Skip to content
2000
image of Polycystic Ovary Syndrome and Vitamin D Status - Impact of Vitamin D Supplementation on Insulin Resistance

Abstract

Introduction

Among premenopausal women, polycystic ovarian syndrome (PCOS) is one of the most ubiquitous endocrine and metabolic conditions. Abdominal adiposity, insulin resistance, obesity, metabolic diseases, and cardiovascular hazards are often associated with PCOS. This investigation aims to decipher the influence of oral Vitamin D3 supplementation (2000 IU/day for three months) on glucose metabolism in PCOS women.

Methods

123 subjects (females 16 to 40 years of age) were arbitrarily allocated to three cohorts ( = 41 in each cohort) Each participant received two tablets daily and a sachet every month for three months (Group I: Vitamin D3 Tablets + placebo sachets; Group II: Placebo Tablets + Vitamin D3 sachets; Group III: Tablets + Placebo sachets).

Results

Among 123 PCOS subjects, 93.4% exhibited hypovitaminosis D. The baseline 25-hydroxyvitamin D (25(OH)D) concentration of 13.76 (SD ± 10.61) ng/ml increased by 86.84% post-intervention. Groups I and II (active group) depicted substantial diminution in pre-treatment fasting and 2-h blood glucose, with no substantial change in the HOMA-IR. Group III (placebo) showed no improvement in vitamin D status or HOMA-IR. Overall, we observed no substantial HOMA-IR improvement with vitamin D subjunction. However, subgroup analysis revealed a statistically significant enhancement in HOMA-IR for subjects achieving a two-fold upsurge in post-supplementation 25(OH)D levels (≥ 20 ng/ml) compared to those without this increase ( = 0.025).

Discussion

The cohort’s mean blood 25-hydroxyvitamin D concentrations were successfully boosted by 84% by Vitamin D3 dosage; yet, the influence on insulin resistance markers displayed a subtle complexity. A relationship was found amid the absolute variation in HOMA-IR and the percentage variation in Vitamin D. Nevertheless, there was no substantial general alteration in the mean HOMA-IR across different subgroups.

Conclusion

Vitamin D3 supplementation improves glucose metabolism, as demonstrated by lower fasting and 2-hour blood glucose levels, but overall has no substantial repercussion on measures of insulin sensitivity like HOMA-IR. A larger vitamin D3 dose and an extended follow-up study are essential to comprehend the complex physiology of vitamin D and glucose homeostasis.

Loading

Article metrics loading...

/content/journals/rrct/10.2174/0115748871310723250516041347
2025-05-23
2025-09-15
Loading full text...

Full text loading...

References

  1. Escobar-Morreale H.F. Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment. Nat. Rev. Endocrinol. 2018 14 5 270 284 10.1038/nrendo.2018.24 29569621
    [Google Scholar]
  2. Ehrmann D.A. Polycystic ovary syndrome. N. Engl. J. Med. 2005 352 12 1223 1236 10.1056/NEJMra041536 15788499
    [Google Scholar]
  3. Pundir C.S. Deswal R. Narwal V. Dang A. The prevalence of polycystic ovary syndrome: A brief systematic review. J. Hum. Reprod. Sci. 2020 13 4 261 271 10.4103/jhrs.JHRS_95_18 33627974
    [Google Scholar]
  4. Bulsara J. Patel P. Soni A. Acharya S. A review: Brief insight into polycystic ovarian syndrome. Endocr. Metab. Sci. 2021 3 100085 10.1016/j.endmts.2021.100085
    [Google Scholar]
  5. Cassar S. Misso M.L. Hopkins W.G. Shaw C.S. Teede H.J. Stepto N.K. Insulin resistance in polycystic ovary syndrome: A systematic review and meta-analysis of euglycaemic–hyperinsulinaemic clamp studies. Hum. Reprod. 2016 31 11 2619 2631 10.1093/humrep/dew243 27907900
    [Google Scholar]
  6. Tosi F. Bonora E. Moghetti P. Insulin resistance in a large cohort of women with polycystic ovary syndrome: A comparison between euglycaemic-hyperinsulinaemic clamp and surrogate indexes. Hum. Reprod. 2017 32 12 2515 2521 10.1093/humrep/dex308 29040529
    [Google Scholar]
  7. González F. Considine R.V. Abdelhadi O.A. Acton A.J. Saturated fat ingestion promotes lipopolysaccharide-mediated inflammation and insulin resistance in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2019 104 3 934 946 10.1210/jc.2018‑01143 30590569
    [Google Scholar]
  8. Zhu S. Zhang B. Jiang X. Li Z. Zhao S. Cui L. Chen Z.J. Metabolic disturbances in non-obese women with polycystic ovary syndrome: A systematic review and meta-analysis. Fertil. Steril. 2019 111 1 168 177 10.1016/j.fertnstert.2018.09.013 30611404
    [Google Scholar]
  9. Tosi F. Villani M. Migazzi M. Faccin G. Garofalo S. Fiers T. Kaufman J.M. Bonora E. Moghetti P. Insulin-mediated substrate use in women with different phenotypes of PCOS: The role of androgens. J. Clin. Endocrinol. Metab. 2021 106 9 e3414 e3425 10.1210/clinem/dgab380 34050757
    [Google Scholar]
  10. Abel E.D. Peroni O. Kim J.K. Kim Y.B. Boss O. Hadro E. Minnemann T. Shulman G.I. Kahn B.B. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 2001 409 6821 729 733 10.1038/35055575 11217863
    [Google Scholar]
  11. Tsilchorozidou T. Overton C. Conway G.S. The pathophysiology of polycystic ovary syndrome. Clin. Endocrinol. 2004 60 1 1 17 10.1046/j.1365‑2265.2003.01842.x 14678281
    [Google Scholar]
  12. Choi K. Kim Y.B. Molecular mechanism of insulin resistance in obesity and type 2 diabetes. Korean J. Intern. Med. 2010 25 2 119 129 10.3904/kjim.2010.25.2.119 20526383
    [Google Scholar]
  13. Xu J. Dun J. Yang J. Zhang J. Lin Q. Huang M. Ji F. Huang L. You X. Lin Y. Letrozole rat model mimics human polycystic ovarian syndrome and changes in insulin signal pathways. Med. Sci. Monit. 2020 26 e923073 10.12659/MSM.923073 32638705
    [Google Scholar]
  14. Zeng X. Xie Y. Liu Y. Long S. Mo Z. Polycystic ovarian syndrome: Correlation between hyperandrogenism, insulin resistance and obesity. Clin. Chim. Acta 2020 502 214 221 10.1016/j.cca.2019.11.003 31733195
    [Google Scholar]
  15. Cantley L.C. Neel B.G. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc. Natl. Acad. Sci. USA 1999 96 8 4240 4245 10.1073/pnas.96.8.4240 10200246
    [Google Scholar]
  16. Shaaban Z. Khoradmehr A. Amiri-Yekta A. Nowzari F. Jafarzadeh Shirazi M.R. Tamadon A. Pathophysiologic mechanisms of insulin secretion and signaling-related genes in etiology of polycystic ovary syndrome. Genet. Res. 2021 2021 1 13 10.1155/2021/7781823 34949963
    [Google Scholar]
  17. De Leo V. la Marca A. Orvieto R. Morgante G. Effect of metformin on insulin-like growth factor (IGF) I and IGF-binding protein I in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2000 85 4 1598 1600 10.1210/jcem.85.4.6560 10770203
    [Google Scholar]
  18. Hsueh A.J.W. Billig H. Tsafriri A. Ovarian follicle atresia: A hormonally controlled apoptotic process. Endocr. Rev. 1994 15 6 707 724 10.1210/edrv‑15‑6‑707 7705278
    [Google Scholar]
  19. Argano C. Mirarchi L. Amodeo S. Orlando V. Torres A. Corrao S. The role of vitamin D and its molecular bases in insulin resistance, diabetes, metabolic syndrome, and cardiovascular disease: State of the art. Int. J. Mol. Sci. 2023 24 20 15485 10.3390/ijms242015485 37895163
    [Google Scholar]
  20. Pramono A. Jocken J.W.E. Blaak E.E. Vitamin D deficiency in the aetiology of obesity‐related insulin resistance. Diabetes Metab. Res. Rev. 2019 35 5 e3146 10.1002/dmrr.3146 30801902
    [Google Scholar]
  21. Várbíró S. Takács I. Tűű L. Nas K. Sziva R.E. Hetthéssy J.R. Török M. Effects of vitamin D on fertility, pregnancy and polycystic ovary syndrome - A review. Nutrients 2022 14 8 1649 10.3390/nu14081649 35458211
    [Google Scholar]
  22. Dhas Y. Mishra N. Banerjee J. Vitamin D deficiency and oxidative stress in type 2 diabetic population of India. Cardiovasc. Hematol. Agents Med. Chem. 2017 14 2 82 89 10.2174/1871525714666160426150233 27114101
    [Google Scholar]
  23. Tyler M. Assessing the area of burn. Bailey & Love's Short Practice of Surgery 24th ed London Russell R.C.G. Williams N.S. Bulstrode C.J.K. 2004 263 278
    [Google Scholar]
  24. Misra A. Chowbey P. Makkar B.M. Vikram N.K. Wasir J.S. Chadha D. Joshi S.R. Sadikot S. Gupta R. Gulati S. Munjal Y.P. Consensus statement for diagnosis of obesity, abdominal obesity and the metabolic syndrome for Asian Indians and recommendations for physical activity, medical and surgical management. J. Assoc. Physicians India 2009 57 163 170 19582986
    [Google Scholar]
  25. Ferriman D. Gallwey J.D. Clinical assessment of body hair growth in women. J. Clin. Endocrinol. Metab. 1961 21 11 1440 1447 10.1210/jcem‑21‑11‑1440 13892577
    [Google Scholar]
  26. Matthews D.R. Hosker J.P. Rudenski A.S. Naylor B.A. Treacher D.F. Turner R.C. Homeostasis model assessment: Insulin resistance and? -cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985 28 7 412 419 10.1007/BF00280883 3899825
    [Google Scholar]
  27. Holick M.F. Vitamin D deficiency. N. Engl. J. Med. 2007 357 3 266 281 10.1056/NEJMra070553 17634462
    [Google Scholar]
  28. Krul-Poel Y.H.M. Koenders P.P. Steegers-Theunissen R.P. ten Boekel E. Wee M.M. Louwers Y. Lips P. Laven J.S.E. Simsek S. Vitamin D and metabolic disturbances in polycystic ovary syndrome (PCOS): A cross-sectional study. PLoS One 2018 13 12 e0204748 10.1371/journal.pone.0204748 30513089
    [Google Scholar]
  29. Wehr E. Pilz S. Schweighofer N. Giuliani A. Kopera D. Pieber T.R. Obermayer-Pietsch B. Association of hypovitaminosis D with metabolic disturbances in polycystic ovary syndrome. Eur. J. Endocrinol. 2009 161 4 575 582 10.1530/EJE‑09‑0432 19628650
    [Google Scholar]
  30. Tobias D.K. Luttmann-Gibson H. Mora S. Danik J. Bubes V. Copeland T. LeBoff M.S. Cook N.R. Lee I.M. Buring J.E. Manson J.E. Association of body weight with response to vitamin D supplementation and metabolism. JAMA Netw. Open 2023 6 1 e2250681 10.1001/jamanetworkopen.2022.50681 36648947
    [Google Scholar]
  31. Selimoglu H. Duran C. Kiyici S. Ersoy C. Guclu M. Ozkaya G. Tuncel E. Erturk E. Imamoglu S. The effect of vitamin D replacement therapy on insulin resistance and androgen levels in women with polycystic ovary syndrome. J. Endocrinol. Invest. 2010 33 4 234 238 10.1007/BF03345785 19820295
    [Google Scholar]
  32. Trummer C. Schwetz V. Kollmann M. Wölfler M. Münzker J. Pieber T.R. Pilz S. Heijboer A.C. Obermayer-Pietsch B. Lerchbaum E. Effects of vitamin D supplementation on metabolic and endocrine parameters in PCOS: A randomized-controlled trial. Eur. J. Nutr. 2019 58 5 2019 2028 10.1007/s00394‑018‑1760‑8 29946756
    [Google Scholar]
  33. Zeitz U. Weber K. Soegiarto D.W. Wolf E. Balling R. Erben R.G. Impaired insulin secretory capacity in mice lacking a functional vitamin D receptor. FASEB J. 2003 17 3 1 14 10.1096/fj.02‑0424fje 12551842
    [Google Scholar]
  34. Bouillon R. Carmeliet G. Verlinden L. van Etten E. Verstuyf A. Luderer H.F. Lieben L. Mathieu C. Demay M. Vitamin D and human health: Lessons from vitamin D receptor null mice. Endocr. Rev. 2008 29 6 726 776 10.1210/er.2008‑0004 18694980
    [Google Scholar]
  35. Reusch J.B. Begum N. Sussman K. Draznin B. Regulation of GLUT-4 phosphorylation by intracellular calcium in adipocytes. Endocrinology 1991 129 6 3269 3273 10.1210/endo‑129‑6‑3269 1659526
    [Google Scholar]
  36. Bland R. Markovic D. Hills C.E. Hughes S.V. Chan S.L.F. Squires P.E. Hewison M. Expression of 25-hydroxyvitamin D3-1α-hydroxylase in pancreatic islets. J. Steroid Biochem. Mol. Biol. 2004 89-90 1-5 121 125 10.1016/j.jsbmb.2004.03.115 15225758
    [Google Scholar]
  37. Leung P. The potential protective action of vitamin D in hepatic insulin resistance and pancreatic islet dysfunction in type 2 diabetes mellitus. Nutrients 2016 8 3 147 10.3390/nu8030147 26959059
    [Google Scholar]
  38. Guo S. Tal R. Jiang H. Yuan T. Liu Y. Vitamin D supplementation ameliorates metabolic dysfunction in patients with PCOS: A systematic review of RCTs and insight into the underlying mechanism. Int. J. Endocrinol. 2020 2020 1 18 10.1155/2020/7850816 33424968
    [Google Scholar]
  39. Rihal V. khan H. Kaur A. Singh T.G. Abdel-Daim M.M. Therapeutic and mechanistic intervention of vitamin D in neuropsychiatric disorders. Psychiatry Res. 2022 317 114782 10.1016/j.psychres.2022.114782 36049434
    [Google Scholar]
  40. Sharma P. Rani N. Gangwar A. Singh R. Kaur R. Upadhyaya K. Diabetic neuropathy: A repercussion of vitamin D deficiency. Curr. Diabetes Rev. 2023 19 6 e170822207592 10.2174/1573399819666220817121551 35980059
    [Google Scholar]
/content/journals/rrct/10.2174/0115748871310723250516041347
Loading
/content/journals/rrct/10.2174/0115748871310723250516041347
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test