Skip to content
2000
image of ICU Mortality Prediction Using XGBoost-based Scoring Systems: A Study from a Developing Country

Abstract

Introduction

Accurate mortality prediction in intensive care units (ICUs) is essential for enhancing patient outcomes and optimizing healthcare resource allocation. Traditional scoring systems, such as APACHE, APACHE II, and SAPS, have limitations in handling complex, high-dimensional ICU data. In this study, multiple machine learning models were compared to establish an efficacious predictive model for mortality tailored explicitly to the Jordanian population and to explicate factors strongly associated with mortality.

Methods

This study was conducted as a single-center, retrospective cohort investigation, and the XGBoost machine learning algorithm was used to develop a novel ICU mortality prediction model. The model aimed to achieve superior prediction accuracy using a diverse set of readily available clinical data, including demographics, comorbidities, laboratory results, and medication groups. Model performance was evaluated against alternative machine learning algorithms, including logistic regression, conventionally employed in traditional scoring systems.

Results

Comparative analysis revealed that the XGBoost model performed better than other scoring systems, manifesting heightened accuracy (87.91%), sensitivity (92.88%), and Area Under the Receiver-Operating Characteristic Curve (AUC-ROC) Score/Curve (94.29%). Notably, the patient's length of hospital stays, albumin levels, and urea levels emerged as the most substantial predictors for ICU mortality, each exhibiting respective SHAP values of 0.5, 0.41, and 0.37.

Discussion

A locally adapted ICU mortality prediction model was developed, underscoring the pivotal role of predictors such as hospital stay duration, albumin, and urea levels in predicting patient outcomes.

Conclusion

The heightened accuracy and sensitivity of the XGBoost model signify its potential as an invaluable tool in the critical task of mortality prediction within the Jordanian ICU context.

Loading

Article metrics loading...

/content/journals/rrct/10.2174/0115748871348585250604065542
2025-06-18
2025-09-14
Loading full text...

Full text loading...

References

  1. Halpern N.A. Pastores S.M. Critical care medicine in the United States 2000–2005: An analysis of bed numbers, occupancy rates, payer mix, and costs. Crit. Care Med. 2010 38 1 65 71 10.1097/CCM.0b013e3181b090d0 19730257
    [Google Scholar]
  2. Ridley S. Morris S. Cost effectiveness of adult intensive care in the UK. Anaesthesia 2007 62 6 547 554 10.1111/j.1365‑2044.2007.04997.x 17506731
    [Google Scholar]
  3. Kılıç M. Yüzkat N. Soyalp C. Gülhaş N. Cost analysis on intensive care unit costs based on the length of stay. Turk. J. Anaesthesiol. Reanim. 2019 47 2 142 145 10.5152/TJAR.2019.80445 31080956
    [Google Scholar]
  4. Knaus W.A. Zimmerman J. Wagner D.P. Draper E.A. Lawrence D. APACHE—acute physiology and chronic health evaluation: A physiologically based classification system. Crit. Care Med. 1981 9 8 591 597 10.1097/00003246‑198108000‑00008 7261642
    [Google Scholar]
  5. Knaus W.A. Draper E.A. Wagner D.P. Zimmerman J.E. APACHE II: A severity of disease classification system. Crit. Care Med. 1985 13 10 818 829 10.1097/00003246‑198510000‑00009 3928249
    [Google Scholar]
  6. Gall J-R.L. Loirat P. Alperovitch A. Glaser P. Granthil C. Mathieu D. Mercier P. Thomas R. Villers D. A simplified acute physiology score for ICU patients. Crit. Care Med. 1984 12 11 975 977 10.1097/00003246‑198411000‑00012 6499483
    [Google Scholar]
  7. Le Gall J.R. Lemeshow S. Saulnier F. A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study. JAMA 1993 270 24 2957 2963 10.1001/jama.270.24.2957 8254858
    [Google Scholar]
  8. Le Gall J.R. Neumann A. Hemery F. Bleriot J.P. Fulgencio J.P. Garrigues B. Gouzes C. Lepage E. Moine P. Villers D. Mortality prediction using SAPS II: An update for French intensive care units. Crit. Care 2005 9 6 R645 R652 10.1186/cc3821 16280063
    [Google Scholar]
  9. Knaus W.A. Wagner D.P. Draper E.A. Zimmerman J.E. Bergner M. Bastos P.G. Sirio C.A. Murphy D.J. Lotring T. Damiano A. Harrell F.E. Jr The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. Chest 1991 100 6 1619 1636 10.1378/chest.100.6.1619 1959406
    [Google Scholar]
  10. Lemeshow S. Teres D. Klar J. Avrunin J.S. Gehlbach S.H. Rapoport J. Mortality Probability Models (MPM II) based on an international cohort of intensive care unit patients. JAMA 1993 270 20 2478 2486 10.1001/jama.1993.03510200084037 8230626
    [Google Scholar]
  11. Gkolfinopoulou K. Dafni U. Kouvatseas G. Karagiannis I. Papadima K. Armaganidis A.J.N. A comparison of illness severity scores in an intensive care unit. Crit. Care Med. 2006 45 78 91
    [Google Scholar]
  12. Tan I.K. APACHE II and SAPS II are poorly calibrated in a Hong Kong intensive care unit. Ann. Acad. Med. Singap. 1998 27 3 318 322 9777072
    [Google Scholar]
  13. Alvarez M. Nava J.M. Rué M. Quintana S. Mortality prediction in head trauma patients. Crit. Care Med. 1998 26 1 142 148 10.1097/00003246‑199801000‑00030 9428557
    [Google Scholar]
  14. Arabi Y. Shirawi N.A. Memish Z. Venkatesh S. Al-Shimemeri A. Assessment of six mortality prediction models in patients admitted with severe sepsis and septic shock to the intensive care unit: A prospective cohort study. Crit. Care 2003 7 5 R116 R122 10.1186/cc2373 12974979
    [Google Scholar]
  15. Duke G.J. Graco M. Santamaria J. Shann F. Validation of the hospital outcome prediction equation (HOPE) model for monitoring clinical performance. Intern. Med. J. 2009 39 5 283 289 10.1111/j.1445‑5994.2008.01676.x 19292775
    [Google Scholar]
  16. Kuzniewicz M.W. Vasilevskis E.E. Lane R. Dean M.L. Trivedi N.G. Rennie D.J. Clay T. Kotler P.L. Dudley R.A. Variation in ICU risk-adjusted mortality: Impact of methods of assessment and potential confounders. Chest 2008 133 6 1319 1327 10.1378/chest.07‑3061 18403657
    [Google Scholar]
  17. Schetz M.R. Van Den Berghe G. Do we have reliable biochemical markers to predict the outcome of critical illness? Int. J. Artif. Organs 2005 28 12 1197 1210 10.1177/039139880502801202 16404695
    [Google Scholar]
  18. Chertow G.M. Burdick E. Honour M. Bonventre J.V. Bates D.W. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J. Am. Soc. Nephrol. 2005 16 11 3365 3370 10.1681/ASN.2004090740 16177006
    [Google Scholar]
  19. Hu H. Yao N. Qiu Y. Comparing rapid scoring systems in mortality prediction of critically Ill patients with novel coronavirus disease. Acad. Emerg. Med. 2020 27 6 461 468 10.1111/acem.13992
    [Google Scholar]
  20. Yan L. Zhang H.T. Goncalves J. Xiao Y. Wang M. Guo Y. Sun C. Tang X. Jing L. Zhang M. Huang X. Xiao Y. Cao H. Chen Y. Ren T. Wang F. Xiao Y. Huang S. Tan X. Huang N. Jiao B. Cheng C. Zhang Y. Luo A. Mombaerts L. Jin J. Cao Z. Li S. Xu H. Yuan Y. An interpretable mortality prediction model for COVID-19 patients. Nat. Mach. Intell. 2020 2 5 283 288 10.1038/s42256‑020‑0180‑7
    [Google Scholar]
  21. Awad A. Bader-El-Den M. McNicholas J. Briggs J. Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach. Int. J. Med. Inform. 2017 108 185 195 10.1016/j.ijmedinf.2017.10.002 29132626
    [Google Scholar]
  22. With over 20 years of experience , King Founder Hospital provides 100% safe and high quality service. 1994 Available from: https://www.kauh.edu.jo/EN-article-About-us (accessed on 12 Nov 2023).
  23. Panagiotou O.A. Kosar C.M. White E.M. Bantis L.E. Yang X. Santostefano C.M. Feifer R.A. Blackman C. Rudolph J.L. Gravenstein S. Mor V. Risk factors associated with all-cause 30-Day mortality in nursing home residents with COVID-19. JAMA Intern. Med. 2021 181 4 439 448 10.1001/jamainternmed.2020.7968 33394006
    [Google Scholar]
  24. Gue Y.X. Tennyson M. Gao J. Ren S. Kanji R. Gorog D.A. Author Correction: Development of a novel risk score to predict mortality in patients admitted to hospital with COVID-19. Sci. Rep. 2021 11 1 8011 10.1038/s41598‑021‑87439‑w 33828227
    [Google Scholar]
  25. Berenguer J. Borobia A.M. Ryan P. Rodríguez-Baño J. Bellón J.M. Jarrín I. Carratalà J. Pachón J. Carcas A.J. Yllescas M. Development and validation of a prediction model for 30-day mortality in hospitalised patients with COVID-19: The COVID-19 SEIMC score. Thorax 2021 76 9 920 929 10.1136/thoraxjnl‑2020‑216001
    [Google Scholar]
  26. Chawla N.V. Bowyer K.W. Hall L.O. Kegelmeyer W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002 16 321 357 10.1613/jair.953
    [Google Scholar]
  27. He H. Bai Y. Garcia E. Li S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence) 2008, pp. 1322-1328. 10.1109/IJCNN.2008.4633969
    [Google Scholar]
  28. Troyanskaya O. Cantor M. Sherlock G. Brown P. Hastie T. Tibshirani R. Botstein D. Altman R.B. Missing value estimation methods for DNA microarrays. Bioinformatics 2001 17 6 520 525 10.1093/bioinformatics/17.6.520 11395428
    [Google Scholar]
  29. Iwase S. Nakada T. Shimada T. Oami T. Shimazui T. Takahashi N. Yamabe J. Yamao Y. Kawakami E. Prediction algorithm for ICU mortality and length of stay using machine learning. Sci. Rep. 2022 12 1 12912 10.1038/s41598‑022‑17091‑5 35902633
    [Google Scholar]
  30. Fika S. Nanas S. Baltopoulos G. Charitidou E. Myrianthefs P. A novel mortality prediction model for the current population in an adult intensive care unit. Heart Lung. 2018 47 1 10 15 10.1016/j.hrtlng.2017.10.009
    [Google Scholar]
  31. Mourelo-Fariña M. Pértega S. Galeiras R. A model for prediction of in-hospital mortality in patients with subarachnoid hemorrhage. Neurocrit. Care 2021 34 2 508 518 10.1007/s12028‑020‑01041‑y 32671649
    [Google Scholar]
  32. Li F. Xin H. Zhang J. Fu M. Zhou J. Lian Z. Prediction model of in-hospital mortality in intensive care unit patients with heart failure: Machine learning-based, retrospective analysis of the MIMIC-III database. BMJ Open 2021 11 7 044779 10.1136/bmjopen‑2020‑044779 34301649
    [Google Scholar]
  33. Liu C. Liu X. Mao Z. Hu P. Li X. Hu J. Hong Q. Geng X. Chi K. Zhou F. Cai G. Chen X. Sun X. Interpretable machine learning model for early prediction of mortality in ICU patients with rhabdomyolysis. Med. Sci. Sports Exerc. 2021 53 9 1826 1834 10.1249/MSS.0000000000002674 33787533
    [Google Scholar]
  34. Zhou S. Lu Z. Liu Y. Wang M. Zhou W. Cui X. Zhang J. Xiao W. Hua T. Zhu H. Yang M. Interpretable machine learning model for early prediction of 28-day mortality in ICU patients with sepsis-induced coagulopathy: Development and validation. Eur. J. Med. Res. 2024 29 1 14 10.1186/s40001‑023‑01593‑7 38172962
    [Google Scholar]
  35. Xie W. Li Y. Meng X. Zhao M. Machine learning prediction models and nomogram to predict the risk of in-hospital death for severe DKA: A clinical study based on MIMIC-IV, eICU databases, and a college hospital ICU. Int. J. Med. Inform. 2023 174 105049 10.1016/j.ijmedinf.2023.105049 37001474
    [Google Scholar]
  36. Li J. Zhang Y. He S. Tang Y. Interpretable mortality prediction model for ICU patients with pneumonia: Using shapley additive explanation method. BMC Pulm. Med. 2024 24 1 447 10.1186/s12890‑024‑03252‑x 39272037
    [Google Scholar]
  37. Rahman M.S. Islam K.R. Prithula J. Kumar J. Mahmud M. Alam M.F. Reaz M.B.I. Alqahtani A. Chowdhury M.E.H. Machine learning-based prognostic model for 30-day mortality prediction in Sepsis-3. BMC Med. Inform. Decis. Mak. 2024 24 1 249 10.1186/s12911‑024‑02655‑4 39251962
    [Google Scholar]
  38. Goldfrad C. Rowan K. Consequences of discharges from intensive care at night. Lancet 2000 355 9210 1138 1142 10.1016/S0140‑6736(00)02062‑6 10791376
    [Google Scholar]
  39. Rodríguez-Carvajal M. Mora D. Doblas A. García M. Domínguez P. Tristancho A. Herrera M. [Impact of the premature discharge on hospital mortality after a stay in an intensive care unit]. Med. Intensiva 2011 35 3 143 149 10.1016/j.medin.2011.01.011 21419522
    [Google Scholar]
  40. Daly K. Beale R. Chang R.W. Reduction in mortality after inappropriate early discharge from intensive care unit: Logistic regression triage. BMJ 2001 322 7297 1274 1276 10.1136/bmj.322.7297.1274 11375229
    [Google Scholar]
  41. Chrusch C.A. Olafson K.P. McMillan P.M. Roberts D.E. Gray P.R. High occupancy increases the risk of early death or readmission after transfer from intensive care. Crit. Care Med. 2009 37 10 2753 2758 10.1097/CCM.0b013e3181a57b0c 19707139
    [Google Scholar]
  42. Williams T.A. Ho K.M. Dobb G.J. Finn J.C. Knuiman M. Webb S.A.R. Effect of length of stay in intensive care unit on hospital and long-term mortality of critically ill adult patients. Br. J. Anaesth. 2010 104 4 459 464 10.1093/bja/aeq025 20185517
    [Google Scholar]
  43. Atrash A.K. de Vasconcellos K. Low albumin levels are associated with mortality in the critically ill: A retrospective observational study in a multidisciplinary intensive care unit. South Afr. J. Crit. Care 2020 36 2 10.7196 10.7196/SAJCC.2020.v36i2.422
    [Google Scholar]
  44. Kendall H. Abreu E. Cheng A.L. Serum albumin trend is a predictor of mortality in ICU patients with sepsis. Biol. Res. Nurs. 2019 21 3 237 244 10.1177/1099800419827600 30722677
    [Google Scholar]
  45. Limaye K. Yang J.D. Hinduja A. Role of admission serum albumin levels in patients with intracerebral hemorrhage. Acta Neurol. Belg. 2016 116 1 27 30 10.1007/s13760‑015‑0504‑2 26133948
    [Google Scholar]
  46. Sung J. Bochicchio G.V. Joshi M. Bochicchio K. Costas A. Tracy K. Scalea T.M. Admission serum albumin is predicitve of outcome in critically ill trauma patients. Am. Surg. 2004 70 12 1099 1102 15663053
    [Google Scholar]
/content/journals/rrct/10.2174/0115748871348585250604065542
Loading
/content/journals/rrct/10.2174/0115748871348585250604065542
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test