Skip to content
2000
image of Leveraging Artificial Intelligence for Data Integrity, Transparency, and Security in Technology-enabled Improvements to Clinical Trial Data Management in Healthcare

Abstract

Introduction

The management of clinical trial data is an essential component of medical research, where accuracy, security, and transparency directly impact the validity of outcomes. However, conventional methods often face challenges in maintaining data integrity and compliance with regulatory standards. The transformative role of Artificial Intelligence (AI) in enhancing these aspects by leveraging machine learning and analytics offers promising capabilities to improve data validation, detect inconsistencies, and secure sensitive information, thereby increasing credibility among researchers, participants, and regulators. The aim of this study is to explore the transformative potential of artificial intelligence in enhancing clinical trial data management. It specifically investigates whether AI can improve data integrity, transparency, and security, thus making the results credible to the researcher, participant, and regulatory bodies involved.

Methods

The study employs machine learning algorithms and advanced analytics to investigate the role of AI in identifying data anomalies, verifying the accuracy of information, and validating data processes. Case studies and real-world applications are presented to highlight how AI enables real-time monitoring, reporting, and verification of regulatory compliance. It also analyzes encryption and access control systems powered by AI, ensuring that sensitive clinical trial data is protected against breaches and unlawful access.

Results

The findings demonstrate that AI significantly streamlines the management of clinical trial data through automated data validation processes, the detection of inconsistent data, and the capability for real-time data monitoring. AI encryptions and access control systems minimize data security risks to safeguard sensitive information. Case studies demonstrate that transparency, regulatory compliance, and stakeholder trust improve when AI is integrated into clinical trial processes.

Discussion

The study shows AI significantly enhances clinical trial data management through automated validation, real-time monitoring, and anomaly detection. Throughout the trial process, these capabilities reduce errors, ensure regulatory compliance, and improve transparency. Additionally, AI-driven encryption and access control systems offer robust protection against data breaches, reinforcing participant confidentiality and stakeholder trust. Case study analysis demonstrates that AI not only streamlines data workflows but also fosters greater confidence in trial outcomes, signaling a shift toward more efficient, secure, and credible AI-enabled clinical trials.

Conclusion

The study highlights the potential of AI to revolutionize the management of clinical trial data with aspects such as data integrity, transparency, and security. The incorporation of AI ensures the credibility of trial outcomes among all stakeholders. This study advocates for a paradigm shift toward AI-enabled clinical trials, shedding light on the revolutionary approach it proposes for healthcare data management practices.

Loading

Article metrics loading...

/content/journals/rrct/10.2174/0115748871371119250818102753
2025-08-26
2025-10-25
Loading full text...

Full text loading...

References

  1. Kandi V. Vadakedath S. Clinical trials and clinical research: A comprehensive review. Cureus 2023 15 2 e35077 10.7759/cureus.35077 36938261
    [Google Scholar]
  2. Zeissler M.L. Chapman R. Clinical trial designs and endpoints. Handb. Clin. Neurol. 2024 205 123 134 10.1016/B978‑0‑323‑90120‑8.00013‑7 39341649
    [Google Scholar]
  3. Thakur S. Lahiry S. Digital clinical trial. Perspect. Clin. Res. 2021 12 4 184 188 10.4103/picr.PICR_278_20 34760644
    [Google Scholar]
  4. AlSaleh K.A. Clinical trials before, during, and after COVID-19 pandemic. Am. J. Clin. Oncol. 2021 44 2 90 91 10.1097/COC.0000000000000783 33475281
    [Google Scholar]
  5. Bordukova M. Makarov N. Rodriguez-Esteban R. Schmich F. Menden M.P. Generative artificial intelligence empowers digital twins in drug discovery and clinical trials. Expert Opin. Drug Discov. 2024 19 1 33 42 10.1080/17460441.2023.2273839 37887266
    [Google Scholar]
  6. Alowais S.A. Alghamdi S.S. Alsuhebany N. Alqahtani T. Alshaya A.I. Almohareb S.N. Aldairem A. Alrashed M. Bin Saleh K. Badreldin H.A. Al Yami M.S. Al Harbi S. Albekairy A.M. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023 23 1 689 10.1186/s12909‑023‑04698‑z 37740191
    [Google Scholar]
  7. Noorbakhsh-Sabet N. Zand R. Zhang Y. Abedi V. Artificial intelligence transforms the future of health care. Am. J. Med. 2019 132 7 795 801 10.1016/j.amjmed.2019.01.017 30710543
    [Google Scholar]
  8. Stanfill M.H. Marc D.T. Health information management: Implications of artificial intelligence on healthcare data and information management. Yearb. Med. Inform. 2019 28 1 056 064 10.1055/s‑0039‑1677913 31419816
    [Google Scholar]
  9. Aung Y.Y.M. Wong D.C.S. Ting D.S.W. The promise of artificial intelligence: A review of the opportunities and challenges of artificial intelligence in healthcare. Br. Med. Bull. 2021 139 1 4 15 10.1093/bmb/ldab016 34405854
    [Google Scholar]
  10. Gomase V.S. Visokar D.L. Chopade V. Effective integration of artificial intelligence and blockchain technologies for empowerment of drug discovery and development. Curr. Drug Discov. Technol. 2025 22 10.2174/0115701638361312250402125556 40264319
    [Google Scholar]
  11. Ma B. Yang J. Wong F.K.Y. Wong A.K.C. Ma T. Meng J. Zhao Y. Wang Y. Lu Q. Artificial intelligence in elderly healthcare: A scoping review. Ageing Res. Rev. 2023 83 101808 10.1016/j.arr.2022.101808 36427766
    [Google Scholar]
  12. Mintz Y. Brodie R. Introduction to artificial intelligence in medicine. Minim. Invasive Ther. Allied Technol. 2019 28 2 73 81 10.1080/13645706.2019.1575882 30810430
    [Google Scholar]
  13. Yang Y.C. Islam S.U. Noor A. Khan S. Afsar W. Nazir S. Influential usage of big data and artificial intelligence in healthcare. Comput. Math. Methods Med. 2021 2021 1 13 10.1155/2021/5812499 34527076
    [Google Scholar]
  14. Askin S. Burkhalter D. Calado G. El Dakrouni S. Artificial intelligence applied to clinical trials: opportunities and challenges. Health Technol. (Berl.) 2023 13 2 203 213 10.1007/s12553‑023‑00738‑2 36923325
    [Google Scholar]
  15. Mennella C. Maniscalco U. De Pietro G. Esposito M. Ethical and regulatory challenges of AI technologies in healthcare: A narrative review. Heliyon 2024 10 4 e26297 10.1016/j.heliyon.2024.e26297 38384518
    [Google Scholar]
  16. Dodd LE Proschan MA Data and safety monitoring board monitoring of clinical trials for early efficacy. NEJM Evid 2022 1 3 EVIDctw2100025 10.1056/EVIDctw2100025
    [Google Scholar]
  17. Murray M.L. Love S.B. Carpenter J.R. Hartley S. Landray M.J. Mafham M. Parmar M.K.B. Pinches H. Sydes M.R. Data provenance and integrity of health-care systems data for clinical trials. Lancet Digit. Health 2022 4 8 e567 e568 Healthcare Systems Data for Clinical Trials Collaborative Group 10.1016/S2589‑7500(22)00122‑4 35868811
    [Google Scholar]
  18. Khin N.A. Francis G. Mulinde J. Grandinetti C. Skeete R. Yu B. Ayalew K. Cho S.J. Fisher A. Kleppinger C. Ayala R. Bonapace C. Dasgupta A. Kronstein P.D. Vinter S. Data integrity in global clinical trials: Discussions from joint us food and drug administration and uk medicines and healthcare products regulatory agency good clinical practice workshop. Clin. Pharmacol. Ther. 2020 108 5 949 963 10.1002/cpt.1794 31958142
    [Google Scholar]
  19. Liu Y. Thornton J.G. Li W. van Wely M. Mol B.W. Concerns about data integrity of 22 randomized controlled trials in women’s health. Am. J. Perinatol. 2023 40 3 279 289 10.1055/s‑0041‑1727280 34005825
    [Google Scholar]
  20. Bordewijk E.M. Wang R. Askie L.M. Gurrin L.C. Thornton J.G. van Wely M. Li W. Mol B.W. Data integrity of 35 randomised controlled trials in women’ health. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020 249 72 83 10.1016/j.ejogrb.2020.04.016 32381348
    [Google Scholar]
  21. Agyemang E.F. Anomaly detection using unsupervised machine learning algorithms: A simulation study. Sci. Afr. 2024 26 e02386 10.1016/j.sciaf.2024.e02386
    [Google Scholar]
  22. Sunny J.S. Patro C.P.K. Karnani K. Pingle S.C. Lin F. Anekoji M. Jones L.D. Kesari S. Ashili S. Anomaly detection framework for wearables data: A perspective review on data concepts, data analysis algorithms and prospects. Sensors (Basel) 2022 22 3 756 10.3390/s22030756 35161502
    [Google Scholar]
  23. Jakob P. Madan M. Schmid-Schirling T. Valada A. Multi-perspective anomaly detection. Sensors 2021 21 16 5311 10.3390/s21165311 34450753
    [Google Scholar]
  24. Churová V. Vyškovský R. Maršálová K. Kudláček D. Schwarz D. Anomaly detection algorithm for real-world data and evidence in clinical research: Implementation, evaluation, and validation study. JMIR Med. Inform. 2021 9 5 e27172 10.2196/27172 33851576
    [Google Scholar]
  25. Foote H.P. Cohen-Wolkowiez M. Lindsell C.J. Hornik C.P. Applying artificial intelligence in pediatric clinical trials: Potential impacts and obstacles. J. Pediatr. Pharmacol. Ther. 2024 29 3 336 340 10.5863/1551‑6776‑29.3.336 38863862
    [Google Scholar]
  26. Cunningham J.W. Abraham W.T. Bhatt A.S. Dunn J. Felker G.M. Jain S.S. Lindsell C.J. Mace M. Martyn T. Shah R.U. Tison G.H. Fakhouri T. Psotka M.A. Krumholz H. Fiuzat M. O’Connor C.M. Solomon S.D. Heart failure collaboratory. artificial intelligence in cardiovascular clinical trials. J. Am. Coll. Cardiol. 2024 84 20 2051 2062 10.1016/j.jacc.2024.08.069 39505413
    [Google Scholar]
  27. Joseph N. Lindblad I. Zaker S. Elfversson S. Albinzon M. Ødegård Ø. Hantler L. Hellström P.M. Automated data extraction of electronic medical records: Validity of data mining to construct research databases for eligibility in gastroenterological clinical trials. Ups. J. Med. Sci. 2022 127 10.48101/ujms.v127.8260 35173908
    [Google Scholar]
  28. Gupta N.S. Kumar P. Perspective of artificial intelligence in healthcare data management: A journey towards precision medicine. Comput. Biol. Med. 2023 162 107051 10.1016/j.compbiomed.2023.107051 37271113
    [Google Scholar]
  29. Gim J.A. A genomic information management system for maintaining healthy genomic states and application of genomic big data in clinical research. Int. J. Mol. Sci. 2022 23 11 5963 10.3390/ijms23115963 35682641
    [Google Scholar]
  30. Elghafari A. Finkelstein J. Automated generation of core outcome measures for clinical trials. Stud. Health Technol. Inform. 2021 284 505 509 10.3233/SHTI210784 34920582
    [Google Scholar]
  31. DeVito N.J. Morley J. Goldacre B. Barriers and best practices to improving clinical trials transparency at UK public research institutions: A qualitative interview study. Health Policy 2024 142 104991 10.1016/j.healthpol.2024.104991 38417375
    [Google Scholar]
  32. Dal-Ré R. Is full transparency in clinical trials an achievable goal? Eur. J. Intern. Med. 2024 123 1 3 10.1016/j.ejim.2024.03.006 38461061
    [Google Scholar]
  33. Mikelis F. Karamalaki D. Mikeli A. Tzanetakis G.N. Koletsi D. Data sharing and transparency indicators in published RCTs in Oral Health between 2017 and 2023. J. Dent. 2024 149 105263 10.1016/j.jdent.2024.105263 39047892
    [Google Scholar]
  34. Kushwaha P. Srivastava N. Kushwaha S.P. Enhancing clinical drug trial monitoring with blockchain technology. Contemp. Clin. Trials 2024 146 107684 10.1016/j.cct.2024.107684 39236782
    [Google Scholar]
  35. Hanna M.G. Pantanowitz L. Jackson B. Palmer O. Visweswaran S. Pantanowitz J. Deebajah M. Rashidi H.H. Ethical and bias considerations in artificial intelligence/machine learning. Mod. Pathol. 2025 38 3 100686 10.1016/j.modpat.2024.100686 39694331
    [Google Scholar]
  36. Shi H. Lin R. Lin X. Comparative review of novel model‐assisted designs for phase I/II clinical trials. Biom. J. 2024 66 4 2300398 10.1002/bimj.202300398 38738318
    [Google Scholar]
  37. Chen D. Geevarghese A. Lee S. Plovnick C. Elgin C. Zhou R. Oermann E. Aphinyonaphongs Y. Al-Aswad L.A. Transparency in artificial intelligence reporting in ophthalmology: A scoping review. Ophthalmol. Sci. 2024 4 4 100471 10.1016/j.xops.2024.100471 38591048
    [Google Scholar]
  38. Heudel P. Mery B. Crochet H. Bachelot T. Tredan O. Transforming breast cancer management with real-world data and artificial intelligence. ESMO Real World Data and Digital Oncology 2024 5 100067 10.1016/j.esmorw.2024.100067
    [Google Scholar]
  39. Hogervorst M.A. Soman K.V. Gardarsdottir H. Goettsch W.G. Bloem L.T. Analytical methods for comparing uncontrolled trials with external controls from real-world data: A systematic literature review and comparison with European regulatory and health technology assessment practice. Value Health 2024 10.1016/j.jval.2024.08.002 39241824
    [Google Scholar]
  40. Wang Q. Chen Z. Zhou Y. Liu Z. Peng Z. Real-time monitoring and optimization of machine learning intelligent control system in power data modeling technology. Mach. Learn. Appl. 2024 18 100584 10.1016/j.mlwa.2024.100584
    [Google Scholar]
  41. Adams M.C.B. Griffin C. Adams H. Bryant S. Hurley R.W. Topaloglu U. Adapting the open-source Gen3 platform and kubernetes for the NIH HEAL IMPOWR and MIRHIQL clinical trial data commons: Customization, cloud transition, and optimization. J. Biomed. Inform. 2024 159 104749 10.1016/j.jbi.2024.104749 39510367
    [Google Scholar]
  42. Martin J.P. Beighley P. Hiriak D.C. Spadafore E.D. Beringer K.C. 82 Internet security in clinical trial data management systems. Control. Clin. Trials 1997 18 3 Suppl. 1 S92 10.1016/S0197‑2456(97)91067‑9 9204224
    [Google Scholar]
  43. Lee A.J. Kim K.W. Shin Y. Lee J. Park H.J. Cho Y.C. Ko Y. Sung Y.S. Yoon B.S. CDISC-compliant clinical trial imaging management system with automatic verification and data Transformation: Focusing on tumor response assessment data in clinical trials. J. Biomed. Inform. 2021 117 103782 10.1016/j.jbi.2021.103782 33839303
    [Google Scholar]
  44. Kiuchi T. Ohashi Y. Konishi M. Bandai Y. Kosuge T. Kakizoe T. A world wide web-based user interface for a data management system for use in multi-institutional clinical trials—Development and experimental operation of an automated patient registration and random allocation system. Control. Clin. Trials 1996 17 6 476 493 10.1016/S0197‑2456(96)00104‑3 8974208
    [Google Scholar]
  45. Nourani A. Ayatollahi H. Dodaran M.S. Clinical trial data management software: A review of the technical features. Rev. Recent Clin. Trials 2019 14 3 160 172 10.2174/1574887114666190207151500 30734683
    [Google Scholar]
  46. Li Y.H. Li Y.L. Wei M.Y. Li G.Y. Innovation and challenges of artificial intelligence technology in personalized healthcare. Sci. Rep. 2024 14 1 18994 10.1038/s41598‑024‑70073‑7 39152194
    [Google Scholar]
  47. Raimundo R. Rosário A. The impact of artificial intelligence on data system security: A literature review. Sensors 2021 21 21 7029 10.3390/s21217029 34770336
    [Google Scholar]
  48. Ye J. Woods D. Jordan N. Starren J. The role of artificial intelligence for the application of integrating electronic health records and patient-generated data in clinical decision support. AMIA Jt. Summits Transl. Sci. Proc. 2024 2024 459 467 38827061
    [Google Scholar]
  49. Ahmed N. Ngadi A. Sharif J.M. Hussain S. Uddin M. Rathore M.S. Iqbal J. Abdelhaq M. Alsaqour R. Ullah S.S. Zuhra F.T. Network threat detection using machine/deep learning in sdn-based platforms: A comprehensive analysis of state-of-the-art solutions, discussion, challenges, and future research direction. Sensors 2022 22 20 7896 10.3390/s22207896 36298244
    [Google Scholar]
  50. Jaiswal A Dwivedi P Dewang RK Handling imbalance dataset issue in insider threat detection using machine learning methods. Comput Electr Eng 2024 120 Part B 109726 10.1016/j.compeleceng.2024.109726
    [Google Scholar]
  51. Epizitone A. Moyane S.P. Agbehadji I.E. A systematic literature review of health information systems for healthcare. Healthcare 2023 11 7 959 10.3390/healthcare11070959 37046884
    [Google Scholar]
  52. Al Kuwaiti A. Nazer K. Al-Reedy A. Al-Shehri S. Al-Muhanna A. Subbarayalu A.V. Al Muhanna D. Al-Muhanna F.A. A review of the role of artificial intelligence in healthcare. J. Pers. Med. 2023 13 6 951 10.3390/jpm13060951 37373940
    [Google Scholar]
  53. Figueroa-Lorenzo S. Añorga J. Arrizabalaga S. A role-based access control model in modbus scada systems. a centralized model approach. Sensors 2019 19 20 4455 10.3390/s19204455 31615147
    [Google Scholar]
  54. Suleski T. Ahmed M. Yang W. Wang E. A review of multi-factor authentication in the internet of healthcare things. Digit. Health 2023 9 20552076231177144 10.1177/20552076231177144 37252257
    [Google Scholar]
  55. Bamashmos S. Chilamkurti N. Shahraki A.S. Two-layered multi-factor authentication using decentralized blockchain in an IoT environment. Sensors 2024 24 11 3575 10.3390/s24113575 38894368
    [Google Scholar]
  56. Zhou N. Zhang C.T. Lv H.Y. Hao C.X. Li T.J. Zhu J.J. Zhu H. Jiang M. Liu K.W. Hou H.L. Liu D. Li A.Q. Zhang G.Q. Tian Z.B. Zhang X.C. Concordance study between ibm watson for oncology and clinical practice for patients with cancer in china. Oncologist 2019 24 6 812 819 10.1634/theoncologist.2018‑0255 30181315
    [Google Scholar]
  57. Somashekhar S.P. Sepúlveda M.J. Norden A.D. Rauthan A. Arun K. Patil P. Ethadka R.Y. Kumar R.C. Early experience with IBM Watson for Oncology (WFO) cognitive computing system for lung and colorectal cancer treatment. J. Clin. Oncol. 2017 35 15_suppl Suppl. 15 8527 10.1200/JCO.2017.35.15_suppl.8527
    [Google Scholar]
  58. Jie Z. Zhiying Z. Li L. A meta-analysis of watson for oncology in clinical application. Sci. Rep. 2021 11 1 5792 10.1038/s41598‑021‑84973‑5 33707577
    [Google Scholar]
  59. Hamilton J.G. Genoff Garzon M. Westerman J.S. Shuk E. Hay J.L. Walters C. Elkin E. Bertelsen C. Cho J. Daly B. Gucalp A. Seidman A.D. Zauderer M.G. Epstein A.S. Kris M.G. “A tool, not a crutch”: Patient perspectives about IBM Watson for Oncology trained by Memorial Sloan Kettering. J. Oncol. Pract. 2019 15 4 e277 e288 10.1200/JOP.18.00417 30689492
    [Google Scholar]
  60. Park T. Gu P. Kim C.H. Kim K.T. Chung K.J. Kim T.B. Jung H. Yoon S.J. Oh J.K. Artificial intelligence in urologic oncology: The actual clinical practice results of IBM Watson for Oncology in South Korea. Prostate Int. 2023 11 4 218 221 10.1016/j.prnil.2023.09.001 38196551
    [Google Scholar]
  61. Zou K.H. Li J.Z. Enhanced patient-centricity: How the biopharmaceutical industry is optimizing patient care through AI/ML/DL. Healthcare 2022 10 10 1997 10.3390/healthcare10101997 36292444
    [Google Scholar]
  62. Mudgal S.K. Agarwal R. Chaturvedi J. Gaur R. Ranjan N. Real-world application, challenges and implication of artificial intelligence in healthcare: An essay. Pan Afr. Med. J. 2022 43 3 10.11604/pamj.2022.43.3.33384 36284890
    [Google Scholar]
  63. Zou K.H. Berger M.L. Real-world data and real-world evidence in healthcare in the united states and europe union. Bioengineering 2024 11 8 784 10.3390/bioengineering11080784 39199742
    [Google Scholar]
  64. de Zegher I. Norak K. Steiger D. Müller H. Kalra D. Scheenstra B. Cina I. Schulz S. Uma K. Kalendralis P. Lotman E-M. Benedikt M. Dumontier M. Celebi R. Artificial intelligence based data curation: Enabling a patient-centric European health data space. Front. Med. 2024 11 1365501 10.3389/fmed.2024.1365501 38813389
    [Google Scholar]
  65. Han R. Acosta J.N. Shakeri Z. Ioannidis J.P.A. Topol E.J. Rajpurkar P. Randomised controlled trials evaluating artificial intelligence in clinical practice: A scoping review. Lancet Digit. Health 2024 6 5 e367 e373 10.1016/S2589‑7500(24)00047‑5 38670745
    [Google Scholar]
  66. Fernando K. Menon S. Jansen K. Naik P. Nucci G. Roberts J. Wu S.S. Dolsten M. Achieving end-to-end success in the clinic: pfizer’s learnings on r&d productivity. Drug Discov. Today 2022 27 3 697 704 10.1016/j.drudis.2021.12.010 34922020
    [Google Scholar]
  67. Sharma A. Virmani T. Pathak V. Sharma A. Pathak K. Kumar G. Pathak D. Artificial intelligence‐based data‐driven strategy to accelerate research, development, and clinical trials of covid vaccine. BioMed Res. Int. 2022 2022 1 7205241 10.1155/2022/7205241 35845955
    [Google Scholar]
  68. Vora L.K. Gholap A.D. Jetha K. Thakur R.R.S. Solanki H.K. Chavda V.P. Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics 2023 15 7 1916 10.3390/pharmaceutics15071916 37514102
    [Google Scholar]
  69. Peckham O. Pfizer Discusses Use of Supercomputing and AI for Covid Drug Development. 2024 Available from: (accessed on 12 Nov 2024).https://www.hpcwire.com/2022/03/24/pfizer-discusses-use-of-supercomputing-and-ai-for-covid-drug-development
  70. Pfizer Cuts Downtime by Moving to Proficy CSense Predictive Maintenance. 2024 Pfizer Preventive Mainteinance AI Available from:(accessed on 12 Nov 2024). https://www.ge.com/digital/customers/pfizer-cuts-downtime-moving-predictive-maintenance
    [Google Scholar]
  71. DiMasi J.A. Smith Z. Oakley-Girvan I. Mackinnon A. Costello M. Tenaerts P. Getz K.A. Assessing the financial value of decentralized clinical trials. Ther. Innov. Regul. Sci. 2023 57 2 209 219 10.1007/s43441‑022‑00454‑5 36104654
    [Google Scholar]
  72. Park J. Huh K.Y. Chung W.K. Yu K.S. The landscape of decentralized clinical trials (DCTs): Focusing on the FDA and EMA guidance. Transl. Clin. Pharmacol. 2024 32 1 41 51 10.12793/tcp.2024.32.e2 38586122
    [Google Scholar]
  73. Petrini C. Mannelli C. Riva L. Gainotti S. Gussoni G. Decentralized clinical trials (DCTs): A few ethical considerations. Front. Public Health 2022 10 1081150 10.3389/fpubh.2022.1081150 36590004
    [Google Scholar]
  74. Singh P. Burden A.M. Natanegara F. Beckman R.A. Design and execution of sustainable decentralized clinical trials. Clin. Pharmacol. Ther. 2023 114 4 802 809 10.1002/cpt.3009 37489911
    [Google Scholar]
  75. Daly B. Brawley O.W. Gospodarowicz M.K. Olopade O.I. Fashoyin-Aje L. Smart V.W. Chang I.F. Tendler C.L. Kim G. Fuchs C.S. Beg M.S. Zhang L. Legos J.J. Duran C.O. Kalidas C. Qian J. Finnegan J. Pilarski P. Keane H. Shen J. Silverstein A. Wu Y.L. Pazdur R. Li B.T. Remote monitoring and data collection for decentralized clinical trials. JAMA Netw. Open 2024 7 4 e246228 10.1001/jamanetworkopen.2024.6228 38607626
    [Google Scholar]
  76. Ghiandoni G.M. Evertsson E. Riley D.J. Tyrchan C. Rathi P.C. Augmenting DMTA using predictive ai modelling at astrazeneca. Drug Discov. Today 2024 29 4 103945 10.1016/j.drudis.2024.103945 38460568
    [Google Scholar]
  77. Kent C. Coupland B. Barnard C. Schofield J. Afif-Rider S. The evolution of send at astrazeneca. Regul. Toxicol. Pharmacol. 2021 123 104954 10.1016/j.yrtph.2021.104954 33974947
    [Google Scholar]
  78. Cabrera C. Fernández-Llaneza D. Ghazoui Z. D’Abrantes S. Esparza-Franco M.A. Sopp C. Maj B. Chiou V.L. Valastro B. Pangalos M.N. Galbraith S. Ghiorghiu S. Massacesi C. Diversity of us participants in astrazeneca-sponsored clinical trials. Contemp. Clin. Trials 2024 140 107496 10.1016/j.cct.2024.107496 38467274
    [Google Scholar]
  79. Kotecha D. Asselbergs F.W. Achenbach S. Anker S.D. Atar D. Baigent C. Banerjee A. Beger B. Brobert G. Casadei B. Ceccarelli C. Cowie M.R. Crea F. Cronin M. Denaxas S. Derix A. Fitzsimons D. Fredriksson M. Gale C.P. Gkoutos G.V. Goettsch W. Hemingway H. Ingvar M. Jonas A. Kazmierski R. Løgstrup S. Lumbers R.T. Lüscher T.F. McGreavy P. Piña I.L. Roessig L. Steinbeisser C. Sundgren M. Tyl B. Thiel G. Bochove K. Vardas P.E. Villanueva T. Vrana M. Weber W. Weidinger F. Windecker S. Wood A. Grobbee D.E. CODE-EHR best-practice framework for the use of structured electronic health-care records in clinical research. Lancet Digit. Health 2022 4 10 e757 e764 Innovative Medicines Initiative BigData@Heart Consortium, European Society of Cardiology, and CODE-EHR International Consensus Group 10.1016/S2589‑7500(22)00151‑0 36050271
    [Google Scholar]
  80. Wilson A. Saeed H. Pringle C. Eleftheriou I. Bromiley P.A. Brass A. Artificial intelligence projects in healthcare: 10 practical tips for success in a clinical environment. BMJ Health Care Inform. 2021 28 1 e100323 10.1136/bmjhci‑2021‑100323 34326160
    [Google Scholar]
  81. Abba S. Bizi A.M. Lee J.A. Bakouri S. Crespo M.L. Real-time object detection, tracking, and monitoring framework for security surveillance systems. Heliyon 2024 10 15 e34922 10.1016/j.heliyon.2024.e34922 39145028
    [Google Scholar]
  82. Fan Y. Wang X. Funk T. Rashid I. Herman B. Bompoti N. Mahmud M.D.S. Chrysochoou M. Yang M. Vadas T.M. Lei Y. Li B. A critical review for real-time continuous soil monitoring: Advantages, challenges, and perspectives. Environ. Sci. Technol. 2022 56 19 13546 13564 10.1021/acs.est.2c03562 36121207
    [Google Scholar]
  83. TrialAssure: Clinical Data Transparency Software Leader (2024) TrialAssure. https://www.trialassure.com/(accessed on 12 Nov 2024).
  84. Afroz M.A. Schwarber G. Bhuiyan M.A.N. Risk-based centralized data monitoring of clinical trials at the time of COVID-19 pandemic. Contemp. Clin. Trials 2021 104 106368 10.1016/j.cct.2021.106368 33775899
    [Google Scholar]
  85. Kang S.L. Woo J.H. Kim N.H. Kwon J.Y. Kim S.M. Necessity of strengthening the current clinical regulatory for companion diagnostics: An institutional comparison of the FDA, EMA, and MFDS. Mol. Ther. Methods Clin. Dev. 2023 30 447 458 10.1016/j.omtm.2023.08.008 37663648
    [Google Scholar]
  86. Zahidi F. Kaluvilla B.B. Mulla T. Embracing the new era: Artificial intelligence and its multifaceted impact on the hospitality industry. J. Open Innov. 2024 10 4 100390 10.1016/j.joitmc.2024.100390
    [Google Scholar]
  87. Aljohani A. Innovative risk management in clinical laboratories: Embracing technological and methodological advancements. Clin. Chim. Acta 2024 558 Suppl. 1 118706 10.1016/j.cca.2024.118706
    [Google Scholar]
  88. Elendu C. Amaechi D.C. Elendu T.C. Jingwa K.A. Okoye O.K. John Okah M. Ladele J.A. Farah A.H. Alimi H.A. Ethical implications of AI and robotics in healthcare: A review. Medicine 2023 102 50 e36671 10.1097/MD.0000000000036671 38115340
    [Google Scholar]
  89. Ueda D. Kakinuma T. Fujita S. Kamagata K. Fushimi Y. Ito R. Matsui Y. Nozaki T. Nakaura T. Fujima N. Tatsugami F. Yanagawa M. Hirata K. Yamada A. Tsuboyama T. Kawamura M. Fujioka T. Naganawa S. Fairness of artificial intelligence in healthcare: Review and recommendations. Jpn. J. Radiol. 2024 42 1 3 15 10.1007/s11604‑023‑01474‑3 37540463
    [Google Scholar]
  90. Harishbhai Tilala M. Kumar Chenchala P. Choppadandi A. Kaur J. Naguri S. Saoji R. Devaguptapu B. Ethical considerations in the use of artificial intelligence and machine learning in health care: A comprehensive review. Cureus 2024 16 6 e62443 10.7759/cureus.62443 39011215
    [Google Scholar]
  91. Powell S.K. HIPAA. Lippincotts Case Manag. 2003 8 1 1 2 10.1097/00129234‑200301000‑00001 12555037
    [Google Scholar]
  92. Gayler B.W. HIPAA regulations. J. Am. Coll. Radiol. 2005 2 2 200 201 10.1016/j.jacr.2004.12.003 17411795
    [Google Scholar]
  93. Schoppmann M.J. Sanders D.L. HIPAA compliance: The law, reality, and recommendations. J. Am. Coll. Radiol. 2004 1 10 728 733 10.1016/j.jacr.2004.03.017 17411692
    [Google Scholar]
  94. Bradley D. HIPAA compliance efforts. Pediatr. Emerg. Care 2004 20 1 68 70 10.1097/01.pec.0000106246.72265.aa 14716172
    [Google Scholar]
  95. Nulan C. HIPAA--a real world perspective. Radiol. Manage. 2001 23 2 29 37 11302064
    [Google Scholar]
  96. Davit B.M. Kanfer I. Tsang Y.C. Cardot J.M. BCS Biowaivers: Similarities and differences among EMA, FDA, and WHO requirements. AAPS J. 2016 18 3 612 618 10.1208/s12248‑016‑9877‑2 26943914
    [Google Scholar]
  97. Kang S.L. Kwon J.Y. Kim S.M. Insights into post-marketing clinical validation of companion diagnostics with reference to the FDA, EMA, PMDA, and MFDS. Mol. Ther. Methods Clin. Dev. 2024 32 4 101346 10.1016/j.omtm.2024.101346 39429725
    [Google Scholar]
  98. Lu X. Yang C. Liang L. Hu G. Zhong Z. Jiang Z. Artificial intelligence for optimizing recruitment and retention in clinical trials: A scoping review. J. Am. Med. Inform. Assoc. 2024 31 11 2749 2759 10.1093/jamia/ocae243 39259922
    [Google Scholar]
  99. Guerra-Farfan E. Garcia-Sanchez Y. Jornet-Gibert M. Nuñez J.H. Balaguer-Castro M. Madden K. Clinical practice guidelines: The good, the bad, and the ugly. Injury 2023 54 Suppl. 3 S26 S29 10.1016/j.injury.2022.01.047 35135686
    [Google Scholar]
  100. Braverman D. Good clinical practice (GCP). Encyclopedia of Toxicology. Wexler P. Academic Press 2024 37 44 10.1016/B978‑0‑12‑824315‑2.00220‑7
    [Google Scholar]
  101. Cecchini M. Rubin E.H. Blumenthal G.M. Ayalew K. Burris H.A. Russell-Einhorn M. Dillon H. Lyerly H.K. Reaman G.H. Boerner S. LoRusso P.M. Challenges with novel clinical trial designs: Master protocols. Clin. Cancer Res. 2019 25 7 2049 2057 10.1158/1078‑0432.CCR‑18‑3544 30696689
    [Google Scholar]
  102. Kaizer A.M. Belli H.M. Ma Z. Nicklawsky A.G. Roberts S.C. Wild J. Wogu A.F. Xiao M. Sabo R.T. Recent innovations in adaptive trial designs: A review of design opportunities in translational research. J. Clin. Transl. Sci. 2023 7 1 e125 10.1017/cts.2023.537 37313381
    [Google Scholar]
  103. Weiss A. Lopez N.E. Ward E.P. Lee K.C. Caudle A.S. Dickson-Witmer D. Chang C. Kelly K. Martin L.W. Jacobs L.K. Hunt K.K. Yao K. Blair S.L. Challenges in clinical trial implementation: Results from a survey of the national accreditation program of breast centers (NAPBC). Ann. Surg. Oncol. 2019 26 13 4364 4371 10.1245/s10434‑019‑07807‑9 31625045
    [Google Scholar]
  104. Shi J. Xiao Y. Zhang Y. Geng D. Cong D. Shi K.X. Knapp R.J. Challenges of drug development during the COVID‐19 pandemic: Key considerations for clinical trial designs. Br. J. Clin. Pharmacol. 2021 87 5 2170 2185 10.1111/bcp.14629 33119136
    [Google Scholar]
  105. Ratnaparkhi R. Doolittle G.C. Krebill H. Springer M. Calhoun E. Jewell A. Mudaranthakam D.P. Screening log: Challenges in community patient recruitment for gynecologic oncology clinical trials. Contemp. Clin. Trials Commun. 2024 42 101379 10.1016/j.conctc.2024.101379 39421148
    [Google Scholar]
  106. Ryu J. Kang D. Lee H. Kim H. Won D. A Secure and Lightweight Three-Factor-Based Authentication Scheme for Smart Healthcare Systems. Sensors 2020 20 24 7136 10.3390/s20247136 33322813
    [Google Scholar]
  107. Xie Q. Liu D. Ding Z. Tan X. Han L. Provably secure and lightweight patient monitoring protocol for wireless body area network in IoHT. J. Healthc. Eng. 2023 2023 1 4845850 10.1155/2023/4845850 36814548
    [Google Scholar]
  108. Tuzon C.T. Richmond F.J.R. Challenges to clinical trial design for emerging regenerative technologies. Encyclopedia of Tissue Engineering and Regenerative Medicine. Reis R.L. Academic Press 2019 123 130 10.1016/B978‑0‑12‑801238‑3.65584‑8
    [Google Scholar]
  109. Mitchell E.J. Goodman K. Wakefield N. Cochran C. Cockayne S. Connolly S. Desai R. Hartley S. Lawton S.A. Oatey K. Rhodes S. Savage J.S. Taylor J. Youssouf N.F.J. Mitchell E. Goodman K. Wakefield N. Cochran C. Cockayne S. Connolly S. Desai R. Fletcher L. Hartley S. Lawton S. Lee R. Oatey K. Rhodes S. Savage J. Taylor J. Youssouf N. UK Trial Managers’ Network Clinical trial management: A profession in crisis? Trials 2022 23 1 357 UK Trial Managers’ Network. 10.1186/s13063‑022‑06315‑8 35477835
    [Google Scholar]
  110. Farhat A. Voidey A. Sommer I. Carrez L. Sadeghipour F. Optimizing pharmaceutical management of clinical trials. Ann. Pharm. Fr. 2024 82 2 285 291 10.1016/j.pharma.2023.12.010 38157980
    [Google Scholar]
  111. Lämmermann L. Hofmann P. Urbach N. Managing artificial intelligence applications in healthcare: Promoting information processing among stakeholders. Int. J. Inf. Manage. 2024 75 102728 10.1016/j.ijinfomgt.2023.102728
    [Google Scholar]
  112. Chilkoti D.C. Chapter 25- Stakeholders, resources, and documents in clinical research. Clinical Pharmacy Education, Practice and Research. Thomas D. Elsevier 2019 365 377 10.1016/B978‑0‑12‑814276‑9.00025‑8
    [Google Scholar]
  113. Johnson S.B. Farach F.J. Pelphrey K. Rozenblit L. Data management in clinical research: Synthesizing stakeholder perspectives. J. Biomed. Inform. 2016 60 286 293 10.1016/j.jbi.2016.02.014 26925516
    [Google Scholar]
/content/journals/rrct/10.2174/0115748871371119250818102753
Loading
/content/journals/rrct/10.2174/0115748871371119250818102753
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test