Skip to content
2000
Volume 20, Issue 4
  • ISSN: 1574-8871
  • E-ISSN: 1876-1038

Abstract

This comprehensive review explores the multifaceted landscape of preclinical drug development, encompassing crucial stages, regulatory intricacies, Investigational New Drug (IND) submissions, and innovative formulation strategies. Delving into preclinical studies, the review underscores the importance of pharmacokinetics, pharmacodynamics, and safety assessments in animal models. Regulatory requirements governing preclinical studies are dissected, emphasizing compliance with global health authorities. The article provides a detailed examination of the IND submission process, elucidating essential components and documentation required for regulatory approval that are pivotal for advancing to clinical trials. Additionally, the evolving realm of Preformulation strategies is scrutinized, highlighting new methods like nanotechnology, solid dispersions, and formulas based on cyclodextrin to enhance drug solubility, stability, and bioavailability. This comprehensive overview aims to guide researchers, pharmaceutical professionals, and regulatory specialists through the complexities of preclinical development, offering insights into the latest formulation advancements from a legal point of view, making it be easy for potential drugs to go from lab to patient's bedside.

Loading

Article metrics loading...

/content/journals/rrct/10.2174/0115748871340281250331180316
2025-04-25
2025-12-20
Loading full text...

Full text loading...

References

  1. RoggeM.C. TaftD.R. The scope of preclinical drug development: An introduction and framework. Preclinical Drug Development.Boca RatonTaylor and Francis Group20051610.1201/9780849360237.ch1
    [Google Scholar]
  2. ParkinsonC. GrassoP. The use of the dog in toxicity tests on pharmaceutical compounds.Hum. Exp. Toxicol.19931229910910.1177/0960327193012002028096722
    [Google Scholar]
  3. VosJ.G. Immunotoxicity assessment: Screening and function studies.Arch. Toxicol. Suppl.198049510810.1007/978‑3‑642‑67729‑8_257002113
    [Google Scholar]
  4. PentaJ.S. RozencweigM. GuarinoA.M. MuggiaF.M. Mouse and large-animal toxicology studies of twelve antitumor agents: Relevance to starting dose for Phase I clinical trials.Cancer Chemother. Pharmacol.1979329710110.1007/BF00254979116778
    [Google Scholar]
  5. MaasJ. KammW. HauckG. An integrated early formulation strategy – From hit evaluation to preclinical candidate profiling.Eur. J. Pharm. Biopharm.200766111010.1016/j.ejpb.2006.09.01117123801
    [Google Scholar]
  6. BaldrickP. Toxicokinetics in preclinical evaluation.Drug Discov. Today20038312713310.1016/S1359‑6446(02)02568‑012568782
    [Google Scholar]
  7. BranchS. K. Guidelines from the international conference on harmonisation (ICH).Journal of pharmaceutical and biomedical analysis2005August385798805
    [Google Scholar]
  8. Requirements and guidelines for permission to import and/or manufacture of new drugs for sale or to undertake clinical trials.2013Available from: https://www.jli.edu.in/blog/wp-content/uploads/2017/01/Drugs-and-Cosmetics-Act-and-Rules2016.pdf
  9. OECD guideline for the testing of chemicals.2012Available from: https://www.oecd.org/content/dam/oecd/en/topics/policy-sub-issues/testing-of-chemicals/previous-test-guidelines/section-4/deleted-test-guidelines/deleted-test-guideline-457-2012.pdf
  10. ParijaS.C. MandalJ. Ethics of involving animals in research.Trop. Parasitol.2013314610.4103/2229‑5070.11388423961435
    [Google Scholar]
  11. KilkennyC. BrowneW. CuthillI.C. EmersonM. AltmanD.G. Animal research: Reporting in vivo experiments: The ARRIVE guidelines.Br. J. Pharmacol.201016071577157910.1111/j.1476‑5381.2010.00872.x20649561
    [Google Scholar]
  12. FestingM.F.W. AltmanD.G. Guidelines for the design and statistical analysis of experiments using laboratory animals.ILAR J.200243424425810.1093/ilar.43.4.24412391400
    [Google Scholar]
  13. National Research Council (US) Committee Science, Medicine, and Animals.USANational Academies Press2004152
    [Google Scholar]
  14. Guidance for industry: Content and format of Investigational New Drug Applications (INDs) for phase 1 studies of drugs, including well-characterized, therapeutic, biotechnology-derived products.Available from: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm074980.pdf
  15. AndersonB.D. ConradiR.A. Predictive relationships in the water solubility of salts of a nonsteroidal anti-inflammatory drug.J. Pharm. Sci.198574881582010.1002/jps.26007408034032262
    [Google Scholar]
  16. US small business administration for the US environmental protection agency bridging the valley of death: Financing technology for a sustainable future.1994Available from: http://www.clu-in.org/download/supply/bridging.pdf
  17. MurphyLM EdwardsPL Bridging the valley of death: Transitioning from public to private sector financing.2003Available from: http://www.cleanenergystates.org/CaseStudies/NREL Bridging_the_Valley_of_Death.pdf
  18. WenH. JungH. LiX. Drug delivery approaches in addressing clinical pharmacology-related issues: Opportunities and challenges.AAPS J.20151761327134010.1208/s12248‑015‑9814‑926276218
    [Google Scholar]
  19. GadS.C. Preclinical Development Handbook: ADME and Biopharmaceutical Properties.1st edHoboken, NJJohn Wiley and Sons, Inc.2008
    [Google Scholar]
  20. WuS. HopkinsW. Characterization of D-α tocopheryl PEG 1000 succinate for applications as an absorption enhancer in drug delivery systems.Pharm. Technol.1999235268
    [Google Scholar]
  21. RegeB.D. KaoJ.P.Y. PolliJ.E. Effects of nonionic surfactants on membrane transporters in Caco-2 cell monolayers.Eur. J. Pharm. Sci.2002164-523724610.1016/S0928‑0987(02)00055‑612208453
    [Google Scholar]
  22. KuentzM. NickS. ParrottN. RöthlisbergerD. A strategy for preclinical formulation development using GastroPlus™ as pharmacokinetic simulation tool and a statistical screening design applied to a dog study.Eur. J. Pharm. Sci.2006271919910.1016/j.ejps.2005.08.01116219449
    [Google Scholar]
  23. WangJ. MaitaniY. TakayamaK. Antitumor effects and pharmacokinetics of aclacinomycin A carried by injectable emulsions composed of vitamin E, cholesterol, and PEG-lipid.J. Pharm. Sci.20029141128113410.1002/jps.1010411948551
    [Google Scholar]
  24. ItohK. MatsuiS. TozukaY. OguchiT. YamamotoK. Improvement of physicochemical properties of N-4472.Int. J. Pharm.20022461-2758310.1016/S0378‑5173(02)00346‑012270610
    [Google Scholar]
  25. KanP. ChenZ.B. LeeC.J. ChuI.M. Development of nonionic surfactant/phospholipid o/w emulsion as a paclitaxel delivery system.J. Control. Release199958327127810.1016/S0168‑3659(98)00164‑310099152
    [Google Scholar]
  26. KhooS.M. HumberstoneA.J. PorterC.J.H. EdwardsG.A. CharmanW.N. Formulation design and bioavailability assessment of lipidic self-emulsifying formulations of halofantrine.Int. J. Pharm.19981671-215516410.1016/S0378‑5173(98)00054‑4
    [Google Scholar]
  27. KhachaneP. DateA.A. NagarsenkerM.S. Positively charged polymeric nanoparticles: Application in improving therapeutic efficacy of meloxicam after oral administration.Pharmazie201166533433821699066
    [Google Scholar]
  28. LeeM.J. LeeM.H. ShimC.K. Inverse targeting of drugs to reticuloendothelial system-rich organs by lipid microemulsion emulsified with poloxamer 338.Int. J. Pharm.1995113217518710.1016/0378‑5173(94)00193‑9
    [Google Scholar]
  29. KimS.J. ChoiH.K. LeeY.B. Pharmacokinetic and pharmacodynamic evaluation of cyclosporin A O/W-emulsion in rats.Int. J. Pharm.20022491-214915610.1016/S0378‑5173(02)00490‑812433443
    [Google Scholar]
  30. LiL. NandiI. KimK.H. Development of an ethyl laurate-based microemulsion for rapid-onset intranasal delivery of diazepam.Int. J. Pharm.20022371-2778510.1016/S0378‑5173(02)00029‑711955806
    [Google Scholar]
  31. ShahN.H. CarvajalM.T. PatelC.I. InfeldM.H. MalickA.W. Self-emulsifying drug delivery systems (SEDDS) with polyglycolyzed glycerides for improving in vitro dissolution and oral absorption of lipophilic drugs.Int. J. Pharm.19941061152310.1016/0378‑5173(94)90271‑2
    [Google Scholar]
  32. RabinowB.E. Nanosuspensions in drug delivery.Nat. Rev. Drug Discov.20043978579610.1038/nrd149415340388
    [Google Scholar]
  33. MutalikS. NahaA. UshaA.N. RanjithA.K. MusmadeP. ManojK. AnjuP. PrasannaS. Preparation, In vitro, preclinical and clinical evaluations of once daily sustained release tablets of aceclofenac.Arch. Pharm. Res.200730222223410.1007/BF0297769817366745
    [Google Scholar]
  34. LiP. ZhaoL. Developing early formulations: Practice and perspective.Int. J. Pharm.20073411-211910.1016/j.ijpharm.2007.05.04917658228
    [Google Scholar]
  35. LawD. SchmittE.A. MarshK.C. EverittE.A. WangW. FortJ.J. KrillS.L. QiuY. Ritonavir-PEG 8000 amorphous solid dispersions: In vitro and in vivo evaluations.J. Pharm. Sci.200493356357010.1002/jps.1056614762895
    [Google Scholar]
  36. CurryA. BrownR. The target product profile as a planning tool in drug discovery research.Pharmatech20036771
    [Google Scholar]
  37. ShahS.M. JainA.S. KaushikR. NagarsenkerM.S. NerurkarM.J. Preclinical formulations: Insight, strategies, and practical considerations.AAPS PharmSciTech20141551307132310.1208/s12249‑014‑0156‑124920522
    [Google Scholar]
  38. DaiW.G. Pollock-DoveC. DongL.C. LiS. Advanced   screening   assays   to   rapidly identify solubility-enhancing formulations: High-throughput, miniaturization and automation.Adv. Drug Deliv. Rev.200860665767210.1016/j.addr.2007.10.01718222563
    [Google Scholar]
  39. DateA.A. DesaiN. DixitR. NagarsenkerM. Self-nano emulsifying drug delivery systems: Formulation insights, applications and advances.Nanomedicine20105101595161610.2217/nnm.10.126
    [Google Scholar]
  40. KaushikR. PisatN. EnoseA. NerurkarM.A. A 25 mg Approach for material characterization without automation.AAPS Annual Meeting and Exposition. National Biotechnology ConferenceWashington Convention Center, Seattle, 2009. p. M1206.
    [Google Scholar]
  41. The Biopharmaceutics Classification System (BCS) guidance.2009Available from: http://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/ucm128219.htm[updated 2009; cited].
  42. AlsenzJ. KansyM. High throughput solubility measurement in drug discovery and development.Adv. Drug Deliv. Rev.200759754656710.1016/j.addr.2007.05.00717604872
    [Google Scholar]
  43. SaalC. PetereitA.C. Optimizing solubility: Kinetic versus thermodynamic solubility temptations and risks.Eur. J. Pharm. Sci.201247358959510.1016/j.ejps.2012.07.01922885099
    [Google Scholar]
  44. KulshreshthaA.K. SinghO.N. WallG.M. GaradS. WangJ. JoshiY. Preclinical development for suspensions.Pharmaceutical SuspensionsNew YorkSpringer200912717610.1007/978‑1‑4419‑1087‑5_5
    [Google Scholar]
  45. Guidance for industry, investigators, and reviewers; exploratory IND studies.2006Available from: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm078933.pdf[Accessed 31 Mar 2006].
  46. NiwaT. HashimotoN. Novel technology to prepare oral formulations for preclinical safety studies.Int. J. Pharm.20083501-2707810.1016/j.ijpharm.2007.08.02717942253
    [Google Scholar]
  47. SherifI.B. MiriamK.F. MunirA.H. Salt selection for pharmaceutical compounds.Preformulation in solid dosage form development.1st edNew YorkInforma Healthcare20086380
    [Google Scholar]
  48. GuerrieriP. TaylorL.S. Role of salt and excipient properties on disproportionation in the solid-state.Pharm. Res.20092682015202610.1007/s11095‑009‑9918‑y19507008
    [Google Scholar]
  49. KesisoglouF. PanmaiS. WuY. Nanosizing — Oral formulation development and biopharmaceutical evaluation.Adv. Drug Deliv. Rev.200759763164410.1016/j.addr.2007.05.00317601629
    [Google Scholar]
  50. BummerP. Interfacial phenomena.Remington: The Science and Practice of Pharmacy.BaltimoreLippincott Williams and Wilkins2006280
    [Google Scholar]
  51. GrantR.L. YaoC. GabaldonD. AcostaD. Evaluation of surfactant cytotoxicity potential by primary cultures of ocular tissues: I. Characterization of rabbit corneal epithelial cells and initial injury and delayed toxicity studies.Toxicology199276215317610.1016/0300‑483X(92)90162‑81281345
    [Google Scholar]
  52. StellaV.J. HeQ. Cyclodextrins.Toxicol. Pathol.2008361304210.1177/019262330731094518337219
    [Google Scholar]
  53. BrewsterM.E. LoftssonT. Cyclodextrins as pharmaceutical solubilizers.Adv. Drug Deliv. Rev.200759764566610.1016/j.addr.2007.05.01217601630
    [Google Scholar]
  54. JainA.S. DateA.A. PissurlenkarR.R.S. CoutinhoE.C. NagarsenkerM.S. Sulfobutyl ether(7) β-cyclodextrin (SBE(7) β-CD) carbamazepine complex: preparation, characterization, molecular modeling, and evaluation of in vivo anti-epileptic activity.AAPS Pharm. Sci. Tech.20111241163117510.1208/s12249‑011‑9685‑z21918921
    [Google Scholar]
  55. LoftssonT. DuchêneD. Cyclodextrins and their pharmaceutical applications.Int. J. Pharm.20073291-211110.1016/j.ijpharm.2006.10.04417137734
    [Google Scholar]
  56. NagarsenkerM.S. JoshiM.S. Celecoxib-cyclodextrin systems: characterization and evaluation of in vitro and in vivo advantage.Drug Dev. Ind. Pharm.200531216917810.1081/DDC‑20004779515773284
    [Google Scholar]
  57. SmithJ.S. MacRaeR.J. SnowdenM.J. Effect of SBE7-β-cyclodextrin complexation on carbamazepine release from sustained release beads.Eur. J. Pharm. Biopharm.2005601738010.1016/j.ejpb.2004.12.00115848059
    [Google Scholar]
  58. CrowleyM.M. FredersdorfA. SchroederB. KuceraS. ProdduturiS. RepkaM.A. McGinityJ.W. The influence of guaifenesin and ketoprofen on the properties of hot-melt extruded polyethylene oxide films.Eur. J. Pharm. Sci.200422540941810.1016/j.ejps.2004.04.00515265510
    [Google Scholar]
  59. NagarsenkerM.S. MeshramR.N. RamprakashG. Solid dispersion of hydroxypropyl beta-cyclodextrin and ketorolac: Enhancement of dissolution rates, improvement in anti-inflammatory activity and reduction in ulcerogenicity in rats.J. Pharm. Pharmacol.200052894995610.1211/002235700177483111007065
    [Google Scholar]
  60. NaimaZ. SiroT. Juan-ManuelG.D. ChantalC. RenéC. JeromeD. Interactions between carbamazepine and polyethylene glycol (PEG) 6000: characterisations of the physical, solid dispersed and eutectic mixtures.Eur. J. Pharm. Sci.200112439540410.1016/S0928‑0987(00)00168‑811231106
    [Google Scholar]
  61. SethiaS. SquillanteE. Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods.Int. J. Pharm.20042721-211010.1016/j.ijpharm.2003.11.02515019063
    [Google Scholar]
  62. WilliamsM. TianY. JonesD.S. AndrewsG.P. Hot-melt extrusion technology: Optimizing drug delivery.Eur. Ind. Pharm.20107710
    [Google Scholar]
  63. MenschJ. MelisA. MackieC. VerreckG. BrewsterM.E. AugustijnsP. Evaluation of various PAMPA models to identify the most discriminating method for the prediction of BBB permeability.Eur. J. Pharm. Biopharm.201074349550210.1016/j.ejpb.2010.01.00320067834
    [Google Scholar]
  64. BoersenN. LeeT. HuiH-W. FaqiA.S. Chapter 4 - Development of preclinical formulations for toxicology studies.A comprehensive guide to toxicology in preclinical drug development1st Ed FaqiA.S. LondonAcademic Press20126986
    [Google Scholar]
  65. BarrettE.R. Nanosuspensions for parenteral delivery.Nanoparticulate Drug Delivery SystemsBoca RatonCRC Press2007335010.1201/9781420008449.ch2
    [Google Scholar]
  66. ZerroukN. ChemtobC. ArnaudP. ToscaniS. DugueJ. In vitro and in vivo evaluation of carbamazepine-PEG 6000 solid dispersions.Int. J. Pharm.20012251-2496210.1016/S0378‑5173(01)00741‑411489554
    [Google Scholar]
  67. ZhangX. XiaQ. GuN. Preparation of all-trans retinoic acid nanosuspensions using a modified precipitation method.Drug Dev. Ind. Pharm.200632785786310.1080/0363904050053418416908423
    [Google Scholar]
  68. KeckC. MüllerR. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation.Eur. J. Pharm. Biopharm.200662131610.1016/j.ejpb.2005.05.00916129588
    [Google Scholar]
  69. MüllerR.H. JacobsC. KayserO. Nanosuspensions as particulate drug formulations in therapy.Adv. Drug Deliv. Rev.200147131910.1016/S0169‑409X(00)00118‑611251242
    [Google Scholar]
  70. TungarazaT.E. Talapan-ManikothP. JenkinsR. Curse of the ghost pills: the role of oral controlled-release formulations in the passage of empty intact shells in faeces. Two case reports and a literature review relevant to psychiatry.Ther. Adv. Drug Saf.201342637110.1177/204209861247468125083252
    [Google Scholar]
  71. BeaumontK. WebsterR. GardnerI. DackK. Design of ester prodrugs to enhance oral absorption of poorly permeable compounds: challenges to the discovery scientist.Curr. Drug Metab.20034646148510.2174/138920003348925314683475
    [Google Scholar]
  72. DahanA. ZimmermannE.M. Ben-ShabatS. Modern prodrug design for targeted oral drug delivery.Molecules20141910164891650510.3390/molecules191016489
    [Google Scholar]
  73. MahatoR. TaiW. ChengK. Prodrugs for improving tumor targetability and efficiency.Adv. Drug Deliv. Rev.201163865967010.1016/j.addr.2011.02.00221333700
    [Google Scholar]
  74. ZawilskaJ.B. WojcieszakJ. OlejniczakA.B. Prodrugs: A challenge for the drug development.Pharmacol. Rep.201365111410.1016/S1734‑1140(13)70959‑923563019
    [Google Scholar]
  75. UlhaneJ.C. DawsonP.E. Peptide pharmaceuticals: Modifications to the peptide backbone that enhance stability and targeting.Chim. Oggi.20143241718
    [Google Scholar]
  76. MillaP. DosioF. CattelL. PEGylation of proteins and liposomes: A powerful and flexible strategy to improve the drug delivery.Curr. Drug Metab.201213110511910.2174/13892001279835693421892917
    [Google Scholar]
  77. PasutG. MorpurgoM. VeroneseF.M. Basic strategies for PEGylation of peptide and protein drugs.Deliv. Prot. Pept. Drugs Cancer2006538410.1142/9781860948039_0004
    [Google Scholar]
  78. IshidaT. KiwadaH. Anti-polyethyleneglycol antibody response to PEGylated substances.Biol. Pharm. Bull.201336688989110.1248/bpb.b13‑0010723727911
    [Google Scholar]
  79. SchellekensH. HenninkW.E. BrinksV. The immunogenicity of polyethylene glycol: facts and fiction.Pharm. Res.20133071729173410.1007/s11095‑013‑1067‑723673554
    [Google Scholar]
  80. VerhoefJ.J.F. CarpenterJ.F. AnchordoquyT.J. SchellekensH. Potential induction of anti-PEG antibodies and complement activation toward PEGylated therapeutics.Drug Discov. Today201419121945195210.1016/j.drudis.2014.08.01525205349
    [Google Scholar]
  81. DawidczykC.M. KimC. ParkJ.H. RussellL.M. LeeK.H. PomperM.G. SearsonP.C. State-of-the-art in design rules for drug delivery platforms: Lessons learned from FDA-approved nanomedicines.J. Control. Release201418713314410.1016/j.jconrel.2014.05.03624874289
    [Google Scholar]
  82. DawidczykC.M. RussellL.M. SearsonP.C. Nanomedicines for cancer therapy: State-of-the-art and limitations to pre-clinical studies that hinder future developments.Front Chem.201426910.3389/fchem.2014.0006925202689
    [Google Scholar]
  83. OnoueS. YamadaS. ChanH-K. Nanodrugs: Pharmacokinetics and safety.Int. J. Nanomed.201491025103710.2147/IJN.S38378
    [Google Scholar]
  84. TiwariG. TiwariR. RaiA. Cyclodextrins in delivery systems: Applications.J. Pharm. Bioallied Sci.201022727910.4103/0975‑7406.6700321814436
    [Google Scholar]
  85. AnderssonS.B. JonnS. LandhT. Nicotine compositions and methods of formulation thereof.Patent WO1999015171A11999
  86. StefanssonE. LoftssonT. Cyclodextrins in eye drop formulations.J. Incl. Phenom. Macrocycl. Chem.2003441–42327
    [Google Scholar]
  87. ChanJ.G.Y. WongJ. ZhouQ.T. LeungS.S.Y. ChanH.K. Advances in device and formulation technologies for pulmonary drug delivery.AAPS PharmSciTech201415488289710.1208/s12249‑014‑0114‑y24728868
    [Google Scholar]
  88. ChengY.S. Mechanisms of pharmaceutical aerosol deposition in the respiratory tract.AAPS PharmSciTech201415363064010.1208/s12249‑014‑0092‑024563174
    [Google Scholar]
  89. CordtsE. SteckelH. Formulation considerations for dry powder inhalers.Ther. Deliv.20145667568910.4155/tde.14.3525090281
    [Google Scholar]
  90. CuiY Schmalfuß S. Zellnitz S. Towards the optimization and adaptation of dry powder inhalers.Int. J. Pharm.20144701-212013210.1016/j.ijpharm.2014.04.065
    [Google Scholar]
  91. EscárcegaR.O. BakerN.C. LipinskiM.J. MagalhaesM.A. MinhaS. OmarA.F. TorgusonR. WaksmanR. Current application and bioavailability of drug-eluting stents.Expert Opin. Drug Deliv.201411568970910.1517/17425247.2014.88805424533457
    [Google Scholar]
  92. WiebeJ. NefH.M. HammC.W. Current status of bioresorbable scaffolds in the treatment of coronary artery disease.J. Am. Coll. Cardiol.201464232541255110.1016/j.jacc.2014.09.04125500240
    [Google Scholar]
  93. AtkinsonM.A. EisenbarthG.S. MichelsA.W. Type 1 diabetes.Lancet20143839911698210.1016/S0140‑6736(13)60591‑723890997
    [Google Scholar]
  94. TauschmannM. HovorkaR. Insulin pump therapy in youth with type 1 diabetes: toward closed-loop systems.Expert Opin. Drug Deliv.201411694395510.1517/17425247.2014.91019224749563
    [Google Scholar]
  95. NagillaR. NordM. McateeJ.J. JolivetteL.J. Cassette dosing for pharmacokinetic screening in drug discovery: Comparison of clearance, volume of distribution, half-life, mean residence time, and oral bioavailability obtained by cassette and discrete dosing in rats.J. Pharm. Sci.201110093862387410.1002/jps.2252521360708
    [Google Scholar]
  96. ChiouW.L. BarveA. Linear correlation of the fraction of oral dose absorbed of 64 drugs between humans and rats.Pharm. Res.199815111792179510.1023/A:10119813174519834005
    [Google Scholar]
  97. LuiC.Y. AmidonG.L. BerardiR.R. FleisherD. YoungbergC. DressmanJ.B. Comparison of gastrointestinal pH in dogs and humans: implications on the use of the beagle dog as a model for oral absorption in humans.J. Pharm. Sci.198675327127410.1002/jps.26007503133701609
    [Google Scholar]
  98. YamadaI. HagaK. Measurement of gastric pH during digestion of a solid meal in dogs.Chem. Pharm. Bull.19903861755175610.1248/cpb.38.17552208391
    [Google Scholar]
  99. AkimotoM. NagahataN. FuruyaA. FukushimaK. HiguchiS. SuwaT. Gastric pH profiles of beagle dogs and their use as an alternative to human testing.Eur. J. Pharm. Biopharm.20004929910210.1016/S0939‑6411(99)00070‑310704891
    [Google Scholar]
  100. KesisoglouF. MitraA. Crystalline nanosuspensions as potential toxicology and clinical oral formulations for BCS II/IV compounds.AAPS J.201214467768710.1208/s12248‑012‑9383‑022736294
    [Google Scholar]
  101. HigginsJ. CartwrightM.E. TempletonA.C. Progressing preclinical drug candidates: Strategies on preclinical safety studies and the quest for adequate exposure.Drug Discov. Today20121715-1682883610.1016/j.drudis.2012.03.01622546604
    [Google Scholar]
  102. BrewsterM. ClaireM. NoppeM. LampoA. LoftssonT. The use of solubilizing excipients and approaches to generate toxicology vehicles for contemporary drug pipelines.Solvent systems and their selection in pharmaceutics and biopharmaceutics.New YorkSpringer200722125610.1007/978‑0‑387‑69154‑1_8
    [Google Scholar]
  103. SunY.N. LeeH.J. AlmonR.R. JuskoW.J. A pharmacokinetic/pharmacodynamic model for recombinant human growth hormone effects on induction of insulin-like growth factor I in monkeys.J. Pharmacol. Exp. Ther.199928931523153210.1016/S0022‑3565(24)38301‑610336548
    [Google Scholar]
  104. GabrielssonJ. GreenA.R. Van der GraafP.H. Optimising in vivo pharmacology studies—Practical PKPD considerations.J. Pharmacol. Toxicol. Methods201061214615610.1016/j.vascn.2010.02.00220153442
    [Google Scholar]
  105. PetersonJ.K. HoughtonP.J. Integrating pharmacology and in vivo cancer models in preclinical and clinical drug development.Eur. J. Cancer200440683784410.1016/j.ejca.2004.01.00315120039
    [Google Scholar]
  106. HoHoughtonP.J. HoughtonJ.A MyersL. CheshireP. Evaluation of N-(5-indanylsulfonyl)-N0-(4-chlorophenyl)-urea against xenografts of pediatric rhabdomyosarcoma.Cancer Chemother. Pharmacol.198925848810.1007/BF006923442598403
    [Google Scholar]
  107. HoughtonP.J. CheshireP.J. HallmanJ.C. Evaluation   of   a   novel bis-naphthalimide anticancer agent DMP-840 against human xenograft derived from adult, juvenile, and pediatric cancers.Cancer Chemother. Pharmacol.199436455210.1007/BF006857317720175
    [Google Scholar]
  108. HoughtonP.J. CheshireP.J. HallmanJ.D.II HoughtonJ.A. Therapeutic efficacy of the cyclopropylpyrroloindole, carzelesin, against xenografts derived from adult and childhood solid tumors.Cancer Chemother. Pharmacol.1995361455210.1007/BF006857317720175
    [Google Scholar]
  109. BlackP.L. UsseryM.A. BarneyS. WittrockR. DeMarshP. DreyerG.B. PettewayS.R.Jr DalMonteP. BaldoniJ. LambertD.M. Effects of SKF 108922, an HIV-1 protease inhibitor, on retrovirus replication in mice.Antiviral Res.1996292-317518610.1016/0166‑3542(95)00831‑48739597
    [Google Scholar]
  110. D’SouzaR. MutalikS. VenkateshM. VidyasagarS. UdupaN. Nasal insulin gel as an alternate to parenteral insulin: Formulation, preclinical, and clinical studies.AAPS PharmSciTech200562E184E18910.1208/pt06022716353976
    [Google Scholar]
  111. RathboneM.J. PurveshR. GhazailF.A. HoP.C. In vivo techniques for studying the oral mucosal absorption characteristics of drugs in animals and humans.Oral mucosal drug delivery.New YorkMarcel Dekker, Inc.1996121156
    [Google Scholar]
  112. DaliM.M. MoenchP.A. MathiasN.R. StetskoP.I. HeranC.L. SmithR.L. A rabbit model for sublingual drug delivery: Comparison with human pharmacokinetic studies of propranolol, verapamil and captopril.J. Pharm. Sci.2006951374410.1002/jps.2031216307454
    [Google Scholar]
  113. KesavadevJ. DasA.K. UnnikrishnanR. JoshiS.R. RamachandranA. ShamsudeenJ. KrishnanG. JothydevS. MohanV. Use of insulin pumps in India: Suggested guidelines based on experience and cultural differences.Diabetes Technol. Ther.2010121082383110.1089/dia.2010.002720807118
    [Google Scholar]
  114. ChopadeP. ChopadeN. ZhaoZ. MitragotriS. LiaoR. SujaC.V. Alzheimer’s and Parkinson’s disease therapies in the clinic.Bioeng. Transl. Med.202381e1036710.1002/btm2.1036736684083
    [Google Scholar]
  115. ThomasR.H. SmithP.E.M. Epilepsy is different.J. R. Soc. Med.2011104414114310.1258/jrsm.2011.10041221502208
    [Google Scholar]
  116. SinghI. ThakurG. SinghA. Formulation and evaluation of transdermal composite films of chitosan-montmorillonite for the delivery of curcumin.Int. J. Pharm. Investig.201661233110.4103/2230‑973X.17646827014616
    [Google Scholar]
  117. ShivalingamM.R. BalasubramanianA. RamalingamK. Formulation and evaluation of transdermal patches of pantoprazole sodium.Inter. J. App. Pharm.202113528729110.22159/ijap.2021v13i5.42175
    [Google Scholar]
  118. CroweT.P. HsuW.H. Evaluation of recent intranasal drug delivery systems to the central nervous system.Pharmaceutics202214362910.3390/pharmaceutics1403062935336004
    [Google Scholar]
  119. StellaB. BarattaF. PepaD.C. ArpiccoS. GastaldiD. DosioF. Cannabinoid formulations and delivery systems: Current and future options to treat pain.Drugs202181131513155710.1007/s40265‑021‑01579‑x34480749
    [Google Scholar]
  120. LaffleurF. KeckeisV. Advances in drug delivery systems: Work in progress still needed?Int. J. Pharm.202059011991210.1016/j.ijpharm.2020.11991232971178
    [Google Scholar]
  121. DianaJ.N. TaoY. DuQ. WangM. KumarC.U. WuF. JinT. PLGA microspheres of hGH of preserved native state prepared using a self-regulated process.Pharmaceutics202012768310.3390/pharmaceutics1207068332698347
    [Google Scholar]
  122. LimH.S. Evolving role of modeling and simulation in drug development.Transl. Clin. Pharmacol.2019271192310.12793/tcp.2019.27.1.1932055577
    [Google Scholar]
  123. DingY. ChuN. WangR. QinW. ShiY. QianZ. LiuB. HeQ. Pharmacokinetic and pharmacodynamic evaluation study of etomidate: A randomized, open-label, 2-period crossover study in healthy Chinese subjects.Sci. Rep.2024141707110.1038/s41598‑024‑57581‑238528026
    [Google Scholar]
  124. JonesL. CarolH. EvansK. RichmondJ. HoughtonP.J. SmithM.A. LockR.B. A review of new agents evaluated against pediatric acute lymphoblastic leukemia by the pediatric preclinical testing program.Leukemia201630112133214110.1038/leu.2016.19227416986
    [Google Scholar]
  125. GrahamC. TuckerC. CreechJ. FavoursE. BillupsC.A. LiuT. FouladiM. FreemanB.B.III StewartC.F. HoughtonP.J. Evaluation of the antitumor efficacy, pharmacokinetics, and pharmacodynamics of the histone deacetylase inhibitor depsipeptide in childhood cancer models in vivo.Clin. Cancer Res.200612122323410.1158/1078‑0432.CCR‑05‑122516397046
    [Google Scholar]
  126. MurphyB. YinH. MarisJ.M. KolbE.A. GorlickR. ReynoldsC.P. KangM.H. KeirS.T. KurmashevaR.T. DvorchikI. WuJ. BillupsC.A. BoatengN. SmithM.A. LockR.B. HoughtonP.J. Evaluation of alternative in vivo drug screening methodology: A single mouse analysis.Cancer Res.201676195798580910.1158/0008‑5472.CAN‑16‑012227496711
    [Google Scholar]
  127. FehérA. BorossP. SperkaT. MiklóssyG. KádasJ. BagossiP. OroszlanS. WeberI.T. TözsérJ. Characterization of the murine leukemia virus protease and its comparison with the human immunodeficiency virus type 1 protease.J. Gen. Virol.20068751321133010.1099/vir.0.81382‑016603535
    [Google Scholar]
  128. Blanc-SylvestreN. BouchardP. ChaussainC. BardetC. Pre-clinical models in implant dentistry: past, present, future.Biomedicines2021911153810.3390/biomedicines911153834829765
    [Google Scholar]
  129. MajidH. BartelA. BurckhardtB.B. Predictivity of standardized and controlled permeation studies: Ex vivoIn vitroIn vivo correlation for sublingual absorption of propranolol.Eur. J. Pharm. Biopharm.2021169121910.1016/j.ejpb.2021.09.00234508807
    [Google Scholar]
  130. VickJ.A. KandilA. HermanE.H. BalazsT. Reversal of propranolol and verapamil toxicity by calcium.Vet. Hum. Toxicol.19832518106829164
    [Google Scholar]
  131. KreuterJ. RamgeP. PetrovV. HammS. GelperinaS.E. EngelhardtB. AlyautdinR. BriesenV.H. BegleyD.J. Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles.Pharm. Res.200320340941610.1023/A:102260412095212669961
    [Google Scholar]
  132. JensenS.A. DayE.S. KoC.H. HurleyL.A. LucianoJ.P. KouriF.M. MerkelT.J. LuthiA.J. PatelP.C. CutlerJ.I. DanielW.L. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma.Sci. Transl. Med.20205209209ra15210.1126/scitranslmed.3006839
    [Google Scholar]
  133. MathewA. FukudaT. NagaokaY. HasumuraT. MorimotoH. YoshidaY. MaekawaT. VenugopalK. KumarD.S. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease.PLoS One201273e3261610.1371/journal.pone.003261622403681
    [Google Scholar]
  134. XinH. JiangX. GuJ. ShaX. ChenL. LawK. ChenY. WangX. JiangY. FangX. Angiopep-conjugated poly(ethylene glycol)-co-poly(ε-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma.Biomaterials201132184293430510.1016/j.biomaterials.2011.02.04421427009
    [Google Scholar]
  135. LiuH.L. HuaM.Y. YangH.W. HuangC.Y. ChuP.C. WuJ.S. TsengI.C. WangJ.J. YenT.C. ChenP.Y. WeiK.C. Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain.Proc. Natl. Acad. Sci. USA201010734152051521010.1073/pnas.100338810720696897
    [Google Scholar]
  136. HuK. LiJ. ShenY. LuW. GaoX. ZhangQ. JiangX. Lactoferrin-conjugated PEG–PLA nanoparticles with improved brain delivery: In vitro and in vivo evaluations.J. Control. Rel.20091341556110.1016/j.jconrel.2008.10.01619038299
    [Google Scholar]
  137. RuanS. YuanM. ZhangL. HuG. ChenJ. CunX. ZhangQ. YangY. HeQ. GaoH. Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles.Biomaterials20153742543510.1016/j.biomaterials.2014.10.00725453970
    [Google Scholar]
  138. OatesJ.T. LopezD. Pharmacogenetics: An important part of drug development with a focus on its application.Int. J. Biomed. Investig.20181211132467882
    [Google Scholar]
  139. EzikeT.C. OkpalaU.S. OnojaU.L. NwikeC.P. EzeakoE.C. OkparaO.J. OkoroaforC.C. EzeS.C. KaluO.L. OdohE.C. NwadikeU.G. OgbodoJ.O. UmehB.U. OssaiE.C. NwangumaB.C. Advances in drug delivery systems, challenges and future directions.Heliyon202396e1748810.1016/j.heliyon.2023.e1748837416680
    [Google Scholar]
/content/journals/rrct/10.2174/0115748871340281250331180316
Loading
/content/journals/rrct/10.2174/0115748871340281250331180316
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test