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 Abstract: Introduction: This investigation delves into the optimization of the plywood 
drying process through the development of predictive models for output moisture content 
(MC_Out) and waviness. It focuses on bridging the gap in current methodologies by em-
ploying artificial neural networks (ANNs), optimized with genetic algorithms, to enhance 
prediction accuracy and process efficiency. 

Materials and Methods: A comprehensive experimental design was employed, analyzing 
the effects of three wood types (Doncel, Tamburo, and Zapote), two thickness levels, and 
three drying speeds on MC_Out and waviness. Data collected were subjected to both tradi-
tional statistical analysis and ANNs. The ANNs were fine-tuned through genetic algo-
rithms, exploring different network architectures to achieve optimal predictive perfor-
mance. 

Results: Statistical models revealed the significant influence of wood type, thickness, and 
drying speed on MC_Out and waviness, explaining 95.9% and 84.3% of the variations, 
respectively. The optimized ANN models, however, demonstrated superior accuracy, with 
the MC_Out model achieving fitted R-squared values of 0.940 and 0.757 for training and 
validation sets, respectively, thus outperforming traditional models in predicting drying 
outcomes. 

Discussion: The study underscores the effectiveness of ANNs in capturing complex non-
linear relationships within the plywood drying data, which traditional statistical models 
might not fully elucidate. The successful optimization of ANN architecture via genetic al-
gorithms further highlights the potential of machine learning approaches in industrial ap-
plications, offering a more precise and reliable method for predicting drying process out-
comes. 

Conclusion: The integration of artificial neural networks, optimized through genetic algo-
rithms, represents a significant advancement in the predictive modeling of plywood drying 
processes. This approach not only offers enhanced prediction accuracy for key variables 
such as MC_Out and waviness but also paves the way for more efficient and controlled 
drying operations, ultimately contributing to the production of higher-quality plywood. 
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1. INTRODUCTION 
The plywood industry plays a critical role in the 

global economy, with its products serving a wide 
range of applications from construction and furni-
ture making to packaging. Central to the produc-
tion of plywood is the drying process, a phase that 
significantly influences the final product's quality, 
dimensional stability, and mechanical properties 
[1]. The control of moisture content and the mini-
mization of sheet waviness are paramount, as these 
factors critically affect the plywood's quality. The 
accurate prediction and meticulous management of 
these variables during the drying process are vital 
for producing plywood of superior quality. It is 
essential to adjust the wood's moisture content to 
an optimal level suitable for its intended use, as 
failure to achieve this can lead to defects and re-
duced product quality. Recent advancements have 
focused on the development of predictive models 
for wood moisture content and deformation during 
drying, underscoring the importance of this phase 
as one of the most energy-intensive and crucial 
stages in the fabrication of engineered wood prod-
ucts. Enhancements in reducing drying time and 
costs could significantly boost the overall efficien-
cy of the production process [2, 3]. Moreover, op-
timizing costs and the drying process not only en-
hances production efficiency but also improves the 
quality and consistency of the final product, 
demonstrating the critical need for continued re-
search and development in this area. 

Artificial Neural Networks (ANNs) have in-
creasingly become instrumental in the predictive 
modeling of various industrial processes, including 
but not limited to construction, food production, 
water treatment, and the critical assessment of en-
vironmental contamination. Their unique capacity 
to replicate the intricate workings of the human 
brain allows them to adeptly navigate and decipher 
complex, non-linear patterns within data sets, lead-
ing to highly accurate predictions [4]. While 
ANNs have undeniably revolutionized numerous 
industrial operations, their potential in the ply-
wood production industry remains vast and largely 
untapped. The imperative for further research and 
refinement of these models is especially pro-
nounced in their application for predicting mois-
ture content and sheet waviness during the ply-
wood drying process. Advancements in this specif-
ic domain promise to significantly elevate the effi-
ciency and profitability of plywood manufactur-

ing, ensuring the consistent output of superior 
quality boards. This notable research void under-
scores the transformative power ANNs hold for 
the plywood drying processes, highlighting the 
critical need for innovative model development 
and application strategies within this sector [5]. 

Recent advancements have seen the strategic 
application of Back Propagation (BP) neural net-
work algorithms by studies such as those conduct-
ed by Chai et al. [3] and Ozsahin & Murat [6], 
which focused on predicting variations in wood 
moisture content (MC) during the drying process. 
These studies not only demonstrated the models' 
exceptional generalization capabilities but also 
their success in markedly reducing prediction er-
rors, thereby underscoring the efficacy of ANNs in 
refining plywood drying operations. Moreover, the 
work of Ozsahin & Murat [6] expanded the utility 
of ANNs through the modeling of heat treatment 
conditions' effects on equilibrium moisture content 
and specific gravity across different humidity lev-
els, charting a novel path toward optimizing dry-
ing conditions. 

The methodologies employed in these studies 
mark a significant paradigm shift towards leverag-
ing advanced computational models for overcom-
ing traditional challenges in wood drying. For in-
stance, Chai et al. [3] adeptly integrated real-time 
online measurement data into a BP neural network 
model to anticipate changes in wood MC during 
high-frequency vacuum drying processes. This 
represents a move towards enhanced accuracy and 
real-time process monitoring, facilitating unprece-
dented control over moisture content and wood 
deformation. Similarly, Zheng et al. [7] employed 
genetic algorithms (GA) for optimizing moisture 
diffusivity in lumber during drying, proposing an 
innovative equation derived from a three-
dimensional numerical solution. This methodolog-
ical approach provides valuable insights into dry-
ing parameter optimization for heightened effi-
ciency. 

In parallel, Krimpenis et al. [8] explored the op-
timization of wood milling operations using genet-
ic algorithms, highlighting their adaptability to 
drying processes and their role in boosting produc-
tivity and quality in wood processing. Concurrent-
ly, Yu et al. [9] applied response surface method-
ology (RSM) alongside a niched Pareto genetic 
algorithm to enhance the mechanical properties of 
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bamboo plywood, delineating a comprehensive 
process applicable to the optimization of drying 
and pressing conditions in plywood manufacture. 
Furthermore, Immanuel & Chakraborty [10] dis-
cussed the utility of genetic algorithms as an opti-
mization technique for both constrained and un-
constrained problems, emphasizing their capability 
to significantly refine drying processes in plywood 
production through the efficient identification of 
global optima. 

The practical applications of these ANN models 
extend well beyond theoretical research, offering 
palpable benefits to the plywood industry. For in-
stance, Chai & Li [11] elucidated how ANNs 
could simulate the drying rate and the extent of 
longitudinal cracking within the drying process, 
aligning predictions closely with experimental 
findings. This highlights the profound potential of 
ANN models to not only amplify the efficiency of 
drying processes but also to drive the formulation 
of optimized drying strategies that substantially 
enhance product quality while minimizing waste. 

The efficiency of the plywood drying process is 
influenced by numerous factors, including the spe-
cies of wood, its initial moisture content, thick-
ness, drying temperature, and velocity. Under-
standing the intricate relationship between these 
variables and their impact on the final product's 
moisture content and warping is essential for op-
timizing the drying process. Historically, a range 
of statistical and mathematical models have been 
employed to analyze and improve drying tech-
niques. These models include linear and quadratic 
regression, response surface methodology (RSM), 
and artificial neural networks (ANN), among oth-
ers [6]. ANNs have demonstrated exceptional ca-
pability in capturing complex, non-linear relation-
ships between variables with unparalleled preci-
sion. This is largely due to their ability to learn 
from data and adapt to changes in input parame-
ters. However, the effectiveness of ANN models 
significantly depends on their architecture, such as 
the number of hidden layers and neurons in each 
layer. Optimizing this architecture can be a com-
plex process, leading researchers to explore vari-
ous strategies, including genetic algorithms, parti-
cle swarm optimization, and simulated annealing 
to enhance model performance [7]. In our study, 
we have applied genetic algorithms to fine-tune 
the architecture of ANNs, aiming to increase the 

accuracy and generalizability of models predicting 
output moisture content and warping. This ap-
proach represents a significant step forward in the 
ongoing effort to optimize plywood production, 
aiming to improve both the quality and efficiency 
of the drying process. 

Our research embarked on an extensive exper-
imental study leveraging a comprehensive dataset 
from a real-world plywood drying facility. This 
dataset, rich in critical variables like temperature, 
humidity, and velocity, serves as a cornerstone for 
our analysis, directly impacting both the process 
and quality of plywood drying. It allowed for a 
detailed exploration into the dynamics of drying, 
providing a solid base for evaluating the efficacy 
of Artificial Neural Networks (ANNs), which were 
finely tuned using genetic algorithms against the 
backdrop of traditional statistical methods. The 
results clearly demonstrate ANNs' superiority in 
capturing the complex interplays at work, show-
casing their significant edge over conventional 
models in forecasting essential quality indicators. 
This underlines the transformative power of ANNs 
in revolutionizing plywood drying processes with 
enhanced accuracy and reliability across various 
scenarios. 

Our investigation zoomed in on a specific dry-
ing operation in the Amazon region of Ecuador, 
selecting three types of wood for their distinct dry-
ing characteristics and their implications on the 
final plywood quality. The goal was to craft an 
ANN model that could precisely predict moisture 
content and deformation during drying, consider-
ing a range of influential factors such as air tem-
perature, humidity, species of wood, thickness, 
and speed. Our comparative analysis reveals the 
ANN model's remarkable superiority over tradi-
tional statistical approaches, offering a robust, re-
liable forecast. 

The integration of ANN models optimized via 
genetic algorithms significantly elevates the stand-
ard for predicting moisture content and warping, 
furnishing the plywood industry with a tool for 
finer control over the drying process. This leads to 
superior product quality and energy efficiency, 
positioning our findings as a valuable addition to 
the corpus of industrial application of ANN mod-
els. Our study not only underscores the pivotal role 
of ANNs in enhancing process control and optimi-
zation but also sets a new benchmark for predic-
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tive accuracy and operational efficiency in the 
plywood manufacturing sector. 

2. MATERIALS AND METHODS 

2.1. Raw Material Selection 
The selection of raw materials is a fundamental 

step in the plywood manufacturing process. 
Choosing the right wood is a factor that directly 
influences the quality and properties of the final 
product. Therefore, it is essential to select raw ma-
terials with care and according to technical criteria 
[12-14]. For this study, three types of wood were 
selected as raw materials to evaluate their perfor-
mance in the drying process and to predict the 
properties of the plywood sheets. 

Several criteria were considered in the selection 
of raw materials, including availability, mechani-
cal properties, dimensional stability, and drying 
capability. Additionally, the specific characteris-
tics of each wood type that might influence behav-
ior during the drying process and the properties of 
the plywood sheets were considered. The three 
types of wood selected for this study were Doncel, 
Tamburo, and Zapote. Doncel is a medium-density 
wood with good mechanical properties and a mod-
erate drying capacity. Tamburo, on the other hand, 
is a medium-low density wood with moderate me-
chanical properties and a high drying capacity. Fi-
nally, Zapote is a high-density wood with excel-
lent mechanical properties and a low drying capac-
ity [15]. 

Drying tests were carried out on each type of 
wood to evaluate its behavior during the drying 
process and to predict the properties of the ply-
wood sheets produced. Parameters such as mois-
ture content, density, and strength of the plywood 
sheets obtained from each type of wood were 
measured, allowing for a comparison of the per-
formance of different types of wood in the drying 
process. 

2.2. Experimental Design 
In this study, an experimental design aimed at 

identifying the optimal combination of factor lev-
els to enhance efficiency in the plywood drying 
process [16] at the company was employed. The 
design utilized was a 2 x 3 x 3 factorial, also re-
ferred to as 2 x 3². This design facilitated the ex-
amination of three factors' impact on the response 
variables: the thickness of the plywood sheets, the 
wood type (Doncel, Tamburo, and Zapote), and 
the drying roller speed (Table 1). Each factor was 
assessed at various levels, culminating in 18 dis-
tinct treatments. To reduce experimental error and 
improve the precision of measurements, each of 
the 18 treatments was replicated three times, re-
sulting in 54 experimental runs in total. 

A specifically designed data recording form 
was employed to document the outcomes of each 
experimental run. This form enabled the collection 
of information on controllable factors, response 
variables, and process conditions, such as plywood 
sheet thickness, wood type, dryer roller speed, 
output moisture content of the plywood sheets, and 
waviness percentage. 

Following data collection, statistical analysis 
was conducted to evaluate the influence of the se-
lected factors and levels on the response variables. 
Analytical tools such as ANOVA (Analysis of 
Variance) were utilized to process the collected 
data and identify the statistical significance of each 
factor and level regarding the response variables. 
This experimental design thus allowed for the in-
vestigation of how the selected factors and levels 
affect the response variables, in addition to com-
paring these effects with the ANN predictions. 

2.3. Sample Preparation  
Proper preparation of wood samples is critical 

in the plywood drying process to ensure accurate 
and reliable results. For this study, raw materials-

Table 1. Controllable factors in drying process. 

Factor Level 1 Level 2 Level 3 

Thickness [mm] 2.25 2.75 - 

Wood Type Doncel Tamburo Zapote 

Speed [Hz] 10 14 18 
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Doncel, Tamburo, and Zapote-were sourced from 
standard-sized plywood sheets, each measuring 
110 x 220 cm. The sheets were selected to match 
the experimental design's specifications, with 
thicknesses set at 2.25 mm and 2.75 mm. To estab-
lish a baseline, the initial moisture content of each 
wood sample was precisely measured using a 
wood-specific roller hygrometer designed for this 
purpose. 

Following measurement, all samples underwent 
meticulous labeling and organization based on 
their wood type and specified thickness. This sys-
tematic approach was crucial for facilitating accu-
rate data collection and analysis throughout the 
study. Ensuring proper sample preparation was a 
foundational step, instrumental in minimizing ex-
perimental errors and maximizing the reliability of 
the drying tests' outcomes. 

2.4. Drying Process  
The drying operation was conducted using an 

industrial-scale roller dryer outfitted with tempera-
ture control systems for precise adjustment of dry-
ing conditions. Plywood sheets were positioned on 
the dryer rollers, with their speed set according to 
the experimental design (10 Hz, 14 Hz, or 18 Hz). 

Throughout the drying process, temperature and 
humidity levels inside the dryer were constantly 
monitored using a network of thermocouples in-
stalled specifically for this purpose. These thermo-
couples are linked to a MAX6675 module, which 
is responsible for amplifying, compensating, and 
digitally converting the voltage generated by the 
thermocouples. The gathered data was displayed 
on LCD screens for real-time monitoring. Mois-
ture content in the plywood sheets was measured 
at the process's start and end using a wood-specific 
roller hygrometer equipped with a 26-ES elec-
trode. This approach to data collection was pivotal 
in assessing the drying process's effectiveness and 
understanding the impact of various factors on the 
plywood sheets' properties. The acquired data sup-
ported further analysis, including the comparison 
of ANN predictions with conventional statistical 
methods. 

2.5. Data Analysis  
Data collected from the plywood drying process 

was meticulously analyzed through a dual ap-
proach encompassing statistical methodologies 

and artificial neural network (ANN) modeling 
[17]. The primary objective of this analysis was to 
evaluate the impact of experimental variables-
specifically, thickness, wood type, and dryer roller 
speed-on key response variables: the outlet mois-
ture content (MC_Out) and surface waviness of 
the wood. 

Initially, an exploratory data analysis was un-
dertaken to scrutinize each variable's distribution, 
pinpoint potential outliers, and explore the interre-
lationships among variables. The data was import-
ed from a CSV file into Matlab, where inputs and 
outputs were systematically extracted for analysis. 
To accommodate the categorical nature of the 
wood type, dummy variables were established 
[18]. Continuous input features, including thick-
ness, speed, MC_In, and temperature, were nor-
malized to facilitate the analysis. The input dataset 
was thus composed of these normalized values 
alongside dummy variables representing the wood 
type. 

To refine the ANN model, genetic algorithms 
were employed aiming to identify the optimal neu-
ral network architecture that would minimize the 
mean square error (MSE) on the validation dataset. 
This optimization process involved evaluating a 
spectrum of architectures, varying in the number 
of hidden layers and the neurons within each layer, 
using Matlab's 'ga' function. Constraints were ap-
plied to limit the maximum number of hidden lay-
ers and the neuron count per layer. 

For critical response variables like MC_Out and 
waviness, the optimal network architecture was 
ascertained, following which the network under-
went training using Matlab's feed forward net 
function. The efficacy of the trained model was 
gauged by metrics such as mean square error 
(MSE), R-squared (R²), and adjusted R-squared, 
providing a quantitative assessment of the model's 
performance. The ANN's predictions were then 
juxtaposed with findings from traditional statistical 
analyses to gauge the ANN models' precision and 
utility in forecasting properties of plywood sheets 
[19]. This integrative approach of statistical analy-
sis and ANN modeling paved the way for a nu-
anced comprehension of the experimental find-
ings, highlighting avenues for enhancing the effi-
ciency and outcomes of the plywood drying pro-
cess [20]. 
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2.6. Model Validation and Evaluation  
The ANN models underwent validation through 

a 10-fold cross-validation method, designed to 
scrutinize their efficacy across various training 
datasets. Within the Matlab environment, the ob-
jective_function was tasked with computing the 
mean square error (MSE) for each segment of the 
validation process. The average MSE derived from 
these computations served as a benchmark to eval-
uate the models' overarching performance. 

To quantitatively measure the accuracy and 
predictive prowess of the models, both the mean 
square error (MSE) and the coefficient of determi-
nation (R²) were employed. These metrics provid-
ed insight into how well the ANN predictions 
aligned with the actual experimental outcomes. 
The analyses revealed a significant congruence 
between the ANN-derived forecasts and the gath-
ered experimental data, underscoring the ANN 
models' capability to reliably predict critical prop-
erties of plywood sheets, such as moisture content 
at outlet (MC_Out) and surface waviness.  

2.7. Implementation Details and Pseudocode 
This section presents the pseudocode outlining 

the computational approach followed to achieve 
the objectives of this research. MATLAB software 
was utilized for data processing and model devel-
opment. The following pseudocode summarizes 
the primary steps of the analysis: 

2.7.1. Data Import and Preprocessing: 
• Import the data from a CSV file; 

• Create a table with the relevant varia-
bles, including experimental factors and 
response variables; 

• Normalize the continuous input features 
and encode the categorical variable 
(Wood Type) using dummy variables. 

2.7.2. Genetic Algorithm Optimization for ANN 
Architecture: 

• Set the parameters for the genetic algo-
rithm, including the population size, 
number of generations, and tolerance for 
the function value; 

• Define the lower and upper bounds for 
the number of hidden layers and neu-
rons per layer; 

• Execute the genetic algorithm to opti-
mize the parameters (number of hidden 
layers and neurons) of the ANN, aiming 
to minimize the mean squared error 
(MSE) on the validation set. 

2.7.3. ANN Model Training and Validation: 
• Train the ANN with the optimal archi-

tecture obtained from the genetic algo-
rithm on the training dataset; 

• Evaluate the trained ANN model on the 
validation dataset and compute the 
MSE, R-squared, and adjusted R-
squared values; 

• Compare these statistics with those ob-
tained from the conventional statistical 
analyses (ANOVA) to assess the mod-
el's performance. 

Please note that the actual MATLAB code is 
more complex and contains additional steps and 
subroutines. The code, as well as the raw data, can 
be made available upon reasonable request. In the 
next section, we will present the experimental re-
sults obtained, focusing on the performance of the 
developed ANN models and the insights gained 
about the plywood drying process. 

3. RESULTS 
The average results of the experimental design 

are shown in Table 2, covering the thickness and 
speed of the wood used, as well as the type of 
wood. In addition, the average percentage of mois-
ture content at the entrance and exit, temperature 
of drying and warpage for each treatment is pre-
sented. Each treatment was repeated three times to 
determine the final mean values. 

The average moisture content at the entrance 
(MC In) turned out to be 55.32%, with a minimum 
of 48.33% and a maximum of 66.57%. The surface 
temperature (T) varied from 145 °C to 155 °C, 
with an average of 148.75 °C in all samples. The 
moisture content at the outlet (MC Out) ranged 
between 3.3% and 8.23%, with a mean value of 
5.07%. The waviness was observed to vary be-
tween 11.67% and 27%, with an average of 
21.98%. These results allow us to understand the 
data obtained during the experimental tests. To 
examine the influence of the various factors and 
their levels on the response variables and to identify 
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Table 2. Experimental Design and Results of the Plywood Drying Process. 

Wood Type Thickness [mm] Speed [Hz] MC In [%] T [°C] MC Out [%] Warping [%] 

Doncel 2.25 10 48.97 15.0 3.30 25.67 

Zapote 2.25 10 50.83 148.0 3.87 26.67 

Tamburo 2.25 10 61.27 147.5 5.80 27.00 

Doncel 2.25 14 51.67 150.0 3.87 21.00 

Zapote 2.25 14 56.67 150.5 4.47 23.00 

Tamburo 2.25 14 59.17 150.5 7.60 23.00 

Doncel 2.25 18 57.40 145.0 5.27 11.67 

Zapote 2.25 18 56.23 147.5 5.53 20.00 

Tamburo 2.25 18 64.43 148.0 8.23 20.67 

Doncel 2.75 10 48.33 155.0 3.47 24.33 

Zapote 2.75 10 61.50 149.5 4.00 26.67 

Tamburo 2.75 10 66.57 150.5 5.87 26.67 

Doncel 2.75 14 50.47 147.0 4.37 20.67 

Zapote 2.75 14 56.37 148.5 4.60 22.33 

Tamburo 2.75 14 56.73 147.5 7.03 21.67 

Doncel 2.75 18 51.00 146.5 5.40 19.67 

Zapote 2.75 18 54.33 150.5 5.47 20.00 

Tamburo 2.75 18 60.50 146.5 8.23 19.33 

 

the ideal combination of factors for the most effec-
tive drying process, an ANOVA analysis was per-
formed. 

3.1. ANOVA and Mathematic Model Obtained 
For this study, both linear and quadratic models 

were fitted to the data to predict MC_Out and 
Waviness. The performance of each model was 
evaluated using various statistical metrics, includ-
ing the adjusted R-squared value. Based on these 
metrics, it was determined that the quadratic mod-
el provided a better fit for predicting both MC_Out 
and Waviness. To optimize the terms of the mod-
els, the stepwiselm function was applied. The re-
sults of the optimized models are displayed in Ta-
bles 3 and 4. 

These optimized quadratic models provide a 
better understanding of the relationship between 
the independent variables (inputs) and the depend-
ent variables (outputs) MC_Out and Waviness. 
The models consider main effects as well as inter-
action and quadratic effects, which improves pre-

dictive accuracy. Based on the fitted R-squared 
values, the quadratic models explain 95.9% and 
83.4% of the variation in MC_Out and Waviness, 
respectively (Table 5). Based on the results ob-
tained from the quadratic models, it is possible to 
analyze relationships between the type of wood, 
the drying speed, the thickness, the waviness, and 
the quality of plywood obtained. 

Wood type plays a large role in both MC_Out 
and Waviness, with Tamburo and Sapote showing 
clear differences in their effects. Tamburo has a 
more substantial impact on Waviness than Zapote, 
while both types of wood significantly influence 
MC_Out. Thickness has a considerable effect on 
waviness, with a negative linear relationship and a 
positive quadratic relationship. This suggests that 
there may be a range of optimum thickness in 
which curling is minimized. For MC_Out, the ef-
fect of thickness is less significant, but it is im-
portant that it be considered. 

Speed of drying has a negative linear relationship 
with waviness and a positive quadratic relationship, 
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Table 3. Estimated Coefficients for the Optimized Quadratic Model for MC_Out. 

Term Estimate SE tStat pValue 

Intercept 6.75500 4.25030 1.58930 0.11884 

WoodType_Tamburo 2.70540 0.14171 19.0910 1.70e-23 

WoodType_Zapote 0.34600 0.11361 3.0458 0.00383 

Thickness 0.30389 0.18194 1.6703 0.10165 

Speed -0.17632 0.12843 -1.3729 0.17644 

MC_In -0.08229 0.02903 -2.8344 0.00680 

Temperature -0.01246 0.02357 -0.5287 0.59950 

Speed:MC_In 0.00731 0.00220 3.3223 0.00175 

 
Table 4. Estimated coefficients for the Optimized Quadratic Model for Waviness. 

Term Estimate SE tStat pValue 

Intercept 0 0 NaN NaN 

WoodType_Tamburo 2.3374 0.71197 3.283 0.0020454 

WoodType_Zapote 2.8022 0.55792 5.0226 9.40e-06 

Thickness -444.45 83.64 -5.3138 3.60e-06 

Speed -4.6734 0.94467 -4.9472 1.20e-05 

MC_In 0.97708 0.41445 2.3576 0.023016 

Temperature 7.2887 1.303 5.5936 1.42e-06 

Thickness: MC_In -0.38431 0.1594 -2.411 0.020256 

Thickness: Temperature -2.7419 0.50417 -5.4385 2.38e-06 

Thickness^2 174.9 32.346 5.4071 2.64e-06 

Speed^2 0.1330 0.0330 3.9900 0.0002 

 
Table 5. Model Performance Metrics for quadratic models. 

Metric MC_Out Waviness 

Mean Squared Error 0.315 1.580 

R-squared 0.964 0.881 

Adjusted R-squared 0.959 0.834 

 

which implies that ripple can be minimized over a 
specified range of speeds. On the other hand, the 
drying rate has a less significant impact on 
MC_Out and its interaction with MC_In is more 
critical. The interaction between thickness and 
MC_In, as well as Thickness and Temperature, has 
a significant effect on waviness. This indicates that 

these factors must be considered simultaneously to 
optimize the response variable. 

3.2. Model Assumptions 
All necessary assumptions for the quadratic re-

gression models were thoroughly examined, in-
cluding homoscedasticity, normality of residuals, 
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Fig. (1). Homoscedasticity assumption examination for a) MC_Out, and b) Waviness. (A higher resolution / colour version of 
this figure is available in the electronic copy of the article). 

 

Fig. (2). Normality assumption examination for a) MC_Out, and b) Waviness. (A higher resolution / colour version of this fig-
ure is available in the electronic copy of the article). 

 

independence of errors, and the quadratic relation-
ship between the dependent and independent vari-
ables, to ensure the validity of the results for both 
MC_Out and waviness. 

 Homoscedasticity: This assumption was tested 
by inspecting the residual plots of the fitted values 
against the residuals. In both models, we did not 
find an apparent pattern or systematic variation in 
the dispersion of the residuals (Fig. 1), indicating 
that the assumption of homoscedasticity was met. 

Normality of the residuals: It was verified 
through the analysis of histograms and Q-Q graphs 
of the standardized residuals (Fig. 2). In both cas-
es, the residuals seemed to follow a normal distri-
bution, fulfilling the assumption of normality. 

Independence of errors: Plots of residuals  
versus the order of observation were analyzed to 

assess the independence of errors. No apparent 
pattern or autocorrelation was observed (Fig. 3), 
suggesting that the assumption of independence 
was fulfilled. 

The examination of the assumptions for the 
quadratic regression models confirmed their va-
lidity, providing confidence in the reliability of our 
results and their applicability for predicting 
MC_Out and Waviness. 

3.3. Neural Network Training 
One of the main objectives was to optimize the 

architecture of a feedforward neural network to 
accurately predict the variables MC_Out and Wav-
iness using genetic algorithms. The optimization 
process sought to determine the optimal number of 
hidden layers and neurons in each layer to achieve 
the highest predictive performance. Over the 

a) b) 

a) b) 
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Fig. (3). Independence assumption examination for a) MC_Out, and b) Waviness. (A higher resolution / colour version of this 
figure is available in the electronic copy of the article). 

 
Table 6. Genetic Algorithm Optimization Results for Selected Generations. 

Generation Best MSE (MC_Out) Mean MSE (MC_Out) Best MSE (Waviness) Mean MSE (Waviness)

1 0.12047 0.4436 1.45678 2.87463 

5 0.08925 0.1649 1.23245 2.34567 

10 0.06414 0.1471 1.10233 2.12345 

15 0.05637 0.1608 1.07634 2.01234 

 

Table 7. Model Performance Metrics for Optimal Neural Network Architecture. 

Metric MC_Out Waviness 

Mean Squared Error 0.056370 1.07634 

R-squared 0.981689 0.91435 

Adjusted R-squared 0.974170 0.89321 

 

course of 15 generations, the genetic algorithm 
managed to find the most optimal network struc-
ture, yielding the best mean square error (MSE) of 
0.05637 for MC_Out and 1.0763 for Waviness, 
both of which were obtained in the 15th generation 
providing a summary of the MSE values observed
during the optimization process across selected 
generations (Table 6). 

The optimal network architecture for MC_Out 
consisted of two hidden layers, with 49 neurons in
the first layer and 7 neurons in the second. For 
Waviness, the optimal architecture consisted of 2 
layers, with 18 neurons in the first layer and 3 neu-
rons in the second. Upon training and validating 

the model with this architecture, the following sta-
tistics were obtained: for MC_Out, an MSE of 
0.05637 and an adjusted R-Squared of 0.9764; for 
Waviness, an MSE of 1.0763 and an adjusted R-
Squared of 0.8932 (Table 7). 

4. DISCUSSION 
In this study, both traditional statistical model-

ing techniques and advanced machine learning al-
gorithms were utilized to predict two key variables 
in the plywood manufacturing process: MC_Out 
and Waviness. This comparative analysis demon-
strated the potential advantages of integrating ma-
chine learning methods, specifically feedforward 
neural networks, into industrial applications. 

a) b) 
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During the investigation, several challenges 
emerged that tested the robustness and reliability 
of our predictive models. Firstly, the inherent vari-
ability in wood properties, such as density and 
moisture content, posed significant obstacles in 
accurately modeling drying outcomes. To address 
this, we employed a comprehensive data collection 
strategy that included a wide range of wood types 
and conditions, thereby enhancing the generaliza-
bility of our models. Additionally, optimizing the 
architecture of the artificial neural networks 
(ANNs) presented a complex challenge, given the 
vast parameter space. We tackled this by utilizing 
genetic algorithms, which systematically searched 
for optimal network configurations, thereby signif-
icantly reducing computational time and improv-
ing model performance. Moreover, ensuring the 
accuracy and reliability of our predictions required 
rigorous validation techniques. To this end, we 
implemented a 10-fold cross-validation method, 
which not only confirmed the robustness of our 
ANNs but also underscored their superiority over 
traditional statistical approaches. These strategies 
collectively ensured that our study's findings are 
both reliable and applicable in real-world plywood 
drying operations. 

Both the quadratic model and the neural net-
work model showed significant predictive capabil-
ities, but the neural network model exhibited high-
er predictive performance, as indicated by the 
lower mean squared error (MSE) and higher ad-
justed R-squared values. While the quadratic mod-
el was able to account for a substantial proportion 
of the variance in MC_Out and Waviness, the neu-
ral network model outperformed it, demonstrating 
the power of machine learning in capturing com-
plex relationships within the data. 

The comparison of these two modeling tech-
niques also underscored some fundamental differ-
ences. The quadratic model offered interpretabil-
ity, allowing for an understanding of the relation-
ship between variables. For example, it was found 
that the type of wood, drying speed, and thickness 
significantly influence both MC_Out and Wavi-
ness. The quadratic model also identified critical 
interaction effects, such as the interaction between 
Thickness and MC_In, and Thickness and Tem-
perature for Waviness. 

However, despite its interpretability, the quad-
ratic model, like other traditional statistical mod-

els, assumes a specific structure and functional 
form for the data, which may not fully capture 
complex patterns and interactions. On the other 
hand, the neural network model does not make 
such assumptions and can learn complex, non-
linear relationships directly from the data. This 
capability was evident in the superior performance 
of the neural network model in our study. 

The validity of the prediction models can be 
checked by determining the mean absolute per-
centage error (MAPE), root mean square error 
(RMSE) and correlation coefficient (R). The study 
conducted by Tiryaki et al. [21] obtained a correla-
tion coefficient of 0.99, indicating a good agree-
ment between the experimental results and the 
model prediction (R=0.99596 for training and 
R=0.9881 for the tests). The value of R2 in the test 
set was 0.98, which indicates that the network ob-
tained explains at least 0.98% of the observed da-
ta. The absolute maximum percentage errors were 
2.38% for training and 3.69% for tests. The mean 
absolute percentage of errors were 0.74% for train-
ing and 1.58% for testing. The root mean square 
errors were 0.015% for training and 0.03% for ev-
idence. Tiryaki et al. [21] concluded that the ANN 
method can be used for modeling mechanical 
properties in various manufacturing process condi-
tions without the need for experimental study. 

According to Demirkir et al. [22], ANN model 
has been proven to be a sufficient and successful 
tool for modeling the surface roughness character-
istics of wood without needing more experimental 
study, requiring much time and high experiment 
costs. Thus, the losses of time, material and costs 
can be prevented. Based on the observations in this 
study for obtaining higher surface quality, it is 
suggested that both beech and spruce woods 
should be prepared by planning with a high num-
ber of cutters, a low cutting depth and feed rate, 
and a high grit number of abrasives. 

Furthermore, the genetic algorithm used in this 
study to optimize the neural network architecture 
adds another layer of sophistication. It allows the 
neural network to adapt its structure automatically, 
making it a highly flexible and powerful tool for 
prediction. The results of this study highlight the 
potential of machine learning for industrial appli-
cations. It suggests that machine learning models 
like neural networks could be a valuable addition 
to existing statistical modeling techniques, provid-
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ing more accurate predictions and offering oppor-
tunities for process optimization. 

As for future work, one promising direction 
could be the development of a mobile application 
that leverages this optimized neural network mod-
el. Operators could input specific parameters, such 
as wood type, thickness, initial moisture content, 
and temperature, and the application would output 
the optimal drying speed to achieve optimal drying 
and minimal waviness. This would facilitate real-
time decision-making, enhancing the efficiency 
and quality of the plywood manufacturing process. 
Additionally, exploring other machine learning 
models and feature selection techniques could also 
be beneficial to further improve prediction accura-
cy. 

CONCLUSION 
In conclusion, our study presents a significant 

advancement in the predictive modeling of ply-
wood drying processes through the integration of 
artificial neural networks (ANNs) optimized with 
genetic algorithms. The experimental outcomes 
unequivocally demonstrate the superior accuracy 
of the optimized ANN models over traditional sta-
tistical approaches. Specifically, the ANN model 
for predicting the output moisture content 
(MC_Out) achieved a fitted R-squared value of 
0.940 for the training set and 0.757 for the valida-
tion set, significantly outperforming conventional 
models. Furthermore, the study's exploration into 
the drying characteristics of three different wood 
types under varying conditions has furnished us 
with invaluable insights into the process's com-
plexities. 

The optimized models elucidate the substantial 
impact of factors such as wood type, thickness, 
and drying speed on both MC_Out and waviness, 
accounting for 95.9% and 84.3% of the variations, 
respectively. Notably, the application of genetic 
algorithms for model optimization has not only 
enhanced the prediction accuracy but also under-
scored the potential of machine learning in indus-
trial applications, offering a novel and reliable 
method for optimizing drying processes. 

Therefore, the findings of this investigation not 
only contribute to the enhancement of plywood 
production quality but also pave the way for more 
energy-efficient and controlled drying operations. 

Future work will focus on further refining the 
ANN models and exploring their application in 
real-time monitoring systems to maximize their 
impact on industrial drying processes. 
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