Skip to content
2000
image of The Effect of Fatigue on Shoulder Proprioception: A Literature Review

Abstract

Recent findings suggest that most sports-related injuries occur during the latter stages of these activities, often due to fatigue, which can impair proprioception and increase the risk of injury. Proprioception can be divided into three categories: joint position sense, the sense of movement (kinesthesia), and the sense of force reproduction. While several studies have examined how exercise-induced fatigue affects various aspects of proprioception on lower limb joints, research focusing on the shoulder joint is limited. This comprehensive review of the effects of exercise-induced fatigue on shoulder proprioception aims to summarize the latest evidence and inform practitioners in the fields of fitness and rehabilitation.

Loading

Article metrics loading...

/content/journals/rrct/10.2174/0115748871355156250526075620
2025-07-17
2025-09-14
Loading full text...

Full text loading...

References

  1. Lucas J. van Doorn P. Hegedus E. Lewis J. van der Windt D. A systematic review of the global prevalence and incidence of shoulder pain. BMC Musculoskelet. Disord. 2022 23 1 1073 10.1186/s12891‑022‑05973‑8 36476476
    [Google Scholar]
  2. Urwin M. Symmons D. Allison T. Estimating the burden of musculoskeletal disorders in the community: The comparative prevalence of symptoms at different anatomical sites, and the relation to social deprivation. Ann. Rheum. Dis. 1998 57 11 649 655 10.1136/ard.57.11.649 9924205
    [Google Scholar]
  3. Kuijpers T. van der Windt D.A.W.M. van der Heijden G.J.M.G. Bouter L.M. Systematic review of prognostic cohort studies on shoulder disorders. Pain 2004 109 3 420 431 10.1016/j.pain.2004.02.017 15157703
    [Google Scholar]
  4. Vanderlei F.M. Rossi R.C. Vanderlei L.C.M. Netto Júnior J. Pastre C.M. Sports injuries and their risk factors in adolescents who practice swimming. J. Hum. Growth Dev. 2014 24 1 73 79 10.7322/jhgd.76099
    [Google Scholar]
  5. Bilberg R. Nørgaard B. Overgaard S. Roessler K.K. Mental health and quality of life in shoulder pain patients and hip pain patients assessed by patient reported outcome. Int. J. Orthop. Trauma Nurs. 2014 18 2 81 88 10.1016/j.ijotn.2013.07.003
    [Google Scholar]
  6. Virta L. Joranger P. Brox J.I. Eriksson R. Costs of shoulder pain and resource use in primary health care: A cost-of-illness study in Sweden. BMC Musculoskelet. Disord. 2012 13 1 17 10.1186/1471‑2474‑13‑17 22325050
    [Google Scholar]
  7. Luime J.J. Koes B.W. Hendriksen I.J.M. Prevalence and incidence of shoulder pain in the general population; A systematic review. Scand. J. Rheumatol. 2004 33 2 73 81 10.1080/03009740310004667 15163107
    [Google Scholar]
  8. Gandevia S.C. Fatigue: A continuum of concepts. J. Physiol. 2001
    [Google Scholar]
  9. Allman B.L. Rice C.L. Neuromuscular fatigue and aging: Central and peripheral factors. Muscle Nerve 2002 25 6 785 796 10.1002/mus.10116 12115966
    [Google Scholar]
  10. Boyas S. Guével A. Neuromuscular fatigue in healthy muscle: Underlying factors and adaptation mechanisms. Ann. Phys. Rehabil. Med. 2011 54 2 88 108 10.1016/j.rehab.2011.01.001 21376692
    [Google Scholar]
  11. Place N. Yamada T. Bruton J.D. Westerblad H. Muscle fatigue: From observations in humans to underlying mechanisms studied in intact single muscle fibres. Eur. J. Appl. Physiol. 2010 110 1 1 15 10.1007/s00421‑010‑1480‑0 20419312
    [Google Scholar]
  12. Bigland-Ritchie B. Woods J.J. Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle Nerve 1984 7 9 691 699 10.1002/mus.880070902 6100456
    [Google Scholar]
  13. Piper B.F. Lindsey A.M. Dodd M.J. Ferketich S. Paul S.M. Weller S. The development of an instrument to measure the subjective dimension of fatigue. In: Management of pain, fatigue and nausea. Macmillan Education UK 1989 199 208 10.1007/978‑1‑349‑13397‑0_25
    [Google Scholar]
  14. Lavidor M. Weller A. Babkoff H. Multidimensional fatigue, somatic symptoms and depression. Br. J. Health Psychol. 2002 7 1 67 75 10.1348/135910702169367 14596718
    [Google Scholar]
  15. Drayer R.A. Mulsant B.H. Lenze E.J. Somatic symptoms of depression in elderly patients with medical comorbidities. Int. J. Geriatr. Psychiatry 2005 20 10 973 982 10.1002/gps.1389 16163749
    [Google Scholar]
  16. Fritschi C. Quinn L. Fatigue in patients with diabetes: A review. J. Psychosom. Res. 2010 69 1 33 41 10.1016/j.jpsychores.2010.01.021 20630261
    [Google Scholar]
  17. Phillips R.O. A review of definitions of fatigue – And a step towards a whole definition. Transp. Res., Part F Traffic Psychol. Behav. 2015 29 48 56 10.1016/j.trf.2015.01.003
    [Google Scholar]
  18. O’connell C. Stokes E.K. A comprehensive guide to geriatric rehabilitation. Elsevier 2014 453 457
    [Google Scholar]
  19. Aaronson L.S. Teel C.S. Cassmeyer V. Defining and measuring fatigue. Image J. Nurs. Sch. 1999 31 1 45 50 10.1111/j.1547‑5069.1999.tb00420.x 10081212
    [Google Scholar]
  20. Barry B.K. Enoka R.M. The neurobiology of muscle fatigue: 15 years later. Integr. Comp. Biol. 2007 47 4 465 473 10.1093/icb/icm047 21672855
    [Google Scholar]
  21. Carroll T.J. Taylor J.L. Gandevia S.C. Recovery of central and peripheral neuromuscular fatigue after exercise. J. Appl. Physiol. 2017 122 5 1068 1076 10.1152/japplphysiol.00775.2016
    [Google Scholar]
  22. Emery K. Côté J.N. Repetitive arm motion-induced fatigue affects shoulder but not endpoint position sense. Exp. Brain Res. 2012 216 4 553 564 10.1007/s00221‑011‑2959‑6 22124803
    [Google Scholar]
  23. Enoka R.M. Duchateau J. Muscle fatigue: What, why and how it influences muscle function. J. Physiol. 2008 586 1 11 23 10.1113/jphysiol.2007.139477 17702815
    [Google Scholar]
  24. Halperin I. Chapman D.W. Behm D.G. Non-local muscle fatigue: Effects and possible mechanisms. Eur. J. Appl. Physiol. 2015 115 10 2031 2048 10.1007/s00421‑015‑3249‑y 26330274
    [Google Scholar]
  25. Halson S.L. Monitoring training load to understand fatigue in athletes. Sports Med. 2014 Nov 44 Suppl. 2 S139 S147 10.1007/s40279‑014‑0253‑z
    [Google Scholar]
  26. Martin P.G. Rattey J. Central fatigue explains sex differences in muscle fatigue and contralateral cross-over effects of maximal contractions. Pflugers Arch. 2007 454 6 957 969 10.1007/s00424‑007‑0243‑1 17342531
    [Google Scholar]
  27. Vøllestad N.K. Measurement of human muscle fatigue. J. Neurosci. Methods 1997 74 2 219 227 10.1016/S0165‑0270(97)02251‑6 9219890
    [Google Scholar]
  28. Cowley J.C. Gates D.H. Proximal and distal muscle fatigue differentially affect movement coordination. PLoS One 2017 12 2 e0172835 10.1371/journal.pone.0172835 28235005
    [Google Scholar]
  29. Huffenus A.F. Amarantini D. Forestier N. Effects of distal and proximal arm muscles fatigue on multi-joint movement organization. Exp. Brain Res. 2006 170 4 438 447 10.1007/s00221‑005‑0227‑3 16369793
    [Google Scholar]
  30. Srinivasan D. Sinden K.E. Mathiassen S.E. Côté J.N. Gender differences in fatigability and muscle activity responses to a short-cycle repetitive task. Eur. J. Appl. Physiol. 2016 116 11-12 2357 2365 10.1007/s00421‑016‑3487‑7 27743025
    [Google Scholar]
  31. Djupsjöbacka M. Johansson H. Bergenheim M. Influences on the γ-muscle-spindle system from muscle afferents stimulated by increased intramuscular concentrations of arachidonic acid. Brain Res. 1994 663 2 293 302 10.1016/0006‑8993(94)91276‑9 7874514
    [Google Scholar]
  32. Djupsjöbacka M. Johansson H. Bergenheim M. Wenngren B.I. Influences on the γ-muscle spindle system from muscle afferents stimulated by increased intramuscular concentrations of bradykinin and 5-HT. Neurosci. Res. 1995 22 3 325 333 10.1016/0168‑0102(95)00906‑A 7478296
    [Google Scholar]
  33. Pedersen J. Lönn J. Hellström F. Djupsjöbacka M. Johansson H. Localized muscle fatigue decreases the acuity of the movement sense in the human shoulder. Med. Sci. Sports Exerc. 1999 31 7 1047 1052 10.1097/00005768‑199907000‑00019 10416568
    [Google Scholar]
  34. Marks R. Quinney H.A. Effect of fatiguing maximal isokinetic quadriceps contractions on ability to estimate knee-position. Percept. Mot. Skills 1993 77 3 Suppl. 1195 1202 10.2466/pms.1993.77.3f.1195 8170768
    [Google Scholar]
  35. Miura K. Ishibashi Y. Tsuda E. Okamura Y. Otsuka H. Toh S. The effect of local and general fatigue on knee proprioception. Arthroscopy 2004 20 4 414 418 10.1016/j.arthro.2004.01.007 15067282
    [Google Scholar]
  36. Zając A. Chalimoniuk M. Gołaś A. Lngfort J. Maszczyk A. Central and peripheral fatigue during resistance exercise - A critical review. J. Hum. Kinet. 2015 49 1 159 169 10.1515/hukin‑2015‑0118 26839616
    [Google Scholar]
  37. Ament W. Verkerke G.J. Exercise and Fatigue. Sports Med. 2009 39 5 389 422 10.2165/00007256‑200939050‑00005 19402743
    [Google Scholar]
  38. Tornero-Aguilera J.F. Jimenez-Morcillo J. Rubio-Zarapuz A. Clemente-Suárez V.J. Central and peripheral fatigue in physical exercise explained: A narrative review. Int. J. Environ. Res. Public Health 2022 19 7 3909 10.3390/ijerph19073909 35409591
    [Google Scholar]
  39. Maddock R.J. Casazza G.A. Buonocore M.H. Tanase C. Vigorous exercise increases brain lactate and Glx (glutamate+glutamine): A dynamic 1H-MRS study. Neuroimage 2011 57 4 1324 1330 10.1016/j.neuroimage.2011.05.048 21640838
    [Google Scholar]
  40. Yeh T.H. Hwang H.M. Chen J.J. Wu T. Li A.H. Wang H.L. Glutamate transporter function of rat hippocampal astrocytes is impaired following the global ischemia. Neurobiol. Dis. 2005 18 3 476 483 10.1016/j.nbd.2004.12.011 15755674
    [Google Scholar]
  41. Wang D. Wang X. GLT‐1 mediates exercise‐induced fatigue through modulation of glutamate and lactate in rats. Neuropathology 2018 38 3 237 246 10.1111/neup.12465 29603414
    [Google Scholar]
  42. Coxon J.P. Cash R.F.H. Hendrikse J.J. GABA concentration in sensorimotor cortex following high‐intensity exercise and relationship to lactate levels. J. Physiol. 2018 596 4 691 702 10.1113/JP274660 29159914
    [Google Scholar]
  43. Leavitt V.M. DeLuca J. Central fatigue: Issues related to cognition, mood and behavior, and psychiatric diagnoses. PM R 2010 2 5 332 337 10.1016/j.pmrj.2010.03.027 20656614
    [Google Scholar]
  44. Chaudhuri A Behan PO Fatigue and basal ganglia J Neurol Sci 2000 179 S 1-2 34 42
    [Google Scholar]
  45. Myburgh K.H. Can any metabolites partially alleviate fatigue manifestations at the cross-bridge? Med. Sci. Sports Exerc. 2004 36 1 20 27 10.1249/01.MSS.0000106200.02230.E6 14707763
    [Google Scholar]
  46. Woodward M. Debold E.P. Acidosis and phosphate directly reduce myosin’s force-generating capacity through distinct molecular mechanisms. Front. Physiol. 2018 9 862 10.3389/fphys.2018.00862 30042692
    [Google Scholar]
  47. Whitten J.H.D. Hodgson D.D. Drinkwater E.J. Prieske O. Aboodarda S.J. Behm D.G. Unilateral quadriceps fatigue induces greater impairments of ipsilateral versus contralateral elbow flexors and plantar flexors performance in physically active young adults. J. Sports Sci. Med. 2021 20 2 300 309 10.52082/jssm.2021.300 34211323
    [Google Scholar]
  48. Kelly C.M. Burnett A.F. Newton M.J. The effect of strength training on three-kilometer performance in recreational women endurance runners. J. Strength Cond. Res. 2008 22 2 396 403 10.1519/JSC.0b013e318163534a 18550953
    [Google Scholar]
  49. Delgado-Moreno R. Robles-Pérez J.J. Aznar S. Clemente-Suarez V.J. Inalambric biofeedback devices to analyze strength manifestation in military population. J. Med. Syst. 2018 42 4 60 10.1007/s10916‑018‑0914‑9 29464367
    [Google Scholar]
  50. Chycki J. Golas A. Halz M. Maszczyk A. Toborek M. Zajac A. Chronic ingestion of sodium and potassium bicarbonate, with potassium, magnesium and calcium citrate improves anaerobic performance in elite soccer players. Nutrients 2018 10 11 1610 10.3390/nu10111610 30388775
    [Google Scholar]
  51. Proschinger S. Freese J. Neuroimmunological and neuroenergetic aspects in exercise-induced fatigue. Exerc. Immunol. Rev. 2019 25 8 19 30753129
    [Google Scholar]
  52. Steensberg A. van Hall G. Osada T. Sacchetti M. Saltin B. Klarlund Pedersen B. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J. Physiol. 2000 529 Pt 1 237 242
    [Google Scholar]
  53. Trinh B. Peletier M. Simonsen C. Blocking endogenous IL-6 impairs mobilization of free fatty acids during rest and exercise in lean and obese men. Cell Rep. Med. 2021 2 9 100396 10.1016/j.xcrm.2021.100396 34622233
    [Google Scholar]
  54. Ager A.L. Borms D. Deschepper L. Proprioception: How is it affected by shoulder pain? A systematic review. J. Hand Ther. 2020 33 4 507 516 10.1016/j.jht.2019.06.002 31481340
    [Google Scholar]
  55. Levine D.N. Sherrington’s “The Integrative action of the nervous system”: A centennial appraisal. J. Neurol. Sci. 2007 253 1-2 1 6 10.1016/j.jns.2006.12.002 17223135
    [Google Scholar]
  56. Han J. Waddington G. Adams R. Anson J. Liu Y. Assessing proprioception: A critical review of methods. J. Sport Health Sci. 2016 5 1 80 90 10.1016/j.jshs.2014.10.004 30356896
    [Google Scholar]
  57. Myers J.B. Guskiewicz K.M. Schneider R.A. Prentice W.E. Proprioception and neuromuscular control of the shoulder after muscle fatigue. J. Athl. Train. 1999 34 4 362 367 16558590
    [Google Scholar]
  58. Lephart S.M. Pincivero D.M. Giraido J.L. Fu F.H. The role of proprioception in the management and rehabilitation of athletic injuries. Am. J. Sports Med. 1997 25 1 130 137 10.1177/036354659702500126 9006708
    [Google Scholar]
  59. Swanik K.A. Lephart S.M. Swanik C.B. Lephart S.P. Stone D.A. Fu F.H. The effects of shoulder plyometric training on proprioception and selected muscle performance characteristics. J. Shoulder Elbow Surg. 2002 11 6 579 586 10.1067/mse.2002.127303 12469083
    [Google Scholar]
  60. Swanik C.B. Lephart S.M. Rubash H.E. Proprioception, kinesthesia, and balance after total knee arthroplasty with cruciate-retaining and posterior stabilized prostheses. J. Bone Joint Surg. Am. 2004 86 2 328 334 10.2106/00004623‑200402000‑00016 14960678
    [Google Scholar]
  61. Proske U. Gandevia S.C. The proprioceptive senses: Their roles in signaling body shape, body position and movement, and muscle force. Physiol. Rev. 2012 92 4 1651 1697 10.1152/physrev.00048.2011 23073629
    [Google Scholar]
  62. Riemann B.L. Lephart S.M. The sensorimotor system, part II: The role of proprioception in motor control and functional joint stability. J. Athl. Train. 2002 37 1 80 84 16558671
    [Google Scholar]
  63. Röijezon U. Clark N.C. Treleaven J. Proprioception in musculoskeletal rehabilitation. Part 1: Basic science and principles of assessment and clinical interventions. Man. Ther. 2015 20 3 368 377 10.1016/j.math.2015.01.008 25703454
    [Google Scholar]
  64. Kerr G.K. Worringham C.J. Velocity perception and proprioception. Adv. Exp. Med. Biol. 2002 508 79 86 10.1007/978‑1‑4615‑0713‑0_10 12171154
    [Google Scholar]
  65. Arzi H. Krasovsky T. Pritsch M. Liebermann D.G. Movement control in patients with shoulder instability: A comparison between patients after open surgery and nonoperated patients. J. Shoulder Elbow Surg. 2014 23 7 982 992 10.1016/j.jse.2013.09.021 24374151
    [Google Scholar]
  66. Franco P.G. Santos K.B. Rodacki A.L.F. Joint positioning sense, perceived force level and two-point discrimination tests of young and active elderly adults. Braz. J. Phys. Ther. 2015 19 4 304 310 10.1590/bjpt‑rbf.2014.0099 26443978
    [Google Scholar]
  67. Dover G. Powers M.E. Reliability of joint position sense and force-reproduction measures during internal and external rotation of the shoulder. J. Athl. Train. 2003 38 4 304 310 14737211
    [Google Scholar]
  68. Myers J.B. Lephart S.M. The role of the sensorimotor system in the athletic shoulder. J. Athl. Train. 2000 35 3 351 363 16558648
    [Google Scholar]
  69. Soltys J.S. Wilson S.E. Directional sensitivity of velocity sense in the lumbar spine. J. Appl. Biomech. 2008 24 3 244 251 10.1123/jab.24.3.244 18843154
    [Google Scholar]
  70. French A.S. Torkkeli P.H. Mechanoreception: Touch, sensillar structure. Encyclopedia of Insects. Academic Press 2009 610 611 10.1016/B978‑0‑12‑374144‑8.00169‑7
    [Google Scholar]
  71. Gilman S. Joint position sense and vibration sense: Anatomical organisation and assessment. J. Neurol. Neurosurg. Psychiatry 2002 73 5 473 477 10.1136/jnnp.73.5.473 12397137
    [Google Scholar]
  72. Jha P. Ahamad I. Khurana S. Ali K. Verma S. Kumar T. Proprioception: An evidence based narrative review. Res Inves Sport Med 2017 1 1 5
    [Google Scholar]
  73. Janwantanakul P. Magarey M.E. Jones M.A. Dansie B.R. Variation in shoulder position sense at mid and extreme range of motion. Arch. Phys. Med. Rehabil. 2001 82 6 840 844 10.1053/apmr.2001.21865 11387592
    [Google Scholar]
  74. Yang J. Jan M.H. Hung C.J. Yang P.L. Lin J. Reduced scapular muscle control and impaired shoulder joint position sense in subjects with chronic shoulder stiffness. J. Electromyogr. Kinesiol. 2010 20 2 206 211 10.1016/j.jelekin.2009.04.007 19524454
    [Google Scholar]
  75. Blasier R.B. Carpenter J.E. Huston L.J. Shoulder proprioception. Effect of joint laxity, joint position, and direction of motion. Orthop. Rev. 1994 23 1 45 50 8159452
    [Google Scholar]
  76. Suprak D.N. Osternig L.R. van Donkelaar P. Karduna A.R. Shoulder joint position sense improves with elevation angle in a novel, unconstrained task. J. Orthop. Res. 2006 24 3 559 568 10.1002/jor.20095 16463364
    [Google Scholar]
  77. Suprak D.N. Osternig L.R. van Donkelaar P. Karduna A.R. Shoulder joint position sense improves with external load. J. Mot. Behav. 2007 39 6 517 525 10.3200/JMBR.39.6.517‑525 18055357
    [Google Scholar]
  78. Zuckerman J.D. Gallagher M.A. Cuomo F. Rokito A. The effect of instability and subsequent anterior shoulder repair on proprioceptive ability. J. Shoulder Elbow Surg. 2003 12 2 105 109 10.1067/mse.2003.4 12700559
    [Google Scholar]
  79. Walsh L.D. Moseley G.L. Taylor J.L. Gandevia S.C. Proprioceptive signals contribute to the sense of body ownership. J. Physiol. 2011 589 12 3009 3021 10.1113/jphysiol.2011.204941 21521765
    [Google Scholar]
  80. Myers J. Prakash M. Froelicher V. Do D. Partington S. Atwood J.E. Exercise capacity and mortality among men referred for exercise testing. N. Engl. J. Med. 2002 346 11 793 801 10.1056/NEJMoa011858 11893790
    [Google Scholar]
  81. Myers J.B. Oyama S. Sensorimotor factors affecting outcome following shoulder injury. Clin. Sports Med. 2008 27 3 481 490 (x.) 10.1016/j.csm.2008.03.005 18503879
    [Google Scholar]
  82. Benjaminse A. Sell T.C. Abt J.P. House A.J. Lephart S.M. Reliability and precision of hip proprioception methods in healthy individuals. Clin. J. Sport Med. 2009 19 6 457 463 10.1097/JSM.0b013e3181bcb155 19898072
    [Google Scholar]
  83. Carpenter J.E. Blasier R.B. Pellizzon G.G. The effects of muscle fatigue on shoulder joint position sense. Am. J. Sports Med. 1998 26 2 262 265 10.1177/03635465980260021701 9548121
    [Google Scholar]
  84. O’Leary S.P. Vicenzino B.T. Jull G.A. A new method of isometric dynamometry for the craniocervical flexor muscles. Phys. Ther. 2005 85 6 556 564 10.1093/ptj/85.6.556 15921476
    [Google Scholar]
  85. Schmidt R.A. Lee T.D. Winstein C. Wulf G. Zelaznik H.N. Motor control and learning: A behavioral emphasis. Human kinetics 2018 30
    [Google Scholar]
  86. Schmidt R.A. Lee T.D. Winstein C. Wulf G. Zelaznik H.N. Motor control and learning: A behavioral emphasis. Human kinetics 2018 30
    [Google Scholar]
  87. Mense S. Meyer H. Bradykinin‐induced modulation of the response behaviour of different types of feline group III and IV muscle receptors. J. Physiol. 1988 398 1 49 63 10.1113/jphysiol.1988.sp017028 3392680
    [Google Scholar]
  88. Torres R. Vasques J. Duarte J.A. Cabri J.M.H. Knee proprioception after exercise-induced muscle damage. Int. J. Sports Med. 2010 31 6 410 415 10.1055/s‑0030‑1248285 20301043
    [Google Scholar]
  89. Fortier S. Basset F.A. Billaut F. Behm D. Teasdale N. Which type of repetitive muscle contractions induces a greater acute impairment of position sense? J. Electromyogr. Kinesiol. 2010 20 2 298 304 10.1016/j.jelekin.2009.04.002 19410485
    [Google Scholar]
  90. Vila-Chã C. Riis S. Lund D. Møller A. Farina D. Falla D. Effect of unaccustomed eccentric exercise on proprioception of the knee in weight and non-weight bearing tasks. J. Electromyogr. Kinesiol. 2011 21 1 141 147 10.1016/j.jelekin.2010.10.001 21044850
    [Google Scholar]
  91. Gregory J.E. Brockett C.L. Morgan D.L. Whitehead N.P. Proske U. Effect of eccentric muscle contractions on Golgi tendon organ responses to passive and active tension in the cat. J. Physiol. 2002 538 1 209 218 10.1113/jphysiol.2001.012785 11773329
    [Google Scholar]
  92. Gregory J.E. Morgan D.L. Proske U. Responses of muscle spindles following a series of eccentric contractions. Exp. Brain Res. 2004 157 2 234 240 10.1007/s00221‑004‑1838‑9 14991214
    [Google Scholar]
  93. Higgins M.F. Dwyer M.K. McCarthy P. A comparison of isokinetic and dynamic fatigue effects on proprioception. J. Strength Cond. Res. 2006 20 3 526 530
    [Google Scholar]
  94. Kouchi M. Yokokawa K. Omiya E. Fatigue effect on proprioception in the shoulder joint. J. Physiol. Sci. 2015 65 4 269 274
    [Google Scholar]
  95. Gribble P.A. Hertel J. Considerations for normalizing measures of the Star Excursion Balance Test. Meas. Phys. Educ. Exerc. Sci. 2004 8 3 201 210
    [Google Scholar]
  96. Fong D.T-P. Hong Y. Chan L-K. Yung P.S-H. Chan K-M. Sport-specific return to sport testing and its implications for musculoskeletal injury rehabilitation. J. Sports Sci. Med. 2011 10 2 144 151
    [Google Scholar]
  97. Schmitt L.C. Paterno M.V. Hewett T.E. Functional deficits following fatigue: Implications for use in rehabilitation protocols. Sports Med. 2009 39 1 1 9
    [Google Scholar]
  98. Lewies A. Bisschop J.M. van der Merwe W. Kinematic adaptations of the shoulder complex in response to fatigue: Implications for injury prevention. J. Sports Med. Phys. Fitness 2015 55 6 651 658
    [Google Scholar]
  99. Roy J.S. Moffet H. Ronsky J.L. The effects of fatigue on shoulder kinematics and muscle activation during arm elevation. J. Biomech. 2009 42 14 2348 2354
    [Google Scholar]
  100. Sadler A.M. Dover G.C. Webster B.J. Changes in mechanical loading of the shoulder joint due to altered kinematics after fatigue. J. Shoulder Elbow Surg. 2019 28 2 233 241
    [Google Scholar]
  101. Berger M.A. Henneman E.J. Aagaard P. Interlimb fatigue effects on maximal voluntary contraction of the contralateral limb. J. Strength Cond. Res. 2010 24 5 1393 1400
    [Google Scholar]
  102. Li L. Cheng L. Yang Y. Liu Y. The effects of fatigue on the activity of contralateral muscles: A systematic review. Front. Physiol. 2018 9 1010
    [Google Scholar]
  103. Kim H.J. Kim S.H. Fatigue effects on shoulder rotator cuff muscle activation patterns during shoulder abduction in healthy individuals. Clin. Rehabil. 2003 17 5 560 566
    [Google Scholar]
  104. Park K.S. Kim D.E. The role of the rotator cuff in shoulder stability during different tasks: A review of the literature. Orthop. J. Sports Med. 2012 1 1 6
    [Google Scholar]
  105. Escamilla R.F. Wilk K.E. Fleisig G.S. (2009) Shoulder muscle recruitment patterns and fatigue during simulated baseball throwing. Journal of Applied Biomechanics 25 1 43 53 10.1123/jab.25.1.43 19299829
    [Google Scholar]
  106. Kim Y.H. Park C.J. Lee J.H. The complex interplay of shoulder muscle coordination in the presence of fatigue: Implications for rehabilitation. Phys. Ther. 2021 101 9 1662 1670
    [Google Scholar]
  107. Voight M.L. Hardin J.A. Blackburn T.A. Tippett S. Canner G.C. The effects of muscle fatigue on and the relationship of arm dominance to shoulder proprioception. J. Orthop. Sports Phys. Ther. 1996 23 6 348 352 10.2519/jospt.1996.23.6.348 8727014
    [Google Scholar]
  108. Lee H.M. Liau J.J. Cheng C.K. Tan C.M. Shih J.T. Evaluation of shoulder proprioception following muscle fatigue. Clin. Biomech. 2003 18 9 843 847 10.1016/S0268‑0033(03)00151‑7 14527811
    [Google Scholar]
  109. Iida N. Kaneko F. Aoki N. Shibata E. The effect of fatigued internal rotator and external rotator muscles of the shoulder on the shoulder position sense. J. Electromyogr. Kinesiol. 2014 24 1 72 77 10.1016/j.jelekin.2013.10.008 24290540
    [Google Scholar]
  110. Sterner R.L. Pincivero D.M. Lephart S.M. The effects of muscular fatigue on shoulder proprioception. Clin. J. Sport Med. 1998 8 2 96 101 10.1097/00042752‑199804000‑00006 9641437
    [Google Scholar]
  111. Kablan N. Ertan H. Ünver F. Kirazci S. Korkusuz F. Factors affecting the shoulder proprioceptive sense among male volleyball players. Isokinet. Exerc. Sci. 2004 12 3 193 198 10.3233/IES‑2004‑0173
    [Google Scholar]
  112. Chang H.Y. Chen C.S. Wei S.H. Huang C.H. Recovery of joint position sense in the shoulder after muscle fatigue. J. Sport Rehabil. 2006 15 4 312 325 10.1123/jsr.15.4.312
    [Google Scholar]
  113. Spargoli G. The acute effects of concentric versus eccentric muscle fatigue on shoulder active repositioning sense. Int. J. Sports Phys. Ther. 2017 12 2 219 226 28515976
    [Google Scholar]
  114. Guo L.Y. Lin C.F. Yang C.H. Hou Y.Y. Chen S.K. Wu W.L. Evaluation of internal rotator muscle fatigue on shoulder and scapular proprioception. J. Mech. Med. Biol. 2011 11 3 663 674 10.1142/S0219519411003892
    [Google Scholar]
  115. Hadjisavvas S. Efstathiou M.A. Themistocleous I.C. Malliou P. Giannaki C.D. Stefanakis M. Concentric exercise-induced fatigue of the shoulder impairs proprioception but not motor control or performance in healthy young adults. Hum. Mov. Sci. 2024 98 103299 10.1016/j.humov.2024.103299 39461122
    [Google Scholar]
  116. Hadjisavvas S. Efstathiou M.A. Themistocleous I.C. Effect of concentric exercise-induced fatigue on proprioception, motor control and performance of the upper limb in handball players. PLoS One 2024 19 12 e0315103 10.1371/journal.pone.0315103 39724148
    [Google Scholar]
  117. Coskun G. Talu B. Cools A. Proprioceptive force-reproduction of the rotator cuff in healthy subjects before and after muscle fatigue. Isokinet. Exerc. Sci. 2018 26 3 175 181 10.3233/IES‑173206
    [Google Scholar]
  118. Pedersen J. Sjölander P. Wenngren I.B. Johansson H. Increased intramuscular concentration of bradykinin increases the static fusimotor drive to muscle spindles in neck muscles of the cat. Pain 1997 70 1 83 91 10.1016/S0304‑3959(96)03305‑2 9106812
    [Google Scholar]
  119. Bazzucchi I. Sacchetti M. The effects of increased muscle metabolites on proprioception in humans. Eur. J. Appl. Physiol. 2008 103 3 269 276
    [Google Scholar]
  120. Fewell J.E. Channon A.B. Inflammatory cytokines and muscle damage. J. Physiol. 2004 559 1 1 4
    [Google Scholar]
  121. Nunes C.S. Horikawa T. Proprioceptive changes after fatigue and their relationship with risks of injury. Sports Med. 2015 45 11 1617 1626
    [Google Scholar]
  122. Waddington G. Adams R. Proprioception and the role of the knee joint in the spinal reflex control of movement. J. Sports Sci. 1996 14 6 547 558
    [Google Scholar]
  123. Lehman G.J. The Role and Value of Symptom-Modification Approaches in Musculoskeletal Practice. J. Orthop. Sports Phys. Ther. 2018 48 6 430 435 10.2519/jospt.2018.0608 29852837
    [Google Scholar]
  124. Hurd S. Exercise, oxidative stress and vitamin c supplementation:Research and recommendations 2015
    [Google Scholar]
  125. Proske U. Exercise, fatigue and proprioception: A retrospective. Exp. Brain Res. 2019 237 10 2447 2459 10.1007/s00221‑019‑05634‑8 31471677
    [Google Scholar]
  126. Chalmers G. Effects of fatigue on muscle spindles and proprioception. J. Strength Cond. Res. 2012 26 3 764 770
    [Google Scholar]
  127. Davis T. Proprioception and Fatigue: Understanding the Relationship. Sport Biomechanics 2014
    [Google Scholar]
  128. Häkkinen K. Keskinen K. Neuromuscular fatigue and recovery in strength and power sports. Sports Med. 1989
    [Google Scholar]
  129. Zhou S. Sun Y. Ge J. Chen X. Multiaxial fatigue life prediction of composite bolted joint under constant amplitude cycle loading. Compos., Part B Eng. 2015 74 131 137 10.1016/j.compositesb.2015.01.013
    [Google Scholar]
  130. Buchheit M. Haydar B. Mendez-Villanueva A. Mechanical and physiological responses to repeated sprint exercise. J. Sci. Med. Sport 2013 16 1 63 68
    [Google Scholar]
  131. Grose G. Manzone D.M. Eschelmuller G. The effects of eccentric exercise-induced fatigue on position sense during goal-directed movement. J. Appl. Physiol. 2022 132 4 1005 1019 10.1152/japplphysiol.00177.2021
    [Google Scholar]
  132. Zhou S. Ben H. Parameter variability in proprioceptive research: Implications of fatigue. J. Biomech. 2022
    [Google Scholar]
  133. Coskun A. Joint Repositioning Sense: The Influence of Muscle Fatigue. Physical Therapy Science 2020
    [Google Scholar]
/content/journals/rrct/10.2174/0115748871355156250526075620
Loading
/content/journals/rrct/10.2174/0115748871355156250526075620
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test