutchinson-Gilford progeria syndrome cellular phenotypes. Oncotarget 2016 7 21 30018 30031 10.18632/oncotarget.9065 27145372
    [Google Scholar]
  54. Fletcher J. Bishop E.L. Harrison S.R. Swift A. Cooper S.C. Dimeloe S.K. Raza K. Hewison M. Autoimmune disease and interconnections with vitamin D. Endocr. Connect. 2022 11 3 210554 10.1530/EC‑21‑0554 35196255
    [Google Scholar]
  55. Egesipe A.L. Blondel S. Lo Cicero A. Jaskowiak A.L. Navarro C. Sandre-Giovannoli A.D. Levy N. Peschanski M. Nissan X. Metformin decreases progerin expression and alleviates pathological defects of Hutchinson–Gilford progeria syndrome cells. NPJ Aging Mech. Dis. 2016 2 1 16026 10.1038/npjamd.2016.26 28721276
    [Google Scholar]
  56. Marcos-Ramiro B. Gil-Ordóñez A. Marín-Ramos N.I. Ortega-Nogales F.J. Balabasquer M. Gonzalo P. Khiar-Fernández N. Rolas L. Barkaway A. Nourshargh S. Andrés V. Martín-Fontecha M. López-Rodríguez M.L. Ortega-Gutiérrez S. Isoprenylcysteine carboxylmethyltransferase-based therapy for Hutchinson–Gilford progeria syndrome. ACS Cent. Sci. 2021 7 8 1300 1310 10.1021/acscentsci.0c01698 34471675
    [Google Scholar]
  57. Wang X. Ma L. Lu D. Zhao G. Ren H. Lin Q. Jia M. Huang F. Wang S. Xu Z. Yang Z. Chu Y. Xu Z. Li W. Yu L. Jiang Q. Zhang C. Nuclear envelope budding inhibition slows down progerin-induced aging process. Proc. Natl. Acad. Sci. USA 2024 121 41 2321378121 10.1073/pnas.2321378121 39352925
    [Google Scholar]
  58. Kubben N. Zhang W. Wang L. Voss T.C. Yang J. Qu J. Liu G.H. Misteli T. Repression of the antioxidant nrf2 pathway in premature aging. Cell 2016 165 6 1361 1374 10.1016/j.cell.2016.05.017 27259148
    [Google Scholar]
  59. Miao Y. Wan Q. Liu X. Wang Y. Luo Y. Liu D. Lin N. Zhou H. Zhong J. miR-503 is involved in the protective effect of phase II enzyme inducer (CPDT) in diabetic cardiomyopathy via Nrf2/ARE signaling pathway. BioMed Res. Int. 2017 2017 1 10 10.1155/2017/9167450 29404371
    [Google Scholar]
  60. Jiang B. Wu X. Meng F. Si L. Cao S. Dong Y. Sun H. Lv M. Xu H. Bai N. Guo Q. Song X. Yu Y. Guo W. Yi F. Zhou T. Li X. Feng Y. Wang Z. Zhang D. Guan Y. Ma M. Liu J. Li X. Zhao W. Liu B. Finkel T. Cao L. Progerin modulates the IGF-1R/Akt signaling involved in aging. Sci. Adv. 2022 8 27 eabo0322 10.1126/sciadv.abo0322 35857466
    [Google Scholar]
  61. Lee S.J. Jung Y.S. Yoon M.H. Kang S. Oh A.Y. Lee J.H. Jun S.Y. Woo T.G. Chun H.Y. Kim S.K. Chung K.J. Lee H.Y. Lee K. Jin G. Na M.K. Ha N.C. Bárcena C. Freije J.M.P. López-Otín C. Song G.Y. Park B.J. Interruption of progerin–lamin A/C binding ameliorates Hutchinson-Gilford progeria syndrome phenotype. J. Clin. Invest. 2016 126 10 3879 3893 10.1172/JCI84164 27617860
    [Google Scholar]
  62. Ao Y. Zhang J. Liu Z. Qian M. Li Y. Wu Z. Sun P. Wu J. Bei W. Wen J. Wu X. Li F. Zhou Z. Zhu W.G. Liu B. Wang Z. Lamin A buffers CK2 kinase activity to modulate aging in a progeria mouse model. Sci. Adv. 2019 5 3 eaav5078 10.1126/sciadv.aav5078 30906869
    [Google Scholar]
  63. Madeo F. Eisenberg T. Pietrocola F. Kroemer G. Spermidine in health and disease. Science 2018 359 6374 eaan2788 10.1126/science.aan2788 29371440
    [Google Scholar]
  64. Akinci B. Sankella S. Gilpin C. Ozono K. Garg A. Agarwal A.K. Progeroid syndrome patients with ZMPSTE24 deficiency could benefit when treated with rapamycin and dimethylsulfoxide. Molecular Case Studies 2017 3 1 a001339 10.1101/mcs.a001339 28050601
    [Google Scholar]
  65. Balmus G. Larrieu D. Barros A.C. Collins C. Abrudan M. Demir M. Geisler N.J. Lelliott C.J. White J.K. Karp N.A. Atkinson J. Kirton A. Jacobsen M. Clift D. Rodriguez R. Shannon C. Sanderson M. Gates A. Dench J. Vancollie V. McCarthy C. Pearson S. Cambridge E. Isherwood C. Wilson H. Grau E. Galli A. Hooks Y.E. Tudor C.L. Green A.L. Kussy F.L. Tuck E.J. Siragher E.J. McLaren R.S.B. Swiatkowska A. Caetano S.S. Mazzeo C.I. Dabrowska M.H. Maguire S.A. Lafont D.T. Anthony L.F.E. Sumowski M.T. Bussell J. Sinclair C. Brown E. Doe B. Wardle-Jones H. Griggs N. Woods M. Kundi H. McConnell G. Doran J. Griffiths M.N.D. Kipp C. Holroyd S.A. Gannon D.J. Alcantara R. Ramirez-Solis R. Bottomley J. Ingle C. Ross V. Barrett D. Sethi D. Gleeson D. Burvill J. Platte R. Ryder E. Sins E. Miklejewska E. Von Schiller D. Duddy G. Urbanova J. Boroviak K. Imran M. Reddy S.K. Adams D.J. Jackson S.P. Targeting of NAT10 enhances healthspan in a mouse model of human accelerated aging syndrome. Nat. Commun. 2018 9 1 1700 10.1038/s41467‑018‑03770‑3 29703891
    [Google Scholar]
  66. García-Aguirre I. Alamillo-Iniesta A. Rodríguez-Pérez R. Vélez-Aguilera G. Amaro-Encarnación E. Jiménez-Gutiérrez E. Vásquez-Limeta A. Samuel Laredo-Cisneros M. Morales-Lázaro S.L. Tiburcio-Félix R. Ortega A. Magaña J.J. Winder S.J. Cisneros B. Enhanced nuclear protein export in premature aging and rescue of the progeria phenotype by modulation of CRM1 activity. Aging Cell 2019 18 5 13002 10.1111/acel.13002 31305018
    [Google Scholar]
  67. Zhu H. Yang Y. Wang L. Xu X. Wang T. Qian H. Leptomycin B inhibits the proliferation, migration, and invasion of cultured gastric carcinoma cells. Biosci. Biotechnol. Biochem. 2020 84 2 290 296 10.1080/09168451.2019.1673148 31619134
    [Google Scholar]
  68. Geng L. Liu Z. Zhang W. Li W. Wu Z. Wang W. Ren R. Su Y. Wang P. Sun L. Ju Z. Chan P. Song M. Qu J. Liu G.H. Chemical screen identifies a geroprotective role of quercetin in premature aging. Protein Cell 2019 10 6 417 435 10.1007/s13238‑018‑0567‑y 30069858
    [Google Scholar]
  69. Sabarathinam S. Unraveling the therapeutic potential of quercetin and quercetin-3-O-glucuronide in Alzheimer’s disease through network pharmacology, molecular docking, and dynamic simulations. Sci. Rep. 2024 14 1 14852 10.1038/s41598‑024‑61779‑9 38937497
    [Google Scholar]
  70. Oboh G. Ademosun A.O. Ogunsuyi O.B. Quercetin and its role in chronic diseases. Adv. Exp. Med. Biol. 2016 929 377 387 10.1007/978‑3‑319‑41342‑6_17 27771934
    [Google Scholar]
  71. Mateos J. Fafián-Labora J. Morente-López M. Lesende-Rodriguez I. Monserrat L. Ódena M.A. Oliveira E. de Toro J. Arufe M.C. Next-generation sequencing and quantitative proteomics of hutchinson-gilford progeria syndrome-derived cells point to a role of nucleotide metabolism in premature aging. PLoS One 2018 13 10 0205878 10.1371/journal.pone.0205878 30379953
    [Google Scholar]
  72. Baden K. McClain H. Craig E. Gibson N. Draime J. Chen A. S-Adenosylmethionine (SAMe) for liver health: A systematic review. Nutrients 2024 16 21 3668 10.3390/nu16213668 39519500
    [Google Scholar]
  73. Ferreira-Marques M. Carvalho A. Franco A.C. Leal A. Botelho M. Carmo-Silva S. Águas R. Cortes L. Lucas V. Real A.C. López-Otín C. Nissan X. de Almeida L.P. Cavadas C. Aveleira C.A. Ghrelin delays premature aging in Hutchinson-Gilford progeria syndrome. Aging Cell 2023 22 12 13983 10.1111/acel.13983 37858983
    [Google Scholar]
  74. Hartinger R. Singh K. Leverett J. Djabali K. Enhancing cellular homeostasis: Targeted botanical compounds boost cellular health functions in normal and premature aging fibroblasts. Biomolecules 2024 14 10 1310 10.3390/biom14101310 39456243
    [Google Scholar]
  75. Hambright W.S. Mu X. Gao X. Guo P. Kawakami Y. Mitchell J. Mullen M. Nelson A.L. Bahney C. Nishimura H. Hellwinkel J. Eck A. Huard J. The senolytic drug fisetin attenuates bone degeneration in the Zmpste24−/− progeria mouse model. J. Osteoporos. 2023 2023 1 12 10.1155/2023/5572754 36875869
    [Google Scholar]
  76. Li Y. Cui J. Liu L. Hambright W.S. Gan Y. Zhang Y. Ren S. Yue X. Shao L. Cui Y. Huard J. Mu Y. Yao Q. Mu X. mtDNA release promotes cGAS-STING activation and accelerated aging of postmitotic muscle cells. Cell Death Dis. 2024 15 7 523 10.1038/s41419‑024‑06863‑8 39039044
    [Google Scholar]
  77. Ovadya Y. Landsberger T. Leins H. Vadai E. Gal H. Biran A. Yosef R. Sagiv A. Agrawal A. Shapira A. Windheim J. Tsoory M. Schirmbeck R. Amit I. Geiger H. Krizhanovsky V. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat. Commun. 2018 9 1 5435 10.1038/s41467‑018‑07825‑3 30575733
    [Google Scholar]
  78. Wang Q. Hao S. A-1210477, a selective MCL-1 inhibitor, overcomes ABT-737 resistance in AML. Oncol. Lett. 2019 18 5 5481 5489 10.3892/ol.2019.10891 31612056
    [Google Scholar]
  79. Vehns E. Arnold R. Djabali K. Impact of MnTBAP and baricitinib treatment on Hutchinson–Gilford progeria fibroblasts. Pharmaceuticals 2022 15 8 945 10.3390/ph15080945 36015093
    [Google Scholar]
  80. Gharaba S. Paz O. Feld L. Abashidze A. Weinrab M. Muchtar N. Baransi A. Shalem A. Sprecher U. Wolf L. Wolfenson H. Weil M. Perturbed actin cap as a new personalized biomarker in primary fibroblasts of Huntington’s disease patients. Front. Cell Dev. Biol. 2023 11 1013721 10.3389/fcell.2023.1013721 36743412
    [Google Scholar]
  81. Kuk M.U. Kim J.W. Lee Y.S. Cho K.A. Park J.T. Park S.C. Alleviation of senescence via ATM inhibition in accelerated aging models. Mol. Cells 2019 42 3 210 217 30726661
    [Google Scholar]
  82. Shu J. Wang X. Yang X. Zhao G. ATM inhibitor KU60019 synergistically sensitizes lung cancer cells to topoisomerase II poisons by multiple mechanisms. Sci. Rep. 2023 13 1 882 10.1038/s41598‑023‑28185‑z 36650267
    [Google Scholar]
  83. Kang H.T. Park J.T. Choi K. Choi H.J.C. Jung C.W. Kim G.R. Lee Y.S. Park S.C. Chemical screening identifies ROCK as a target for recovering mitochondrial function in Hutchinson-Gilford progeria syndrome. Aging Cell 2017 16 3 541 550 10.1111/acel.12584 28317242
    [Google Scholar]
  84. Sun Y. Xu L. Li Y. Jia S. Wang G. Cen X. Xu Y. Cao Z. Wang J. Shen N. Hu L. Zhang J. Mao J. Xia H. Liu Z. Fu X. Mitophagy defect mediates the aging-associated hallmarks in Hutchinson–Gilford progeria syndrome. Aging Cell 2024 23 6 14143 10.1111/acel.14143 38482753
    [Google Scholar]
  85. Macías Á. Díaz-Larrosa J.J. Blanco Y. Fanjul V. González-Gómez C. Gonzalo P. Andrés-Manzano M.J. da Rocha A.M. Ponce-Balbuena D. Allan A. Filgueiras-Rama D. Jalife J. Andrés V. Paclitaxel mitigates structural alterations and cardiac conduction system defects in a mouse model of Hutchinson–Gilford progeria syndrome. Cardiovasc. Res. 2022 118 2 503 516 10.1093/cvr/cvab055 33624748
    [Google Scholar]
  86. Barettino A. González-Gómez C. Gonzalo P. Andrés-Manzano M.J. Guerrero C.R. Espinosa F.M. Carmona R.M. Blanco Y. Dorado B. Torroja C. Sánchez-Cabo F. Quintas A. Benguría A. Dopazo A. García R. Benedicto I. Andrés V. Endothelial YAP/TAZ activation promotes atherosclerosis in a mouse model of Hutchinson-Gilford progeria syndrome. J. Clin. Invest. 2024 134 22 173448 10.1172/JCI173448 39352768
    [Google Scholar]
  87. Cardoso D. Guilbert S. Guigue P. Carabalona A. Harhouri K. Peccate C. Tournois J. Guesmia Z. Ferreira L. Bartoli C. Levy N. Colleaux L. Nissan X. Muchir A. Inhibition of poly(ADP-Ribosyl)ation reduced vascular smooth muscle cells loss and improves aortic disease in a mouse model of human accelerated aging syndrome. Cell Death Dis. 2024 15 10 723 10.1038/s41419‑024‑07078‑7 39353941
    [Google Scholar]
  88. Hartinger R. Lederer E.M. Schena E. Lattanzi G. Djabali K. Impact of combined baricitinib and FTI treatment on adipogenesis in Hutchinson–Gilford progeria syndrome and other lipodystrophic laminopathies. Cells 2023 12 10 1350 10.3390/cells12101350 37408186
    [Google Scholar]
/content/journals/rrct/10.2174/0115748871373056250530040447
Loading
/content/journals/rrct/10.2174/0115748871373056250530040447
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: lonafarnib ; clinical trials ; aging ; triple therapy ; small molecule drugs ; HGPS
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test