Skip to content
2000
Volume 20, Issue 2
  • ISSN: 1574-8871
  • E-ISSN: 1876-1038

Abstract

Introduction

In the present study, we evaluated the impact of empagliflozin on serum levels of oxidative stress parameters in individuals with type 2 diabetes (T2DM) who also suffer from heart failure with Reduced Ejection Fraction (HFrEF).

Methods

In this prospective, single-center clinical trial, 80 patients with T2DM and HFrEF, stabilized on guideline-directed heart failure therapy and classified as New York Heart Association functional (NYHA) functional classes II or III, were randomized to receive either empagliflozin (10 mg/daily) or a matching placebo for a duration of 12 weeks. Serum levels of malondialdehyde (MDA), along with the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx), were measured at baseline and after the 12-week treatment period.

Results

The baseline demographic and clinical characteristics of the randomized patients were comparable across the study groups. As anticipated, empagliflozin demonstrated a significant reduction in fasting blood glucose (FBG) and glycated hemoglobin (HbA1c) compared to the placebo after 12 weeks of treatment. Additionally, in comparison to the placebo, empagliflozin significantly increased the antioxidant capacity by elevating serum activity of SOD and GPx, while reducing oxidative damage, as evidenced by diminished MDA levels. Empagliflozin-treated patients also experienced greater improvement in their NYHA functional classes by week 12, though no significant changes in Left Ventricular Ejection Fraction (LVEF) were observed.

Conclusion

The findings of this study shed light on the potential mechanisms through which SGLT2 inhibitors exert their beneficial effects on clinical outcomes in diabetic patients with HFrEF. This provides compelling evidence supporting the cardio-protective of SGLT2 inhibitors in this patient population.

Clinical Trial Registration Number

The trial was registered at the Iranian Registry of Clinical Trials (https://irct.behdasht.gov.ir/trial/72825, identifier code: IRCT20120215009014N484). Registration date: 2022-09-30.

Loading

Article metrics loading...

/content/journals/rrct/10.2174/0115748871323540241212060946
2025-01-06
2025-09-30
Loading full text...

Full text loading...

References

  1. XuB. LiS. KangB. ZhouJ. The current role of sodium-glucose cotransporter 2 inhibitors in type 2 diabetes mellitus management.Cardiovasc. Diabetol.20222118310.1186/s12933‑022‑01512‑w35614469
    [Google Scholar]
  2. NeumillerJ.J. WhiteJ.R. CampbellR.K. Sodium-glucose co-transport inhibitors: Progress and therapeutic potential in type 2 diabetes mellitus.Drugs201070437738510.2165/11318680‑000000000‑0000020205482
    [Google Scholar]
  3. BonoraB.M. AvogaroA. FadiniG.P. Extraglycemic effects of SGLT2 inhibitors: A review of the evidence.Diabetes Metab. Syndr. Obes.20201316117410.2147/DMSO.S23353832021362
    [Google Scholar]
  4. ZelnikerT.A. WiviottS.D. RazI. ImK. GoodrichE.L. BonacaM.P. MosenzonO. KatoE.T. CahnA. FurtadoR.H.M. BhattD.L. LeiterL.A. McGuireD.K. WildingJ.P.H. SabatineM.S. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials.Lancet201939310166313910.1016/S0140‑6736(18)32590‑X30424892
    [Google Scholar]
  5. LinR. PengX. LiY. WangX. LiuX. JiaX. ZhangC. LiuN. DongJ. Empagliflozin attenuates doxorubicin-impaired cardiac contractility by suppressing reactive oxygen species in isolated myocytes.Mol. Cell. Biochem.202311437648958
    [Google Scholar]
  6. KalraS. Sodium-glucose cotransporter 2 (SGLT2) inhibitors and cardiovascular disease: A systematic review.Cardiol. Ther.20165216116810.1007/s40119‑016‑0069‑z27539303
    [Google Scholar]
  7. MoadyG. Ben GalT. AtarS. Sodium-Glucose co-transporter 2 inhibitors in heart failure - Current evidence in special populations.Life (Basel)2023136125610.3390/life1306125637374037
    [Google Scholar]
  8. CardosoR. GraffunderF.P. TernesC.M.P. FernandesA. RochaA.V. FernandesG. BhattD.L. SGLT2 inhibitors decrease cardiovascular death and heart failure hospitalizations in patients with heart failure: A systematic review and meta-analysis.EClinicalMedicine20213610093310.1016/j.eclinm.2021.10093334308311
    [Google Scholar]
  9. HeidenreichP.A. BozkurtB. AguilarD. AllenL.A. ByunJ.J. ColvinM.M. DeswalA. DraznerM.H. DunlayS.M. EversL.R. FangJ.C. FedsonS.E. FonarowG.C. HayekS.S. HernandezA.F. KhazanieP. KittlesonM.M. LeeC.S. LinkM.S. MilanoC.A. NnachetaL.C. SandhuA.T. StevensonL.W. VardenyO. VestA.R. YancyC.W. 2022 AHA/ACC/HFSA guideline for the management of heart failure.J. Am. Coll. Cardiol.20227917e263e42110.1016/j.jacc.2021.12.01235379503
    [Google Scholar]
  10. McDonaghT.A. MetraM. AdamoM. GardnerR.S. BaumbachA. BöhmM. BurriH. ButlerJ. ČelutkienėJ. ChioncelO. ClelandJ.G.F. CoatsA.J.S. Crespo-LeiroM.G. FarmakisD. GilardM. HeymansS. HoesA.W. JaarsmaT. JankowskaE.A. LainscakM. LamC.S.P. LyonA.R. McMurrayJ.J.V. MebazaaA. MindhamR. MunerettoC. Francesco PiepoliM. PriceS. RosanoG.M.C. RuschitzkaF. Kathrine SkibelundA. de BoerR.A. Christian SchulzeP. AbdelhamidM. AboyansV. AdamopoulosS. AnkerS.D. ArbeloE. AsteggianoR. BauersachsJ. Bayes-GenisA. BorgerM.A. BudtsW. CikesM. DammanK. DelgadoV. DendaleP. DilaverisP. DrexelH. EzekowitzJ. FalkV. FauchierL. FilippatosG. FraserA. FreyN. GaleC.P. GustafssonF. HarrisJ. IungB. JanssensS. JessupM. KonradiA. KotechaD. LambrinouE. LancellottiP. LandmesserU. LeclercqC. LewisB.S. LeyvaF. LinhartA. LøchenM-L. LundL.H. ManciniD. MasipJ. MilicicD. MuellerC. NefH. NielsenJ-C. NeubeckL. NoutsiasM. PetersenS.E. Sonia PetronioA. PonikowskiP. PrescottE. RakishevaA. RichterD.J. SchlyakhtoE. SeferovicP. SenniM. SitgesM. Sousa-UvaM. TocchettiC.G. TouyzR.M. TschoepeC. WaltenbergerJ. AdamoM. BaumbachA. BöhmM. BurriH. ČelutkienėJ. ChioncelO. ClelandJ.G.F. CoatsA.J.S. Crespo-LeiroM.G. FarmakisD. GardnerR.S. GilardM. HeymansS. HoesA.W. JaarsmaT. JankowskaE.A. LainscakM. LamC.S.P. LyonA.R. McMurrayJ.J.V. MebazaaA. MindhamR. MunerettoC. PiepoliM.F. PriceS. RosanoG.M.C. RuschitzkaF. SkibelundA.K. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure.Eur. Heart J.202142363599372610.1093/eurheartj/ehab36834447992
    [Google Scholar]
  11. BadgerS. McVeighJ. IndraratnaP. Summary and comparison of the 2022 ACC/AHA/HFSA and 2021 ESC heart failure guidelines.Cardiol. Ther.202312457158810.1007/s40119‑023‑00328‑337653361
    [Google Scholar]
  12. CowieM.R. FisherM. SGLT2 inhibitors: Mechanisms of cardiovascular benefit beyond glycaemic control.Nat. Rev. Cardiol.2020171276177210.1038/s41569‑020‑0406‑832665641
    [Google Scholar]
  13. LopaschukG.D. VermaS. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors: A state-of-the-art review.JACC Basic Transl. Sci.20205663264410.1016/j.jacbts.2020.02.00432613148
    [Google Scholar]
  14. TangJ. YeL. YanQ. ZhangX. WangL. Effects of sodium-glucose cotransporter 2 inhibitors on water and sodium metabolism.Front. Pharmacol.20221380049010.3389/fphar.2022.80049035281930
    [Google Scholar]
  15. WojcikC. WardenB.A. Mechanisms and evidence for heart failure benefits from SGLT2 inhibitors.Curr. Cardiol. Rep.2019211013010.1007/s11886‑019‑1219‑431522263
    [Google Scholar]
  16. AngermannC.E. Santos-GallegoC.G. Requena-IbanezJ.A. SehnerS. ZellerT. GerhardtL.M.S. MaackC. SanzJ. FrantzS. FusterV. ErtlG. BadimonJ.J. Empagliflozin effects on iron metabolism as a possible mechanism for improved clinical outcomes in non-diabetic patients with systolic heart failure.Nature Cardiovascular Research20232111032104310.1038/s44161‑023‑00352‑539196095
    [Google Scholar]
  17. TsutsuiH. KinugawaS. MatsushimaS. Oxidative stress and heart failure.Am. J. Physiol. Heart Circ. Physiol.20113016H2181H219010.1152/ajpheart.00554.201121949114
    [Google Scholar]
  18. MartinezP.F. BonomoC. GuizoniD.M. JuniorS.A.O. DamattoR.L. CezarM.D.M. LimaA.R.R. PaganL.U. SeivaF.R. BuenoR.T. FernandesD.C. LaurindoF.R. ZornoffL.A.M. OkoshiK. OkoshiM.P. Modulation of MAPK and NF-κB signaling pathways by antioxidant therapy in skeletal muscle of heart failure rats.Cell. Physiol. Biochem.201639137138410.1159/00044563127351177
    [Google Scholar]
  19. RosaC.M. GimenesR. CamposD.H.S. GuiradoG.N. GimenesC. FernandesA.A.H. CicognaA.C. QueirozR.M. Falcão-PiresI. Miranda-SilvaD. RodriguesP. LaurindoF.R. FernandesD.C. CorreaC.R. OkoshiM.P. OkoshiK. Apocynin influence on oxidative stress and cardiac remodeling of spontaneously hypertensive rats with diabetes mellitus.Cardiovasc. Diabetol.201615112610.1186/s12933‑016‑0442‑127585437
    [Google Scholar]
  20. WojciechowskaC. JachećW. RomukE. CiszekA. BodnarP. ChwalbaT. WaliczekM. GąsiorM. RozentrytP. Serum sulfhydryl groups, malondialdehyde, uric acid, and bilirubin as predictors of adverse outcome in heart failure patients due to ischemic or nonischemic cardiomyopathy.Oxid. Med. Cell. Longev.202120211669340510.1155/2021/669340533936385
    [Google Scholar]
  21. RannehY. AliF. AkimA.M. HamidH.A. KhazaaiH. FadelA. Crosstalk between reactive oxygen species and pro-inflammatory markers in developing various chronic diseases: A review.Applied Biological Chemistry201760332733810.1007/s13765‑017‑0285‑9
    [Google Scholar]
  22. PaganL.U. GomesM.J. MartinezP.F. OkoshiM.P. Oxidative stress and heart failure: Mechanisms, signalling pathways, and therapeutics.Oxid. Med. Cell Longev.20222022982950510.1155/2022/982950535464761
    [Google Scholar]
  23. van der PolA. van GilstW.H. VoorsA.A. van der MeerP. Treating oxidative stress in heart failure: Past, present and future.Eur. J. Heart Fail.201921442543510.1002/ejhf.132030338885
    [Google Scholar]
  24. TsaiK.F. ChenY.L. ChiouT.T.Y. ChuT.H. LiL.C. NgH.Y. LeeW.C. LeeC.T. Emergence of SGLT2 inhibitors as powerful antioxidants in human diseases.Antioxidants2021108116610.3390/antiox1008116634439414
    [Google Scholar]
  25. YaribeygiH. AtkinS.L. ButlerA.E. SahebkarA. Sodium–glucose cotransporter inhibitors and oxidative stress: An update.J. Cell. Physiol.201923443231323710.1002/jcp.2676030443936
    [Google Scholar]
  26. OshimaH. MikiT. KunoA. MizunoM. SatoT. TannoM. YanoT. NakataK. KimuraY. AbeK. OhwadaW. MiuraT. Empagliflozin, an SGLT2 inhibitor, reduced the mortality rate after acute myocardial infarction with modification of cardiac metabolomes and antioxidants in diabetic rats.J. Pharmacol. Exp. Ther.2019368352453410.1124/jpet.118.25366630552292
    [Google Scholar]
  27. OsorioH. CoronelI. ArellanoA. PachecoU. BautistaR. FrancoM. EscalanteB. Sodium-glucose cotransporter inhibition prevents oxidative stress in the kidney of diabetic rats.Oxid. Med. Cell Longev.2012201254204210.1155/2012/54204223227274
    [Google Scholar]
  28. IannantuoniF. M de MarañonA. Diaz-MoralesN. FalconR. BañulsC. Abad-JimenezZ. VictorV.M. Hernandez-MijaresA. Rovira-LlopisS. The SGLT2 inhibitor empagliflozin ameliorates the inflammatory profile in type 2 diabetic patients and promotes an antioxidant response in leukocytes.J. Clin. Med.2019811181410.3390/jcm811181431683785
    [Google Scholar]
  29. TeramiN. OgawaD. TachibanaH. HatanakaT. WadaJ. NakatsukaA. EguchiJ. HoriguchiC.S. NishiiN. YamadaH. TakeiK. MakinoH. Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice.PLoS One201496e10077710.1371/journal.pone.010077724960177
    [Google Scholar]
  30. LiC. ZhangJ. XueM. LiX. HanF. LiuX. XuL. LuY. ChengY. LiT. YuX. SunB. ChenL. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart.Cardiovasc. Diabetol.20191811510.1186/s12933‑019‑0816‑230710997
    [Google Scholar]
  31. TaharaA. KurosakiE. YokonoM. YamajukuD. KiharaR. HayashizakiY. TakasuT. ImamuraM. LiQ. TomiyamaH. KobayashiY. NodaA. SasamataM. ShibasakiM. Effects of SGLT2 selective inhibitor ipragliflozin on hyperglycemia, hyperlipidemia, hepatic steatosis, oxidative stress, inflammation, and obesity in type 2 diabetic mice.Eur. J. Pharmacol.20137151-324625510.1016/j.ejphar.2013.05.01423707905
    [Google Scholar]
  32. Aragón-HerreraA. Feijóo-BandínS. Otero SantiagoM. BarralL. Campos-ToimilM. Gil-LongoJ. Costa PereiraT.M. García-CaballeroT. Rodríguez-SegadeS. RodríguezJ. TarazónE. Roselló-LletíE. PortolésM. GualilloO. González-JuanateyJ.R. LagoF. Empagliflozin reduces the levels of CD36 and cardiotoxic lipids while improving autophagy in the hearts of Zucker diabetic fatty rats.Biochem. Pharmacol.201917011367710.1016/j.bcp.2019.11367731647926
    [Google Scholar]
  33. PackerM. Activation and inhibition of sodium-hydrogen exchanger is a mechanism that links the pathophysiology and treatment of diabetes mellitus with that of heart failure.Circulation2017136161548155910.1161/CIRCULATIONAHA.117.03041829038209
    [Google Scholar]
  34. IghodaroO.M. AkinloyeO.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid.Alex. J. Med.201854428729310.1016/j.ajme.2017.09.001
    [Google Scholar]
  35. Dalle-DonneI. RossiR. ColomboR. GiustariniD. MilzaniA. Biomarkers of oxidative damage in human disease.Clin. Chem.200652460162310.1373/clinchem.2005.06140816484333
    [Google Scholar]
  36. BriggsO.N. BrownH. Elechi-amadiK. EzeiruakuF. NdukaN. Superoxide dismutase and glutathione peroxidase levels in patients with long standing type 2 diabetes in Port Harcourt, Rivers State, Nigeria.Int. J. Sci. Res.20165312821288
    [Google Scholar]
  37. RadovanovicS. Savic-RadojevicA. Pljesa-ErcegovacM. DjukicT. SuvakovS. KrotinM. SimicD.V. MaticM. RadojicicZ. PekmezovicT. SimicT. Markers of oxidative damage and antioxidant enzyme activities as predictors of morbidity and mortality in patients with chronic heart failure.J. Card. Fail.201218649350110.1016/j.cardfail.2012.04.00322633308
    [Google Scholar]
  38. ŌyanaguiY. Reevaluation of assay methods and establishment of kit for superoxide dismutase activity.Anal. Biochem.1984142229029610.1016/0003‑2697(84)90467‑66099057
    [Google Scholar]
  39. FlohéL. GünzlerW.A. Assays of glutathione peroxidase.Methods Enzymol.198410511412110.1016/s0076‑6879(84)05015‑16727659
    [Google Scholar]
  40. BotsoglouN.A. FletourisD.J. PapageorgiouG.E. VassilopoulosV.N. MantisA.J. TrakatellisA.G. Rapid, sensitive, and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food, and feedstuff samples.J. Agric. Food Chem.19944291931193710.1021/jf00045a019
    [Google Scholar]
  41. GohariS. ReshadmaneshT. KhodabandehlooH. Karbalaee-HasaniA. AhangarH. Arsang-JangS. Ismail-BeigiF. DadashiM. GhanbariS. TaheriH. FathiM. MuhammadiM.J. MahmoodianR. AsgariA. TayaranianM. MoharramiM. MahjaniM. GhobadianB. ChitiH. GohariS. The effect of EMPAgliflozin on markers of inflammation in patients with concomitant type 2 diabetes mellitus and Coronary ARtery Disease: The EMPA-CARD randomized controlled trial.Diabetol. Metab. Syndr.202214117010.1186/s13098‑022‑00951‑536397128
    [Google Scholar]
  42. PackerM. AnkerS.D. ButlerJ. FilippatosG. PocockS.J. CarsonP. JanuzziJ. VermaS. TsutsuiH. BrueckmannM. JamalW. KimuraK. SchneeJ. ZellerC. CottonD. BocchiE. BöhmM. ChoiD.J. ChopraV. ChuquiureE. GiannettiN. JanssensS. ZhangJ. Gonzalez JuanateyJ.R. KaulS. Brunner-La RoccaH.P. MerkelyB. NichollsS.J. PerroneS. PinaI. PonikowskiP. SattarN. SenniM. SerondeM.F. SpinarJ. SquireI. TaddeiS. WannerC. ZannadF. Cardiovascular and renal outcomes with empagliflozin in heart failure.N. Engl. J. Med.2020383151413142410.1056/NEJMoa202219032865377
    [Google Scholar]
  43. McMurrayJ.J.V. SolomonS.D. InzucchiS.E. KøberL. KosiborodM.N. MartinezF.A. PonikowskiP. SabatineM.S. AnandI.S. BělohlávekJ. BöhmM. ChiangC.E. ChopraV.K. de BoerR.A. DesaiA.S. DiezM. DrozdzJ. DukátA. GeJ. HowlettJ.G. KatovaT. KitakazeM. LjungmanC.E.A. MerkelyB. NicolauJ.C. O’MearaE. PetrieM.C. VinhP.N. SchouM. TereshchenkoS. VermaS. HeldC. DeMetsD.L. DochertyK.F. JhundP.S. BengtssonO. SjöstrandM. LangkildeA.M. Dapagliflozin in patients with heart failure and reduced ejection fraction.N. Engl. J. Med.2019381211995200810.1056/NEJMoa191130331535829
    [Google Scholar]
  44. PieskeB. Reverse remodeling in heart failure? Fact or fiction?Eur. Heart J. Suppl.20046Suppl. DD66D7810.1016/j.ehjsup.2004.05.019
    [Google Scholar]
  45. BrenerM.I. UrielN. BurkhoffD. Left ventricular volume reduction and reshaping as a treatment option for heart failure.Struct. Heart.20204426428310.1080/24748706.2020.1777359
    [Google Scholar]
  46. ZhongP. ZhangJ. WeiY. LiuT. ChenM. Sotagliflozin attenuates cardiac dysfunction and remodeling in myocardial infarction rats.Heliyon2023911e2242310.1016/j.heliyon.2023.e2242338058609
    [Google Scholar]
  47. ZhangN. FengB. MaX. SunK. XuG. ZhouY. Dapagliflozin improves left ventricular remodeling and aorta sympathetic tone in a pig model of heart failure with preserved ejection fraction.Cardiovasc. Diabetol.201918110710.1186/s12933‑019‑0914‑131429767
    [Google Scholar]
  48. Santos-GallegoC.G. Requena-IbanezJ.A. San AntonioR. IshikawaK. WatanabeS. PicatosteB. FloresE. Garcia-RoperoA. SanzJ. HajjarR.J. FusterV. BadimonJ.J. Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics.J. Am. Coll. Cardiol.201973151931194410.1016/j.jacc.2019.01.05630999996
    [Google Scholar]
  49. Santos-GallegoC.G. Vargas-DelgadoA.P. Requena-IbanezJ.A. Garcia-RoperoA. ManciniD. PinneyS. MacalusoF. SartoriS. RoqueM. Sabatel-PerezF. Rodriguez-CorderoA. ZafarM.U. FergusI. Atallah-LajamF. ContrerasJ.P. VarleyC. MorenoP.R. AbascalV.M. LalaA. TamlerR. SanzJ. FusterV. BadimonJ.J. Randomized trial of empagliflozin in nondiabetic patients with heart failure and reduced ejection fraction.J. Am. Coll. Cardiol.202177324325510.1016/j.jacc.2020.11.00833197559
    [Google Scholar]
  50. LeeM.M.Y. BrooksbankK.J.M. WetherallK. MangionK. RoditiG. CampbellR.T. BerryC. ChongV. CoyleL. DochertyK.F. DreisbachJ.G. LabinjohC. LangN.N. LennieV. McConnachieA. MurphyC.L. PetrieC.J. PetrieJ.R. SpeiritsI.A. SourbronS. WelshP. WoodwardR. RadjenovicA. MarkP.B. McMurrayJ.J.V. JhundP.S. PetrieM.C. SattarN. Effect of empagliflozin on left ventricular volumes in patients with type 2 diabetes, or prediabetes, and heart failure with reduced ejection fraction (SUGAR-DM-HF).Circulation2021143651652510.1161/CIRCULATIONAHA.120.05218633186500
    [Google Scholar]
  51. OmarM. JensenJ. AliM. FrederiksenP.H. KistorpC. VidebækL. PoulsenM.K. TuxenC.D. MöllerS. GustafssonF. KøberL. SchouM. MøllerJ.E. Associations of empagliflozin with left ventricular volumes, mass, and function in patients with heart failure and reduced ejection fraction: A substudy of the empire HF randomized clinical trial.JAMA Cardiol.20216783684010.1001/jamacardio.2020.682733404637
    [Google Scholar]
  52. OelzeM. Kröller-SchönS. WelschofP. JansenT. HausdingM. MikhedY. StammP. MaderM. ZinßiusE. AgdauletovaS. GottschlichA. StevenS. SchulzE. BottariS.P. MayouxE. MünzelT. DaiberA. The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity.PLoS One2014911e11239410.1371/journal.pone.011239425402275
    [Google Scholar]
  53. SinghJ.S.S. MordiI.R. VicknesonK. FathiA. DonnanP.T. MohanM. ChoyA.M.J. GandyS. GeorgeJ. KhanF. PearsonE.R. HoustonJ.G. StruthersA.D. LangC.C. Dapagliflozin versus placebo on left ventricular remodeling in patients with diabetes and heart failure: The REFORM trial.Diabetes Care20204361356135910.2337/dc19‑218732245746
    [Google Scholar]
  54. MünzelT. GoriT. KeaneyJ.F. MaackC. DaiberA. Pathophysiological role of oxidative stress in systolic and diastolic heart failure and its therapeutic implications.Eur. Heart J.201536382555256410.1093/eurheartj/ehv30526142467
    [Google Scholar]
  55. GiordanoF.J. Oxygen, oxidative stress, hypoxia, and heart failure.J. Clin. Invest.2005115350050810.1172/JCI20052440815765131
    [Google Scholar]
  56. ChaudharyP. JanmedaP. DoceaA.O. YeskaliyevaB. Abdull RazisA.F. ModuB. CalinaD. Sharifi-RadJ. Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases.Front Chem.202311115819810.3389/fchem.2023.115819837234200
    [Google Scholar]
  57. SawyerD.B. SiwikD.A. XiaoL. PimentelD.R. SinghK. ColucciW.S. Role of oxidative stress in myocardial hypertrophy and failure.J. Mol. Cell. Cardiol.200234437938810.1006/jmcc.2002.152611991728
    [Google Scholar]
  58. PiconiL. QuagliaroL. CerielloA. Oxidative stress in diabetes.Clin. Chem. Lab. Med.200541910.1515/CCLM.2003.177
    [Google Scholar]
  59. RoloA.P. PalmeiraC.M. Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress.Toxicol. Appl. Pharmacol.2006212216717810.1016/j.taap.2006.01.00316490224
    [Google Scholar]
  60. RainsJ.L. JainS.K. Oxidative stress, insulin signaling, and diabetes.Free Radic. Biol. Med.201150556757510.1016/j.freeradbiomed.2010.12.00621163346
    [Google Scholar]
  61. ThomsonM.J. FrenneauxM.P. KaskiJ.C. Antioxidant treatment for heart failure: Friend or foe?QJM2009102530531010.1093/qjmed/hcn16019095676
    [Google Scholar]
  62. JohansenJ.S. HarrisA.K. RychlyD.J. ErgulA. Oxidative stress and the use of antioxidants in diabetes: Linking basic science to clinical practice.Cardiovasc. Diabetol.200541510.1186/1475‑2840‑4‑515862133
    [Google Scholar]
  63. Llorens-CebriàC. Molina-Van den BoschM. VergaraA. Jacobs-CacháC. SolerM.J. Antioxidant roles of SGLT2 inhibitors in the kidney.Biomolecules202212114310.3390/biom1201014335053290
    [Google Scholar]
  64. ShinS.J. ChungS. KimS.J. LeeE.M. YooY.H. KimJ.W. AhnY.B. KimE.S. MoonS.D. KimM.J. KoS.H. Effect of sodium-glucose co-transporter 2 inhibitor, dapagliflozin, on renal renin-angiotensin system in an animal model of type 2 diabetes.PLoS One20161111e016570310.1371/journal.pone.016570327802313
    [Google Scholar]
  65. HabibiJ. AroorA.R. SowersJ.R. JiaG. HaydenM.R. GarroM. BarronB. MayouxE. RectorR.S. Whaley-ConnellA. DeMarcoV.G. Sodium glucose transporter 2 (SGLT2) inhibition with empagliflozin improves cardiac diastolic function in a female rodent model of diabetes.Cardiovasc. Diabetol.2017161910.1186/s12933‑016‑0489‑z28086951
    [Google Scholar]
  66. MaedaS. MatsuiT. TakeuchiM. YamagishiS. Sodium-glucose cotransporter 2-mediated oxidative stress augments advanced glycation end products-induced tubular cell apoptosis.Diabetes Metab. Res. Rev.201329540641210.1002/dmrr.240723508966
    [Google Scholar]
  67. KernM. KlötingN. MarkM. MayouxE. KleinT. BlüherM. The SGLT2 inhibitor empagliflozin improves insulin sensitivity in db/db mice both as monotherapy and in combination with linagliptin.Metabolism201665211412310.1016/j.metabol.2015.10.01026773934
    [Google Scholar]
  68. WasedaN. SatohH. YoshidaC. IkedaF. KanazawaA. WatadaH. Effects of SGLT2 inhibitors on insulin secretion and insulin resistance - Results from a cross-sectional study.Diabetes201867Suppl 11187-P10.2337/db18‑1187‑P
    [Google Scholar]
  69. WangY. XiaN. Influence of sodium-glucose cotransporter-2 inhibitors on plasma adiponectin in patients with type 2 diabetes: A meta-analysis of randomized controlled trials.Horm. Metab. Res.2022541283384410.1055/a‑1897‑612136049756
    [Google Scholar]
  70. XuL. OtaT. Emerging roles of SGLT2 inhibitors in obesity and insulin resistance: Focus on fat browning and macrophage polarization.Adipocyte20187212112829376471
    [Google Scholar]
  71. WangX. WuN. SunC. JinD. LuH. Effects of SGLT-2 inhibitors on adipose tissue distribution in patients with type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials.Diabetol. Metab. Syndr.202315111310.1186/s13098‑023‑01085‑y37254186
    [Google Scholar]
  72. YaribeygiH. MalekiM. ButlerA.E. JamialahmadiT. SahebkarA. Sodium-glucose cotransporter 2 inhibitors and mitochondrial functions: State of the art.EXCLI J.202322536636814854
    [Google Scholar]
  73. SanoM. Hemodynamic effects of sodium-glucose cotransporter 2 inhibitors.J. Clin. Med. Res.20179645746010.14740/jocmr3011w28496544
    [Google Scholar]
  74. SawickiK.T. Ben‐SahraI. McNallyE.M. SGLT2 inhibition on cardiac mitochondrial function: Searching for a sweet spot.20211013e02194910.1161/JAHA.121.02194934169746
    [Google Scholar]
  75. DurakA. OlgarY. DegirmenciS. AkkusE. TuncayE. TuranB. A SGLT2 inhibitor dapagliflozin suppresses prolonged ventricular-repolarization through augmentation of mitochondrial function in insulin-resistant metabolic syndrome rats.Cardiovasc. Diabetol.201817114410.1186/s12933‑018‑0790‑030447687
    [Google Scholar]
  76. SugizakiT. ZhuS. GuoG. MatsumotoA. ZhaoJ. EndoM. HoriguchiH. MorinagaJ. TianZ. KadomatsuT. Treatment of diabetic mice with the SGLT2 inhibitor TA-1887 antagonizes diabetic cachexia and decreases mortality.NPJ Aging Mech. Dis.201731210.1038/s41514‑017‑0012‑028900540
    [Google Scholar]
  77. YaribeygiH. HemmatiM.A. NasimiF. MalekiM. JamialahmadiT. ReinerI. ReinerŽ. SahebkarA. Sodium glucose cotransporter-2 inhibitor empagliflozin increases antioxidative capacity and improves renal function in Diabetic rats.J. Clin. Med.20231211381510.3390/jcm1211381537298010
    [Google Scholar]
  78. MalínskáH. HüttlM. MarkováI. MiklánkováD. HojnáS. PapoušekF. ŠilhavýJ. MlejnekP. ZichaJ. HrdličkaJ. PravenecM. VaněčkováI. Beneficial effects of empagliflozin are mediated by reduced renal inflammation and oxidative stress in spontaneously hypertensive rats expressing human c-reactive protein.Biomedicines2022109206610.3390/biomedicines1009206636140169
    [Google Scholar]
  79. SoliniA. GianniniL. SeghieriM. VitoloE. TaddeiS. GhiadoniL. BrunoR.M. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: A pilot study.Cardiovasc. Diabetol.201716113810.1186/s12933‑017‑0621‑829061124
    [Google Scholar]
  80. NishimuraR. TanakaY. KoiwaiK. InoueK. HachT. SalsaliA. LundS.S. BroedlU.C. Effect of empagliflozin monotherapy on postprandial glucose and 24-hour glucose variability in Japanese patients with type 2 diabetes mellitus: A randomized, double-blind, placebo-controlled, 4-week study.Cardiovasc. Diabetol.20151411110.1186/s12933‑014‑0169‑925633683
    [Google Scholar]
/content/journals/rrct/10.2174/0115748871323540241212060946
Loading
/content/journals/rrct/10.2174/0115748871323540241212060946
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test