Skip to content
2000
image of A Prospective Study on the Role of Strain Echocardiography in Detecting Early Radiation-induced Cardiotoxicity in Left-sided Breast Cancer Patients

Abstract

Introduction

Radiotherapy for breast cancer has a clear benefit for long-term survival and local control rate. However, it can negatively impact a patient’s quality of life by affecting healthy surrounding normal tissues, including the heart and lungs. This study aimed to clarify the contribution of echocardiography with Global Longitudinal Strain (GLS) to early radiation-induced cardiotoxicity detection.

Methods

A prospective study was conducted on 25 early-stage left-sided breast cancer patients. All underwent 2D strain echocardiography before and one year after RT. Normality was assessed using the Shapiro-Wilk test and box plots. The Wilcoxon signed-rank test was conducted to compare GLS values. A statistical analysis was performed using Statistical Package for the Social Sciences (SPSS) version 25.

Results

Mean Global Longitudinal Strain value before and one year after radiotherapy was -20.2% and -21.2%, respectively. In half of these cases, the values ranged from -19.65% to -22.70% before radiotherapy and between -18.8% and -22.25% after radiotherapy. The non-parametric Wilcoxon test indicated no statistically significant difference before and after radiotherapy (Ζ = 0.902, = 0.367).

Discussion

Although no statistically significant reduction in GLS was observed one year post-radiotherapy, a decrease was noted in patients receiving higher cardiac doses, suggesting potential early subclinical myocardial changes. Strain echocardiography shows promise as a sensitive tool for the early detection of radiation-induced cardiotoxicity, warranting further research with larger cohorts and extended follow-up.

Conclusion

While this small cohort study did not show significant GLS changes post-RT, it highlights the need for larger studies with longer follow-ups to confirm the role of strain imaging in identifying early cardiotoxicity in breast cancer patients.

Loading

Article metrics loading...

/content/journals/rrct/10.2174/0115748871338729250418152731
2025-05-08
2025-09-14
Loading full text...

Full text loading...

References

  1. Kesson E.M. Allardice G.M. George W.D. Burns H.J.G. Morrison D.S. Effects of multidisciplinary team working on breast cancer survival: Retrospective, comparative, interventional cohort study of 13 722 women. BMJ 2012 344 apr26 1 e2718 10.1136/bmj.e2718 22539013
    [Google Scholar]
  2. Clarke M. Collins R. Darby S. Davies C. Elphinstone P. Evans V. Godwin J. Gray R. Hicks C. James S. MacKinnon E. McGale P. McHugh T. Peto R. Taylor C. Wang Y. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: An overview of the randomised trials. Lancet 2005 366 9503 2087 2106 10.1016/S0140‑6736(05)67887‑7 16360786
    [Google Scholar]
  3. Roychoudhuri R. Robinson D. Putcha V. Cuzick J. Darby S. Møller H. Increased cardiovascular mortality more than fifteen years after radiotherapy for breast cancer: A population-based study. BMC Cancer 2007 7 1 9 10.1186/1471‑2407‑7‑9 17224064
    [Google Scholar]
  4. Nissen H.D. Appelt A.L. Improved heart, lung and target dose with deep inspiration breath hold in a large clinical series of breast cancer patients. Radiother. Oncol. 2013 106 1 28 32 10.1016/j.radonc.2012.10.016 23199652
    [Google Scholar]
  5. Duma M.N. Herr A.C. Borm K.J. Trott K.R. Molls M. Oechsner M. Combs S.E. Tangential field radiotherapy for breast cancer—The dose to the heart and heart subvolumes: What structures must be contoured in future clinical trials? Front. Oncol. 2017 7 130 10.3389/fonc.2017.00130 28674678
    [Google Scholar]
  6. Hancock S.L. Tucker M.A. Hoppe R.T. Factors affecting late mortality from heart disease after treatment of Hodgkin’s disease. JAMA 1993 270 16 1949 1955 10.1001/jama.1993.03510160067031 8411552
    [Google Scholar]
  7. Gkantaifi A. Papadopoulos C. Spyropoulou D. Toumpourleka M. Iliadis G. Tsoukalas N. Kyrgias G. Tolia M. Evaluation of the irradiated volume of the heart and cardiac substructures after left breast radiotherapy. Anticancer Res. 2020 40 5 3003 3009 10.21873/anticanres.14281 32366455
    [Google Scholar]
  8. Skyttä T. Tuohinen S. Boman E. Virtanen V. Raatikainen P. Kellokumpu-Lehtinen P.L. Troponin T-release associates with cardiac radiation doses during adjuvant left-sided breast cancer radiotherapy. Radiat. Oncol. 2015 10 1 141 10.1186/s13014‑015‑0436‑2 26159409
    [Google Scholar]
  9. van den Bogaard V.A.B. Ta B.D.P. van der Schaaf A. Bouma A.B. Middag A.M.H. Bantema-Joppe E.J. van Dijk L.V. van Dijk-Peters F.B.J. Marteijn L.A.W. de Bock G.H. Burgerhof J.G.M. Gietema J.A. Langendijk J.A. Maduro J.H. Crijns A.P.G. Validation and modification of a prediction model for acute cardiac events in patients with breast cancer treated with radiotherapy based on three-dimensional dose distributions to cardiac substructures. J. Clin. Oncol. 2017 35 11 1171 1178 10.1200/JCO.2016.69.8480 28095159
    [Google Scholar]
  10. Gkantaifi A. Papadopoulos C. Spyropoulou D. Toumpourleka M. Iliadis G. Kardamakis D. Nikolaou M. Tsoukalas N. Kyrgias G. Tolia M. Breast radiotherapy and early adverse cardiac effects. The role of serum biomarkers and strain echocardiography. Anticancer Res. 2019 39 4 1667 1673 10.21873/anticanres.13272 30952705
    [Google Scholar]
  11. Garrone O. Crosetto N. Lo Nigro C. Catzeddu T. Vivenza D. Monteverde M. Merlano M. Feola M. Prediction of anthracycline cardiotoxicity after chemotherapy by biomarkers kinetic analysis. Cardiovasc. Toxicol. 2012 12 2 135 142 10.1007/s12012‑011‑9149‑4 22189487
    [Google Scholar]
  12. Ky B. Putt M. Sawaya H. French B. Januzzi J.L. Jr Sebag I.A. Plana J.C. Cohen V. Banchs J. Carver J.R. Wiegers S.E. Martin R.P. Picard M.H. Gerszten R.E. Halpern E.F. Passeri J. Kuter I. Scherrer-Crosbie M. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J. Am. Coll. Cardiol. 2014 63 8 809 816 10.1016/j.jacc.2013.10.061 24291281
    [Google Scholar]
  13. Hoffmann R. Altiok E. Heussen N. Hanrath P. Nowak B. Kaiser H.J. Büll U. Kühl H. Strain rate measurement by doppler echocardiography allows improved assessment of myocardial viability inpatients with depressed left ventricular function. J. Am. Coll. Cardiol. 2002 39 3 443 449 10.1016/S0735‑1097(01)01763‑6 11823082
    [Google Scholar]
  14. Biering-Sørensen T. Biering-Sørensen S.R. Olsen F.J. Sengeløv M. Jørgensen P.G. Mogelvang R. Shah A.M. Jensen J.S. Global longitudinal strain by echocardiography predicts long-term risk of cardiovascular morbidity and mortality in a low-risk general population. Circ. Cardiovasc. Imaging 2017 10 3 e005521 10.1161/CIRCIMAGING.116.005521 28264868
    [Google Scholar]
  15. Laufer-Perl M. Derakhshesh M. Milwidsky A. Mor L. Ravid D. Amrami N. Sherez J. Keren G. Topilsky Y. Arbel Y. Usefulness of global longitudinal strain for early identification of subclinical left ventricular dysfunction in patients with active cancer. Am. J. Cardiol. 2018 122 10 1784 1789 10.1016/j.amjcard.2018.08.019 30217373
    [Google Scholar]
  16. Thavendiranathan P. Grant A.D. Negishi T. Plana J.C. Popović Z.B. Marwick T.H. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: Application to patients undergoing cancer chemotherapy. J. Am. Coll. Cardiol. 2013 61 1 77 84 10.1016/j.jacc.2012.09.035 23199515
    [Google Scholar]
  17. Dalen H. Thorstensen A. Aase S.A. Ingul C.B. Torp H. Vatten L.J. Stoylen A. Segmental and global longitudinal strain and strain rate based on echocardiography of 1266 healthy individuals: The HUNT study in Norway. Eur. Heart J. Cardiovasc. Imaging 2010 11 2 176 183 10.1093/ejechocard/jep194 19946115
    [Google Scholar]
  18. Lang R.M. Badano L.P. Mor-Avi V. Afilalo J. Armstrong A. Ernande L. Flachskampf F.A. Foster E. Goldstein S.A. Kuznetsova T. Lancellotti P. Muraru D. Picard M.H. Rietzschel E.R. Rudski L. Spencer K.T. Tsang W. Voigt J.U. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American society of echocardiography and the European association of cardiovascular imaging. Eur. Heart J. Cardiovasc. Imaging 2015 16 3 233 271 10.1093/ehjci/jev014 25712077
    [Google Scholar]
  19. Cheng Y.J. Nie X.Y. Ji C.C. Lin X.X. Liu L.J. Chen X.M. Yao H. Wu S.H. Long-term cardiovascular risk after radiotherapy in women with breast cancer. J. Am. Heart Assoc. 2017 6 5 e005633 10.1161/JAHA.117.005633 28529208
    [Google Scholar]
  20. Chen S. Yuan J. Qiao S. Duan F. Zhang J. Wang H. Evaluation of left ventricular diastolic function by global strain rate imaging in patients with obstructive hypertrophic cardiomyopathy: A simultaneous speckle tracking echocardiography and cardiac catheterization study. Echocardiography 2014 31 5 615 622 10.1111/echo.12424 24219240
    [Google Scholar]
  21. Kalam K. Otahal P. Marwick T.H. Prognostic implications of global LV dysfunction: A systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart 2014 100 21 1673 1680 10.1136/heartjnl‑2014‑305538 24860005
    [Google Scholar]
  22. Kato T.S. Noda A. Izawa H. Yamada A. Obata K. Nagata K. Iwase M. Murohara T. Yokota M. Discrimination of nonobstructive hypertrophic cardiomyopathy from hypertensive left ventricular hypertrophy on the basis of strain rate imaging by tissue Doppler ultrasonography. Circulation 2004 110 25 3808 3814 10.1161/01.CIR.0000150334.69355.00 15583080
    [Google Scholar]
  23. Zoroufian A. Razmi T. Taghavi-Shavazi M. Lotfi-Tokaldany M. Jalali A. Evaluation of subclinical left ventricular dysfunction in diabetic patients: Longitudinal strain velocities and left ventricular dyssynchrony by two-dimensional speckle tracking echocardiography study. Echocardiography 2014 31 4 456 463 10.1111/echo.12389 24134395
    [Google Scholar]
  24. Sawaya H. Sebag I.A. Plana J.C. Januzzi J.L. Ky B. Tan T.C. Cohen V. Banchs J. Carver J.R. Wiegers S.E. Martin R.P. Picard M.H. Gerszten R.E. Halpern E.F. Passeri J. Kuter I. Scherrer-Crosbie M. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ. Cardiovasc. Imaging 2012 5 5 596 603 10.1161/CIRCIMAGING.112.973321 22744937
    [Google Scholar]
  25. Wang Y.A. Xia D.Z. Li G.S. Cui H.Y. Strain rate imaging in early assesment of thoracic radiotherapy-induced myocardial damage. Chin. J. Med. Imaging Technol. 2006 22 1194 1196
    [Google Scholar]
  26. Chang H.F. Jiang Z.R. Wang X.F. Wang Z.N. Strain rate imaging in assessment of the relationship between the dose of thoracic radiotherapy and the radiotherapy-induced myocardial damage. Chin. J. Med. Imaging Technol. 2009 25 1032 1035
    [Google Scholar]
  27. Tsai H.R. Gjesdal O. Wethal T. Haugaa K.H. Fosså A. Fosså S.D. Edvardsen T. Left ventricular function assessed by two-dimensional speckle tracking echocardiography in long-term survivors of Hodgkin’s lymphoma treated by mediastinal radiotherapy with or without anthracycline therapy. Am. J. Cardiol. 2011 107 3 472 477 10.1016/j.amjcard.2010.09.048 21257017
    [Google Scholar]
  28. Erven K. Jurcut R. Weltens C. Giusca S. Ector J. Wildiers H. Van den Bogaert W. Voigt J.U. Acute radiation effects on cardiac function detected by strain rate imaging in breast cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 2011 79 5 1444 1451 10.1016/j.ijrobp.2010.01.004 20605341
    [Google Scholar]
  29. Erven K. Florian A. Slagmolen P. Sweldens C. Jurcut R. Wildiers H. Voigt J.U. Weltens C. Subclinical cardiotoxicity detected by strain rate imaging up to 14 months after breast radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2013 85 5 1172 1178 10.1016/j.ijrobp.2012.09.022 23149005
    [Google Scholar]
  30. Lo Q. Hee L. Batumalai V. Allman C. MacDonald P. Delaney G.P. Lonergan D. Thomas L. Subclinical cardiac dysfunction detected by strain imaging during breast irradiation with persistent changes 6 weeks after treatment. Int. J. Radiat. Oncol. Biol. Phys. 2015 92 2 268 276 10.1016/j.ijrobp.2014.11.016 25968824
    [Google Scholar]
/content/journals/rrct/10.2174/0115748871338729250418152731
Loading
/content/journals/rrct/10.2174/0115748871338729250418152731
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test