Skip to content
2000
image of Somatic Mutations Profiling in Genes Other than BRCA and TP53 Increasing Breast Carcinoma Risk Among Pakistani Patients

Abstract

Introduction

Breast cancer is a very common disease affecting females on a global scale. It is responsible for approximately 10% of breast cancer-related fatalities. In 2022, approximately 2,308,897 new cases were reported globally. Recent studies focused on breast tumors have successfully recognized somatic mutations. This study aimed to identify previously unidentified somatic mutations in breast cancer patients belonging to Pakistan.

Methods

The breast tumor sample was obtained from Jinnah Hospital, Lahore. The DNA was extracted, and whole-exome sequencing was conducted on six samples.

Results

Gene mutations found include 58.69% synonymous SNV, 28.37% nonsynonymous SNV, 3.89% Frameshift deletion, 6.68% Nonframeshift deletion, 2.09% stopgain, and 0.28% stop loss. Among 39 genes analyzed, the prevalence of gene mutations varied, with HYDIN (100%), ENTHD1 (33.33%), ADRA1B (66.67%), GATA3 (50%), CDH1 (16.67%), RB1 (50%), MAP3K1 (100%), EGFR (50%), TRPM6 (33.33%), KHDRBS1 (33.33%), RBM25 (66.67%), SF3B3 (50%), TEK (16.67%), PGK2 (33.33%), CBFB (33.33%), ARID1A (66.67%), KMT2C (100%), HECTD1 (100%), LAMA3 (66.67%), FLG2 (83.33%), UGT2B4 (16.67%), STK33 (66.67%), ACP4 (50%), DNAH8 (100%), TNN (66.67%), IGSF3 (100%), TRIM67 (83.33%), DNMBP (100%), CORO7 (16.67%), CDC27 (33.33%), ZNF544 (50%), MST1 (16.67%), DENND2A (33.33%), NCKAP5 (50%), PCDHB10 (50%), FBXW7 (50%), EIF4G3 (66.67%), IL12RB2 (50%), and PDE4B (50%).

Discussion

Breast cancer is a fatal disease. The high frequency of synonymous mutations was observed. The HYDIN, MAP3K1, KMT2C, HECTD1, DNAH8, IGSF3, DNMBP genes were 100% mutated then other genes.

Conclusion

This study unveils new somatic alterations in different genes among early-onset Pakistani breast cancer patients, offering valuable insights for drug design targeting breast carcinoma.

Loading

Article metrics loading...

/content/journals/rrct/10.2174/0115748871370059250721143244
2025-07-31
2025-09-15
Loading full text...

Full text loading...

References

  1. Siegel R. Ma J. Zou Z. Jemal A. Cancer statistics, 2014. CA Cancer J. Clin. 2014 64 1 9 29 10.3322/caac.21208 24399786
    [Google Scholar]
  2. Galappaththi S.P.L. Smith K.R. Alsatari E.S. Hunter R. Dyess D.L. Turbat-Herrera E.A. Dasgupta S. The genomic and biologic landscapes of breast cancer and racial differences. Int. J. Mol. Sci. 2024 25 23 13165 10.3390/ijms252313165 39684874
    [Google Scholar]
  3. Jaiyesimi I.A. Buzdar A.U. Hortobagyi G. Inflammatory breast cancer: A review. J. Clin. Oncol. 1992 10 6 1014 1024 10.1200/JCO.1992.10.6.1014 1588366
    [Google Scholar]
  4. Anderson W.F. Schairer C. Chen B.E. Hance K.W. Levine P.H. Epidemiology of inflammatory breast cancer (IBC). Breast Dis. 2006 22 1 9 23 10.3233/BD‑2006‑22103 16735783
    [Google Scholar]
  5. Levine P.H. Steinhorn S.C. Ries L.G. Aron J.L. Inflammatory breast cancer: The experience of the surveillance, epidemiology, and end results (SEER) program. J. Natl. Cancer Inst. 1985 74 2 291 297 3856043
    [Google Scholar]
  6. Hance K.W. Anderson W.F. Devesa S.S. Young H.A. Levine P.H. Trends in inflammatory breast carcinoma incidence and survival: The surveillance, epidemiology, and end results program at the National Cancer Institute. J. Natl. Cancer Inst. 2005 97 13 966 975 10.1093/jnci/dji172 15998949
    [Google Scholar]
  7. Brewer T.M. Masuda H. Liu D.D. Shen Y. Liu P. Iwamoto T. Kai K. Barnett C.M. Woodward W.A. Reuben J.M. Yang P. Hortobagyi G.N. Ueno N.T. Statin use in primary inflammatory breast cancer: A cohort study. Br. J. Cancer 2013 109 2 318 324 10.1038/bjc.2013.342 23820253
    [Google Scholar]
  8. Beňačka R. Szabóová D. Guľašová Z. Hertelyová Z. Radoňák J. Classic and new markers in diagnostics and classification of breast cancer. Cancers 2022 14 21 5444 10.3390/cancers14215444 36358862
    [Google Scholar]
  9. Curtis C. Shah S.P. Chin S.F. Turashvili G. Rueda O.M. Dunning M.J. Speed D. Lynch A.G. Samarajiwa S. Yuan Y. Gräf S. Ha G. Haffari G. Bashashati A. Russell R. McKinney S. Langerød A. Green A. Provenzano E. Wishart G. Pinder S. Watson P. Markowetz F. Murphy L. Ellis I. Purushotham A. Børresen-Dale A.L. Brenton J.D. Tavaré S. Caldas C. Aparicio S. METABRIC Group The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012 486 7403 346 352 10.1038/nature10983 22522925
    [Google Scholar]
  10. Cancer Genome Atlas Network Comprehensive molecular portraits of human breast tumours. Nature 2012 490 7418 61 70 10.1038/nature11412 23000897
    [Google Scholar]
  11. Perou CM Sørlie T Eisen MB Van De Rijn M Jeffrey SS Rees CA Molecular portraits of human breast tumours. Nature 2000 406 6797 747 10.1038/35021093
    [Google Scholar]
  12. Sjoblom T Jones S Wood LD Parsons DW Lin J Barber TD The consensus coding sequences of human breast and colorectal cancers. Science. 2006 4 5797 268 10.1126/science.1133427.
    [Google Scholar]
  13. Stephens P.J. Tarpey P.S. Davies H. Van Loo P. Greenman C. Wedge D.C. Nik-Zainal S. Martin S. Varela I. Bignell G.R. Yates L.R. Papaemmanuil E. Beare D. Butler A. Cheverton A. Gamble J. Hinton J. Jia M. Jayakumar A. Jones D. Latimer C. Lau K.W. McLaren S. McBride D.J. Menzies A. Mudie L. Raine K. Rad R. Spencer Chapman M. Teague J. Easton D. Langerød A. Lee M.T.M. Shen C.Y. Tee B.T.K. Huimin B.W. Broeks A. Vargas A.C. Turashvili G. Martens J. Fatima A. Miron P. Chin S.F. Thomas G. Boyault S. Mariani O. Lakhani S.R. van de Vijver M. van ’t Veer L. Foekens J. Desmedt C. Sotiriou C. Tutt A. Caldas C. Reis-Filho J.S. Aparicio S.A.J.R. Salomon A.V. Børresen-Dale A.L. Richardson A.L. Campbell P.J. Futreal P.A. Stratton M.R. Oslo Breast Cancer Consortium (OSBREAC) The landscape of cancer genes and mutational processes in breast cancer. Nature 2012 486 7403 400 404 10.1038/nature11017 22722201
    [Google Scholar]
  14. Wood L.D. Parsons D.W. Jones S. Lin J. Sjöblom T. Leary R.J. Shen D. Boca S.M. Barber T. Ptak J. Silliman N. Szabo S. Dezso Z. Ustyanksky V. Nikolskaya T. Nikolsky Y. Karchin R. Wilson P.A. Kaminker J.S. Zhang Z. Croshaw R. Willis J. Dawson D. Shipitsin M. Willson J.K.V. Sukumar S. Polyak K. Park B.H. Pethiyagoda C.L. Pant P.V.K. Ballinger D.G. Sparks A.B. Hartigan J. Smith D.R. Suh E. Papadopoulos N. Buckhaults P. Markowitz S.D. Parmigiani G. Kinzler K.W. Velculescu V.E. Vogelstein B. The genomic landscapes of human breast and colorectal cancers. Science 2007 318 5853 1108 1113 10.1126/science.1145720 17932254
    [Google Scholar]
  15. Matsuda N. Lim B. Wang Y. Krishnamurthy S. Woodward W. Alvarez R.H. Lucci A. Valero V. Reuben J.M. Meric-Bernstam F. Ueno N.T. Identification of frequent somatic mutations in inflammatory breast cancer. Breast Cancer Res. Treat. 2017 163 2 263 272 10.1007/s10549‑017‑4165‑0 28243898
    [Google Scholar]
  16. Ross J.S. Ali S.M. Wang K. Khaira D. Palma N.A. Chmielecki J. Palmer G.A. Morosini D. Elvin J.A. Fernandez S.V. Miller V.A. Stephens P.J. Cristofanilli M. Comprehensive genomic profiling of inflammatory breast cancer cases reveals a high frequency of clinically relevant genomic alterations. Breast Cancer Res. Treat. 2015 154 1 155 162 10.1007/s10549‑015‑3592‑z 26458824
    [Google Scholar]
  17. Liang X. Vacher S. Boulai A. Bernard V. Baulande S. Bohec M. Bièche I. Lerebours F. Callens C. Targeted next-generation sequencing identifies clinically relevant somatic mutations in a large cohort of inflammatory breast cancer. Breast Cancer Res. 2018 20 1 88 10.1186/s13058‑018‑1007‑x 30086764
    [Google Scholar]
  18. Hamm C.A. Moran D. Rao K. Trusk P.B. Pry K. Sausen M. Jones S. Velculescu V.E. Cristofanilli M. Bacus S. Genomic and immunological tumor profiling identifies targetable pathways and extensive CD8+/PDL1+ immune infiltration in inflammatory breast cancer tumors. Mol. Cancer Ther. 2016 15 7 1746 1756 10.1158/1535‑7163.MCT‑15‑0353 27196778
    [Google Scholar]
  19. Bertucci F. Rypens C. Finetti P. Guille A. Adélaïde J. Monneur A. Carbuccia N. Garnier S. Dirix P. Gonçalves A. Vermeulen P. Debeb B.G. Wang X. Dirix L. Ueno N.T. Viens P. Cristofanilli M. Chaffanet M. Birnbaum D. Van Laere S. NOTCH and DNA repair pathways are more frequently targeted by genomic alterations in inflammatory than in non‐inflammatory breast cancers. Mol. Oncol. 2020 14 3 504 519 10.1002/1878‑0261.12621 31854063
    [Google Scholar]
  20. Winn J.S. Hasse Z. Slifker M. Pei J. Arisi-Fernandez S.M. Talarchek J.N. Obeid E. Baldwin D.A. Gong Y. Ross E. Cristofanilli M. Alpaugh R.K. Fernandez S.V. Genetic variants detected using cell-free DNA from blood and tumor samples in patients with inflammatory breast cancer. Int. J. Mol. Sci. 2020 21 4 1290 10.3390/ijms21041290 32075053
    [Google Scholar]
  21. Bingham C. Fernandez S.V. Fittipaldi P. Dempsey P.W. Ruth K.J. Cristofanilli M. Katherine Alpaugh R. Mutational studies on single circulating tumor cells isolated from the blood of inflammatory breast cancer patients. Breast Cancer Res. Treat. 2017 163 2 219 230 10.1007/s10549‑017‑4176‑x 28271309
    [Google Scholar]
  22. Abdulrahman G.O. Jr Rahman G.A. Epidemiology of breast cancer in europe and Africa. J. Cancer Epidemiol. 2012 2012 1 1 5 10.1155/2012/915610 22693503
    [Google Scholar]
  23. Henderson B.E. Lee N.H. Seewaldt V. Shen H. The influence of race and ethnicity on the biology of cancer. Nat. Rev. Cancer 2012 12 9 648 653 10.1038/nrc3341 22854838
    [Google Scholar]
  24. Charan M. Verma A.K. Hussain S. Misri S. Mishra S. Majumder S. Ramaswamy B. Ahirwar D. Ganju R.K. Molecular and cellular factors associated with racial disparity in breast cancer. Int. J. Mol. Sci. 2020 21 16 5936 10.3390/ijms21165936 32824813
    [Google Scholar]
  25. Sparano J.A. Brawley O.W. Deconstructing racial and ethnic disparities in breast cancer. JAMA Oncol. 2021 7 3 355 356 10.1001/jamaoncol.2020.7113 33475709
    [Google Scholar]
  26. Stringer-Reasor E.M. Elkhanany A. Khoury K. Simon M.A. Newman L.A. Disparities in breast cancer associated with African American Identity. Am Soc Clin Oncol Educ Book. 2021 41 e29 10.1200/EDBK_319929
    [Google Scholar]
  27. Broët P. Dalmasso C. Tan E.H. Alifano M. Zhang S. Wu J. Lee M.H. Régnard J.F. Lim D. Koong H.N. Agasthian T. Miller L.D. Lim E. Camilleri-Broët S. Tan P. Genomic profiles specific to patient ethnicity in lung adenocarcinoma. Clin. Cancer Res. 2011 17 11 3542 3550 10.1158/1078‑0432.CCR‑10‑2185 21521776
    [Google Scholar]
  28. Lamy P.J. Jacot W. Worldwide variations in EGFR somatic mutations: A challenge for personalized medicine. Diagn. Pathol. 2012 7 1 13 10.1186/1746‑1596‑7‑13 22293080
    [Google Scholar]
  29. Daly M.B. Pilarski R. Yurgelun M.B. Berry M.P. Buys S.S. Dickson P. Domchek S.M. Elkhanany A. Friedman S. Garber J.E. Goggins M. Hutton M.L. Khan S. Klein C. Kohlmann W. Kurian A.W. Laronga C. Litton J.K. Mak J.S. Menendez C.S. Merajver S.D. Norquist B.S. Offit K. Pal T. Pederson H.J. Reiser G. Shannon K.M. Visvanathan K. Weitzel J.N. Wick M.J. Wisinski K.B. Dwyer M.A. Darlow S.D. NCCN guidelines insights: Genetic/familial high-risk assessment: Breast, ovarian, and pancreatic, version 1.2020: featured updates to the NCCN guidelines. J. Natl. Compr. Canc. Netw. 2020 18 4 380 391 10.6004/jnccn.2020.0017 32259785
    [Google Scholar]
  30. Wang C. Zhang J. Wang Y. Ouyang T. Li J. Wang T. Fan Z. Fan T. Lin B. Xie Y. Prevalence of BRCA1 mutations and responses to neoadjuvant chemotherapy among BRCA1 carriers and non-carriers with triple-negative breast cancer. Ann. Oncol. 2015 26 3 523 528 10.1093/annonc/mdu559 25480878
    [Google Scholar]
  31. Lipponen P. Aaltomaa S. Kosma V.M. Syrjänen K. Apoptosis in breast cancer as related to histopathological characteristics and prognosis. Eur. J. Cancer 1994 30 14 2068 2073 10.1016/0959‑8049(94)00342‑3 7857705
    [Google Scholar]
  32. Engstrøm M.J. Opdahl S. Hagen A.I. Romundstad P.R. Akslen L.A. Haugen O.A. Vatten L.J. Bofin A.M. Molecular subtypes, histopathological grade and survival in a historic cohort of breast cancer patients. Breast Cancer Res. Treat. 2013 140 3 463 473 10.1007/s10549‑013‑2647‑2 23901018
    [Google Scholar]
  33. Onitilo A.A. Engel J.M. Greenlee R.T. Mukesh B.N. Breast cancer subtypes based on ER/PR and Her2 expression: comparison of clinicopathologic features and survival. Clin. Med. Res. 2009 7 1-2 4 13 10.3121/cmr.2008.825 19574486
    [Google Scholar]
  34. Köchl S. Niederstätter H. Parson W. DNA extraction and quantitation of forensic samples using the phenol-chloroform method and real-time PCR. Forensic DNA typing protocols. Springer 2005 13 29
    [Google Scholar]
  35. Sambrook J Russell DW Purification of nucleic acids by extraction with phenol: Chloroform. CSH Protoc. 2006 2006 1 pdb.prot4455 10.1101/pdb.prot4
    [Google Scholar]
  36. Ghatak S. Muthukumaran R.B. Nachimuthu S.K. A simple method of genomic DNA extraction from human samples for PCR-RFLP analysis. J. Biomol. Tech. 2013 24 4 99 10.7171/jbt.13‑2404‑001 24294115
    [Google Scholar]
  37. Joshi M. Deshpande J. Polymerase chain reaction: Methods, principles and application. Int. J. Biomed. Res. 2010 2 1 81 97
    [Google Scholar]
  38. Chang Y.S. Chang C.M. Lin C.Y. Chao D.S. Huang H.Y. Chang J.G. Pathway mutations in breast cancer using whole-exome sequencing. Oncol. Res. 2020 28 2 107 116 10.3727/096504019X15698362825407 31575382
    [Google Scholar]
  39. Behring M. Vazquez A.I. Cui X. Irvin M.R. Ojesina A.I. Agarwal S. Manne U. Shrestha S. Gain of function in somatic TP53 mutations is associated with immune‐rich breast tumors and changes in tumor‐associated macrophages. Mol. Genet. Genomic Med. 2019 7 12 e1001 10.1002/mgg3.1001 31637877
    [Google Scholar]
  40. Li V.D. Li K.H. Li J.T. TP53 mutations as potential prognostic markers for specific cancers: Analysis of data from The Cancer Genome Atlas and the International Agency for Research on Cancer TP53 Database. J. Cancer Res. Clin. Oncol. 2019 145 3 625 636 10.1007/s00432‑018‑2817‑z 30542790
    [Google Scholar]
  41. Encinas G. Maistro S. Pasini F.S. Katayama M.L.H. Brentani M.M. Bock G.H. Folgueira M.A.A.K. Somatic mutations in breast and serous ovarian cancer young patients: a systematic review and meta-analysis. Rev. Assoc. Med. Bras. 2015 61 5 474 483 10.1590/1806‑9282.61.05.474 26603012
    [Google Scholar]
  42. Olivier M. Langerød A. Carrieri P. Bergh J. Klaar S. Eyfjord J. Theillet C. Rodriguez C. Lidereau R. Bièche I. Varley J. Bignon Y. Uhrhammer N. Winqvist R. Jukkola-Vuorinen A. Niederacher D. Kato S. Ishioka C. Hainaut P. Børresen-Dale A.L. The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin. Cancer Res. 2006 12 4 1157 1167 10.1158/1078‑0432.CCR‑05‑1029 16489069
    [Google Scholar]
  43. Li G. Guo X. Chen M. Tang L. Jiang H. Day J.X. Xie Y. Peng L. Xu X. Li J. Wang S. Xiao Z. Dai L. Wang J. Prevalence and spectrum of AKT1, PIK3CA, PTEN and TP53 somatic mutations in Chinese breast cancer patients. PLoS One 2018 13 9 e0203495 10.1371/journal.pone.0203495 30212483
    [Google Scholar]
  44. Bader A.G. Kang S. Vogt P.K. Cancer-specific mutations in PIK3CA are oncogenic in vivo. Proc. Natl. Acad. Sci. USA 2006 103 5 1475 1479 10.1073/pnas.0510857103 16432179
    [Google Scholar]
  45. Deng L. Zhu X. Sun Y. Wang J. Zhong X. Li J. Hu M. Zheng H. Prevalence and prognostic role of PIK3CA/AKT1 mutations in Chinese breast cancer patients. Cancer Res. Treat. 2019 51 1 128 140 10.4143/crt.2017.598 29540052
    [Google Scholar]
  46. Wu G. Xing M. Mambo E. Huang X. Liu J. Guo Z. Chatterjee A. Goldenberg D. Gollin S.M. Sukumar S. Trink B. Sidransky D. Somatic mutation and gain of copy number of PIK3CA in human breast cancer. Breast Cancer Res. 2005 7 5 R609 R616 10.1186/bcr1262 16168105
    [Google Scholar]
  47. Lai Y.L. Mau B.L. Cheng W.H. Chen H.M. Chiu H.H. Tzen C.Y. PIK3CA exon 20 mutation is independently associated with a poor prognosis in breast cancer patients. Ann. Surg. Oncol. 2008 15 4 1064 1069 10.1245/s10434‑007‑9751‑7 18183466
    [Google Scholar]
  48. Lerma E. Catasus L. Gallardo A. Peiro G. Alonso C. Aranda I. Barnadas A. Prat J. Exon 20 PIK3CA mutations decreases survival in aggressive (HER-2 positive) breast carcinomas. Virchows Arch. 2008 453 2 133 139 10.1007/s00428‑008‑0643‑4 18679714
    [Google Scholar]
  49. Pérez-Tenorio G. Alkhori L. Olsson B. Waltersson M.A. Nordenskjöld B. Rutqvist L.E. Skoog L. Stål O. PIK3CA mutations and PTEN loss correlate with similar prognostic factors and are not mutually exclusive in breast cancer. Clin. Cancer Res. 2007 13 12 3577 3584 10.1158/1078‑0432.CCR‑06‑1609 17575221
    [Google Scholar]
  50. Maruyama N. Miyoshi Y. Taguchi T. Tamaki Y. Monden M. Noguchi S. Clinicopathologic analysis of breast cancers with PIK3CA mutations in Japanese women. Clin. Cancer Res. 2007 13 2 408 414 10.1158/1078‑0432.CCR‑06‑0267 17202311
    [Google Scholar]
  51. Luo R. Chong W. Wei Q. Zhang Z. Wang C. Ye Z. Abu-Khalaf M.M. Silver D.P. Stapp R.T. Jiang W. Myers R.E. Li B. Cristofanilli M. Yang H. Whole-exome sequencing identifies somatic mutations and intratumor heterogeneity in inflammatory breast cancer. NPJ Breast Cancer 2021 7 1 72 10.1038/s41523‑021‑00278‑w 34075047
    [Google Scholar]
  52. Pereira B. Chin S.F. Rueda O.M. Vollan H.K.M. Provenzano E. Bardwell H.A. Pugh M. Jones L. Russell R. Sammut S.J. Tsui D.W.Y. Liu B. Dawson S.J. Abraham J. Northen H. Peden J.F. Mukherjee A. Turashvili G. Green A.R. McKinney S. Oloumi A. Shah S. Rosenfeld N. Murphy L. Bentley D.R. Ellis I.O. Purushotham A. Pinder S.E. Børresen-Dale A.L. Earl H.M. Pharoah P.D. Ross M.T. Aparicio S. Caldas C. Erratum: The somatic mutation profiles of 2,433 breast cancers refine their genomic and transcriptomic landscapes. Nat. Commun. 2016 7 1 11908 10.1038/ncomms11908 27264733
    [Google Scholar]
  53. Bertucci F. Ng C.K.Y. Patsouris A. Droin N. Piscuoglio S. Carbuccia N. Soria J.C. Dien A.T. Adnani Y. Kamal M. Garnier S. Meurice G. Jimenez M. Dogan S. Verret B. Chaffanet M. Bachelot T. Campone M. Lefeuvre C. Bonnefoi H. Dalenc F. Jacquet A. De Filippo M.R. Babbar N. Birnbaum D. Filleron T. Le Tourneau C. André F. Genomic characterization of metastatic breast cancers. Nature 2019 569 7757 560 564 10.1038/s41586‑019‑1056‑z 31118521
    [Google Scholar]
  54. Zhang Y. Cai Q. Shu X-O. Gao Y-T. Li C. Zheng W. Long J. Whole-exome sequencing identifies novel somatic mutations in chinese breast cancer patients. J. Mol. Genet. Med. 2015 9 4 183 10.4172/1747‑0862.1000183 26870154
    [Google Scholar]
  55. Banerji S. Cibulskis K. Rangel-Escareno C. Brown K.K. Carter S.L. Frederick A.M. Lawrence M.S. Sivachenko A.Y. Sougnez C. Zou L. Cortes M.L. Fernandez-Lopez J.C. Peng S. Ardlie K.G. Auclair D. Bautista-Piña V. Duke F. Francis J. Jung J. Maffuz-Aziz A. Onofrio R.C. Parkin M. Pho N.H. Quintanar-Jurado V. Ramos A.H. Rebollar-Vega R. Rodriguez-Cuevas S. Romero-Cordoba S.L. Schumacher S.E. Stransky N. Thompson K.M. Uribe-Figueroa L. Baselga J. Beroukhim R. Polyak K. Sgroi D.C. Richardson A.L. Jimenez-Sanchez G. Lander E.S. Gabriel S.B. Garraway L.A. Golub T.R. Melendez-Zajgla J. Toker A. Getz G. Hidalgo-Miranda A. Meyerson M. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 2012 486 7403 405 409 10.1038/nature11154 22722202
    [Google Scholar]
  56. Chubanov V. Waldegger S. Schnitzler M.M. Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc Natl Acad Sci U S A 2004 2894 9 10.1073/pnas.0305252101
    [Google Scholar]
  57. Lin Y. Kiihl S. Suhail Y. Liu S.Y. Chou Y. Kuang Z. Lu J. Khor C.N. Lin C.L. Bader J.S. Irizarry R. Boeke J.D. Functional dissection of lysine deacetylases reveals that HDAC1 and p300 regulate AMPK. Nature 2012 482 7384 251 255 10.1038/nature10804 22318606
    [Google Scholar]
  58. Futreal P.A. Coin L. Marshall M. Down T. Hubbard T. Wooster R. Rahman N. Stratton M.R. A census of human cancer genes. Nat. Rev. Cancer 2004 4 3 177 183 10.1038/nrc1299 14993899
    [Google Scholar]
  59. Davis J.N. Rogers D. Adams L. Yong T. Jung J.S. Cheng B. Fennell K. Borazanci E. Moustafa Y.W. Sun A. Shi R. Glass J. Mathis J.M. Williams B.J. Meyers S. Association of core‐binding factor β with the malignant phenotype of prostate and ovarian cancer cells. J. Cell. Physiol. 2010 225 3 875 887 10.1002/jcp.22298 20607802
    [Google Scholar]
  60. Powe D.G. Voss M.J. Habashy H.O. Zänker K.S. Green A.R. Ellis I.O. Entschladen F. Alpha- and beta-adrenergic receptor (AR) protein expression is associated with poor clinical outcome in breast cancer: An immunohistochemical study. Breast Cancer Res. Treat. 2011 130 2 457 463 10.1007/s10549‑011‑1371‑z 21298476
    [Google Scholar]
  61. Zhou A. Ou A.C. Cho A. Benz E.J. Jr Huang S.C. Novel splicing factor RBM25 modulates Bcl-x pre-mRNA 5′ splice site selection. Mol. Cell. Biol. 2008 28 19 5924 5936 10.1128/MCB.00560‑08 18663000
    [Google Scholar]
/content/journals/rrct/10.2174/0115748871370059250721143244
Loading
/content/journals/rrct/10.2174/0115748871370059250721143244
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test