Skip to content
2000
Volume 3, Issue 3
  • ISSN: 2210-2965
  • E-ISSN: 2210-2973

Abstract

Microfluidics is an emerging field of in vitro science which is generating many new patents. Microfluidics employs small ‘biochips’ of glass, plastic or other materials, which contain an internal array of wells and channels, often with valves and other embedded devices. Cells, tissues or embryos can be implanted in the wells of a sterilized biochip. Then, by connecting the biochip to a pump, culture medium can be circulated through the wells, thereby providing a constant flow-through of nutrients and removal of metabolites. This flow-through culture environment may be closer in some respects to physiological (in vivo) conditions than conventional static replacement cultures. For these and other reasons, discussed in this review, microfluidics has found important applications in the field of regenerative medicine, in which the culture of complex tissues in physiological conditions is a crucial goal. Recent patents cover various modifications of chip architecture that allow the three-dimensional culture of cells, tissues and organs. Microfluidic devices, several of them patented, have been developed for culturing a wide range of different cell types, including primary endothelial cells, interstitial cells, mammalian adherent cell lines, embryonic stem cells, fibroblasts, tumor cells and neurons. Devices have also been described, and some of them patented, in which artificial capillary networks can be grown from endothelial cells. Other devices allow different tissues to be co-cultured in a way that mimics the functions of an organ. Examples of these ‘organs-on-a-chip’ include lungs, heart, kidneys, gastrointestinal tract and brain culture models. Microfluidic devices for the culture and manipulation of whole embryos of zebrafish, the nematode Caenorhabditis elegans and mouse, have also been described and/or patented. These and other microfluidic culture systems are also finding various biomedical applications, such as safety and efficacy testing of drugs, and several patents have been published for these applications. In this review, we summarize recent scientific advances and patents in the field of microfluidics that have special relevance to regenerative medicine.

Loading

Article metrics loading...

/content/journals/rpgm/10.2174/22102965113039990019
2013-09-01
2025-11-07
Loading full text...

Full text loading...

/content/journals/rpgm/10.2174/22102965113039990019
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test