Skip to content
2000
image of Vanillin: A Review on the Therapeutic Potential as an Anti-inflammatory Agent

Abstract

Vanillin is a naturally occurring compound found in numerous plant species and is commonly utilized in food, beverages, cosmetics, and pharmaceuticals. It is the main ingredient in vanilla pods, and numerous studies have indicated that it has a variety of pharmacological properties, including anti-inflammatory, antioxidant, and anticancer properties. Vanillin is extensively utilized in modern drug research for the treatment of many diseases, including cancer, due to its anti-inflammatory properties. Besides its application in food and flavoring, vanillin acts as a precursor in the production of other valuable petroleum-derived chemicals. This review provides a thorough explanation of the impact of this phytochemical on many signalling pathways, which are interconnected with the root cause of disease. This review also discusses its pharmacokinetic characteristics and clinical trial studies.

Loading

Article metrics loading...

/content/journals/raiad/10.2174/0127722708368753250713180110
2025-07-29
2025-11-07
Loading full text...

Full text loading...

References

  1. Gulsia O. Vanillin: One drug, many cures. Resonance 2020 25 7 981 986 10.1007/s12045‑020‑1013‑z
    [Google Scholar]
  2. Baser K.H. Spice Crops Weiss E.A. Wallingford, UK CABI Publishing 2002
    [Google Scholar]
  3. Gallage N.J. Møller B.L. Vanilla: The most popular flavour. Biotech. Nat. Prod. 2017 16 3 24
    [Google Scholar]
  4. Arya S.S. Rookes J.E. Cahill D.M. Lenka S.K. Vanillin: A review on the therapeutic prospects of a popular flavouring molecule. Adv. Tradit. Med. 2021 21 3 1 17 10.1007/s13596‑020‑00531‑w
    [Google Scholar]
  5. Varga E. Domokos E. Fogarasi E. Steanesu R. Fülöp I. Croitoru M.D. Laczkó-Zöld E. Polyphenolic compounds analysis and antioxidant activity in fruits of Prunus spinosa L.. Acta Pharm. Hung. 2017 87 1 19 25 29489094
    [Google Scholar]
  6. Chuang C.C. McIntosh M.K. Potential mechanisms by which polyphenol-rich grapes prevent obesity-mediated inflammation and metabolic diseases. Annu. Rev. Nutr. 2011 31 1 155 176 10.1146/annurev‑nutr‑072610‑145149 21548775
    [Google Scholar]
  7. Leouifoudi I. Harnafi H. Zyad A. Olive mill waste extracts: Polyphenols content, antioxidant, and antimicrobial activities. Adv. Pharmacol. Sci. 2015 2015 1 11 10.1155/2015/714138 26693221
    [Google Scholar]
  8. Mezni F. Shili S. Ben Ali N. Larbi Khouja M. Khaldi A. Maaroufi A. Evaluation of Pistacia lentiscus seed oil and phenolic compounds for in vitro antiproliferative effects against BHK21 cells. Pharm. Biol. 2016 54 5 747 751 10.3109/13880209.2015.1079222 26440074
    [Google Scholar]
  9. Saini R. Dangwal K. Singh H. Garg V. Antioxidant and antiproliferative activities of phenolics isolated from fruits of Himalayan yellow raspberry (Rubus ellipticus). J. Food Sci. Technol. 2014 51 11 3369 3375 10.1007/s13197‑012‑0836‑3 26396333
    [Google Scholar]
  10. Bezerra-Filho C.S.M. Barboza J.N. Souza M.T.S. Sabry P. Ismail N.S.M. de Sousa D.P. Therapeutic Potential of Vanillin and its Main Metabolites to Regulate the Inflammatory Response and Oxidative Stress. Mini Rev. Med. Chem. 2019 19 20 1681 1693 10.2174/1389557519666190312164355 30864521
    [Google Scholar]
  11. Olatunde A. Mohammed A. Ibrahim M.A. Tajuddeen N. Shuaibu M.N. Vanillin: A food additive with multiple biological activities. Eur. J. Med. Chem. Rep. 2022 5 100055 10.1016/j.ejmcr.2022.100055
    [Google Scholar]
  12. Arya S.S. Sharma M.M. Das R.K. Rookes J. Cahill D. Lenka S.K. Vanillin mediated green synthesis and application of gold nanoparticles for reversal of antimicrobial resistance in Pseudomonas aeruginosa clinical isolates. Heliyon 2019 5 7 02021 10.1016/j.heliyon.2019.e02021 31312733
    [Google Scholar]
  13. Bezerra D.P. Soares A.K.N. de Sousa D.P. Overview of the Role of Vanillin on Redox Status and Cancer Development. Oxid. Med. Cell. Longev. 2016 2016 1 9734816 10.1155/2016/9734816 28077989
    [Google Scholar]
  14. Li J.M. Lee Y.C. Li C.C. Lo H.Y. Chen F.Y. Chen Y.S. Hsiang C.Y. Ho T.Y. Vanillin-ameliorated development of azoxymethane/dextran sodium sulfate-induced murine colorectal cancer: The involvement of proteasome/nuclear factor-κB/mitogen-activated protein kinase pathways. J. Agric. Food Chem. 2018 66 22 5563 5573 10.1021/acs.jafc.8b01582 29790745
    [Google Scholar]
  15. Liang J.A. Wu S.L. Lo H.Y. Hsiang C.Y. Ho T.Y. Vanillin inhibits matrix metalloproteinase-9 expression through down-regulation of nuclear factor-kappaB signaling pathway in human hepatocellular carcinoma cells. Mol. Pharmacol. 2009 75 1 151 157 10.1124/mol.108.049502 18835982
    [Google Scholar]
  16. Murakami Y. Hirata A. Ito S. Shoji M. Tanaka S. Yasui T. Machino M. Fujisawa S. Re-evaluation of cyclooxygenase-2-inhibiting activity of vanillin and guaiacol in macrophages stimulated with lipopolysaccharide. Anticancer Res. 2007 27 2 801 807 17465205
    [Google Scholar]
  17. Dhanalakshmi C. Manivasagam T. Nataraj J. Justin Thenmozhi A. Essa M.M. Neurosupportive Role of Vanillin, a Natural Phenolic Compound, on Rotenone Induced Neurotoxicity in SH-SY5Y Neuroblastoma Cells. Evid. Based Complement. Alternat. Med. 2015 2015 1 11 10.1155/2015/626028 26664453
    [Google Scholar]
  18. Lirdprapamongkol K. Sakurai H. Suzuki S. Koizumi K. Prangsaengtong O. Viriyaroj A. Ruchirawat S. Svasti J. Saiki I. Vanillin enhances TRAIL-induced apoptosis in cancer cells through inhibition of NF-kappaB activation. In Vivo 2010 24 4 501 506 20668316
    [Google Scholar]
  19. Tai A. Sawano T. Yazama F. Ito H. Evaluation of antioxidant activity of vanillin by using multiple antioxidant assays. Biochim. Biophys. Acta, Gen. Subj. 2011 1810 2 170 177 10.1016/j.bbagen.2010.11.004 21095222
    [Google Scholar]
  20. Medzhitov R. Inflammation 2010: New adventures of an old flame. Cell 2010 140 6 771 776 10.1016/j.cell.2010.03.006 20303867
    [Google Scholar]
  21. Kumar V. Abbas A.K. Aster J.C. Deyrup A.T. Robbins & Kumar basic pathology, e-book: Robbins & Kumar basic pathology, e-book. Amsterdam, Netherlands Elsevier Health Sciences 2022
    [Google Scholar]
  22. Kumar V Abbas AK Fausto N Aster JC Robbins and Cotran pathologic basis of disease, professional edition e-book Amsterdam, Netherlands Elsevier 2014
    [Google Scholar]
  23. Zappavigna S. Cossu A.M. Grimaldi A. Bocchetti M. Ferraro G.A. Nicoletti G.F. Filosa R. Caraglia M. Anti-inflammatory drugs as anticancer agents. Int. J. Mol. Sci. 2020 21 7 2605 10.3390/ijms21072605 32283655
    [Google Scholar]
  24. Rayburn E. Ezell S.J. Zhang R. Anti-inflammatory agents for cancer therapy. Mol. Cell. Pharmacol. 2009 1 1 29 43 10.4255/mcpharmacol.09.05 20333321
    [Google Scholar]
  25. Philip M. Rowley D.A. Schreiber H. Inflammation as a tumor promoter in cancer induction. Semin. Cancer Biol. 2004 14 6 433 439 10.1016/j.semcancer.2004.06.006 15489136
    [Google Scholar]
  26. Balkwill F. Mantovani A. Inflammation and cancer: Back to Virchow? Lancet 2001 357 9255 539 545 10.1016/S0140‑6736(00)04046‑0 11229684
    [Google Scholar]
  27. Fischer R. Maier O. Interrelation of oxidative stress and inflammation in neurodegenerative disease: Role of TNF. Oxid. Med. Cell. Longev. 2015 2015 1 18 10.1155/2015/610813 25834699
    [Google Scholar]
  28. Smallwood M.J. Nissim A. Knight A.R. Whiteman M. Haigh R. Winyard P.G. Oxidative stress in autoimmune rheumatic diseases. Free Radic. Biol. Med. 2018 125 3 14 10.1016/j.freeradbiomed.2018.05.086 29859343
    [Google Scholar]
  29. Qiu X. Ma J. Wang K. Zhang H. Qiu X. Ma J. Chemopreventive effects of 5-aminosalicylic acid on inflammatory bowel disease-associated colorectal cancer and dysplasia: A systematic review with meta-analysis. Oncotarget 2017 8 1 1031 1045 10.18632/oncotarget.13715 27906680
    [Google Scholar]
  30. Hartvigsen J. Hancock M.J. Kongsted A. Louw Q. Ferreira M.L. Genevay S. Hoy D. Karppinen J. Pransky G. Sieper J. Smeets R.J. Underwood M. Buchbinder R. Hartvigsen J. Cherkin D. Foster N.E. Maher C.G. Underwood M. van Tulder M. Anema J.R. Chou R. Cohen S.P. Menezes Costa L. Croft P. Ferreira M. Ferreira P.H. Fritz J.M. Genevay S. Gross D.P. Hancock M.J. Hoy D. Karppinen J. Koes B.W. Kongsted A. Louw Q. Öberg B. Peul W.C. Pransky G. Schoene M. Sieper J. Smeets R.J. Turner J.A. Woolf A. What low back pain is and why we need to pay attention. Lancet 2018 391 10137 2356 2367 10.1016/S0140‑6736(18)30480‑X 29573870
    [Google Scholar]
  31. Zhu Z. Yu Q. Li H. Han F. Guo Q. Sun H. Zhao H. Tu Z. Liu Z. Zhu C. Li B. Vanillin-based functionalization strategy to construct multifunctional microspheres for treating inflammation and regenerating intervertebral disc. Bioact. Mater. 2023 28 167 182 10.1016/j.bioactmat.2023.05.005 37256210
    [Google Scholar]
  32. Molinos M. Almeida C.R. Caldeira J. Cunha C. Gonçalves R.M. Barbosa M.A. Inflammation in intervertebral disc degeneration and regeneration. J. R. Soc. Interface 2015 12 104 20141191 10.1098/rsif.2014.1191 25673296
    [Google Scholar]
  33. Beaudry F. Ross A. Lema P.P. Vachon P. Pharmacokinetics of vanillin and its effects on mechanical hypersensitivity in a rat model of neuropathic pain. Phytother. Res. 2010 24 4 525 530 10.1002/ptr.2975 19655294
    [Google Scholar]
  34. Ho K. Yazan L.S. Ismail N. Ismail M. Toxicology study of vanillin on rats via oral and intra-peritoneal administration. Food Chem. Toxicol. 2011 49 1 25 30 10.1016/j.fct.2010.08.023 20807560
    [Google Scholar]
  35. Srinual S. Chanvorachote P. Pongrakhananon V. Suppression of cancer stem-like phenotypes in NCI-H460 lung cancer cells by vanillin through an Akt-dependent pathway. Int. J. Oncol. 2017 50 4 1341 1351 10.3892/ijo.2017.3879 28259926
    [Google Scholar]
  36. Al Asmari A. Al Shahrani H. Al Masri N. Al Faraidi A. Elfaki I. Arshaduddin M. Vanillin abrogates ethanol induced gastric injury in rats via modulation of gastric secretion, oxidative stress and inflammation. Toxicol. Rep. 2016 3 105 113 10.1016/j.toxrep.2015.11.001 28959528
    [Google Scholar]
  37. Jiankang L. Akitane M. Antioxidant and pro-oxidant activities of p-hydroxybenzyl alcohol and vanillin: Effects on free radicals, brain peroxidation and degradation of benzoate, deoxyribose, amino acids and DNA. Neuropharmacology 1993 32 7 659 669 10.1016/0028‑3908(93)90079‑I 7689708
    [Google Scholar]
  38. Lawn J.E. Cousens S. Zupan J. 4 million neonatal deaths: When? Where? Why? Lancet 2005 365 9462 891 900 10.1016/S0140‑6736(05)71048‑5 15752534
    [Google Scholar]
  39. Mohsenpour H. Pesce M. Patruno A. Bahrami A. Pour P.M. Farzaei M.H. A review of plant extracts and plant-derived natural compounds in the prevention/treatment of neonatal hypoxic-ischemic brain injury. Int. J. Mol. Sci. 2021 22 2 833 10.3390/ijms22020833 33467663
    [Google Scholar]
  40. Chen L. Mo M. Li G. Cen L. Wei L. Xiao Y. Chen X. Li S. Yang X. Qu S. Xu P. The biomarkers of immune dysregulation and inflammation response in Parkinson disease. Transl. Neurodegener. 2016 5 1 16 10.1186/s40035‑016‑0063‑3 27570618
    [Google Scholar]
  41. Elsherbiny N.M. Younis N.N. Shaheen M.A. Elseweidy M.M. The synergistic effect between vanillin and doxorubicin in ehrlich ascites carcinoma solid tumor and MCF-7 human breast cancer cell line. Pathol. Res. Pract. 2016 212 9 767 777 10.1016/j.prp.2016.06.004 27493101
    [Google Scholar]
  42. Guo T. Zhang D. Zeng Y. Huang T.Y. Xu H. Zhao Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol. Neurodegener. 2020 15 1 40 10.1186/s13024‑020‑00391‑7 32677986
    [Google Scholar]
  43. Sung P.S. Lin P.Y. Liu C.H. Su H.C. Tsai K.J. Neuroinflammation and Neurogenesis in Alzheimer’s Disease and Potential Therapeutic Approaches. Int. J. Mol. Sci. 2020 21 3 701 10.3390/ijms21030701 31973106
    [Google Scholar]
  44. Butterfield D.A. Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 2019 20 3 148 160 10.1038/s41583‑019‑0132‑6 30737462
    [Google Scholar]
  45. Takada L.T. Innate immunity and inflammation in Alzheimer´s disease pathogenesis. Arq. Neuropsiquiatr. 2017 75 9 607 608 10.1590/0004‑282x20170126 28977138
    [Google Scholar]
  46. Dong Y. Xu M. Kalueff A.V. Song C. Dietary eicosapentaenoic acid normalizes hippocampal omega-3 and 6 polyunsaturated fatty acid profile, attenuates glial activation and regulates BDNF function in a rodent model of neuroinflammation induced by central interleukin-1β administration. Eur. J. Nutr. 2018 57 5 1781 1791 10.1007/s00394‑017‑1462‑7 28523372
    [Google Scholar]
  47. Jeitner T.M. Kalogiannis M. Krasnikov B.F. Gomlin I. Peltier M.R. Moran G.R. Linking Inflammation and Parkinson Disease: Hypochlorous Acid Generates Parkinsonian Poisons. Toxicol. Sci. 2016 151 2 388 402 10.1093/toxsci/kfw052 27026709
    [Google Scholar]
  48. Han B.H. Lee Y.J. Yoon J.J. Choi E.S. Namgung S. Jin X.J. Jeong D.H. Kang D.G. Lee H.S. Hwangryunhaedoktang exerts anti-inflammation on LPS-induced NO production by suppressing MAPK and NF-κB activation in RAW264.7 macrophages. J. Integr. Med. 2017 15 4 326 336 10.1016/S2095‑4964(17)60350‑9 28659238
    [Google Scholar]
  49. Kim D.H. Kim M.E. Lee J.S. Inhibitory effects of extract from G. lanceolata on LPS-induced production of nitric oxide and IL-1β via down-regulation of MAPK in macrophages. Appl. Biochem. Biotechnol. 2015 175 2 657 665 10.1007/s12010‑014‑1301‑8 25342257
    [Google Scholar]
  50. Blaikie L. Kay G. Kong Thoo Lin P. Synthesis and in vitro evaluation of vanillin derivatives as multi-target therapeutics for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2020 30 21 127505 10.1016/j.bmcl.2020.127505 32822761
    [Google Scholar]
  51. Inflammation: Basic principles and clinical correlates. Ann. Intern. Med. 1988 109 6 519 10.7326/0003‑4819‑109‑6‑519_2
    [Google Scholar]
  52. Lirdprapamongkol K. Sakurai H. Kawasaki N. Choo M.K. Saitoh Y. Aozuka Y. Singhirunnusorn P. Ruchirawat S. Svasti J. Saiki I. Vanillin suppresses in vitro invasion and in vivo metastasis of mouse breast cancer cells. Eur. J. Pharm. Sci. 2005 25 1 57 65 10.1016/j.ejps.2005.01.015 15854801
    [Google Scholar]
  53. Tsuda H. Uehara N. Iwahori Y. Asamoto M. Ligo M. Nagao M. Matsumoto K. Ito M. Hirono I. Chemopreventive effects of beta-carotene, alpha-tocopherol and five naturally occurring antioxidants on initiation of hepatocarcinogenesis by 2-amino-3-methylimidazo[4,5-f]quinoline in the rat. Jpn. J. Cancer Res. 1994 85 12 1214 1219 10.1111/j.1349‑7006.1994.tb02932.x 7852184
    [Google Scholar]
  54. Vetrano A.M. Heck D.E. Mariano T.M. Mishin V. Laskin D.L. Laskin J.D. Characterization of the oxidase activity in mammalian catalase. J. Biol. Chem. 2005 280 42 35372 35381 10.1074/jbc.M503991200 16079130
    [Google Scholar]
  55. Stanely Mainzen Prince P. Rajakumar S. Dhanasekar K. Protective effects of vanillic acid on electrocardiogram, lipid peroxidation, antioxidants, proinflammatory markers and histopathology in isoproterenol induced cardiotoxic rats. Eur. J. Pharmacol. 2011 668 1-2 233 240 10.1016/j.ejphar.2011.06.053 21763302
    [Google Scholar]
  56. Marton A. Kúsz E. Kolozsi C. Tubak V. Zagotto G. Buzás K. Quintieri L. Vizler C. Vanillin Analogues o-Vanillin and 2,4,6-Trihydroxybenzaldehyde Inhibit NFĸB Activation and Suppress Growth of A375 Human Melanoma. Anticancer Res. 2016 36 11 5743 5750 10.21873/anticanres.11157 27793895
    [Google Scholar]
  57. Lirdprapamongkol K. Kramb J.P. Suthiphongchai T. Surarit R. Srisomsap C. Dannhardt G. Svasti J. Vanillin suppresses metastatic potential of human cancer cells through PI3K inhibition and decreases angiogenesis in vivo. J. Agric. Food Chem. 2009 57 8 3055 3063 10.1021/jf803366f 19368348
    [Google Scholar]
  58. Thanaketpaisarn O. Waiwut P. Sakurai H. Saiki I. Artesunate enhances TRAIL-induced apoptosis in human cervical carcinoma cells through inhibition of the NF-κB and PI3K/Akt signaling pathways. Int. J. Oncol. 2011 39 1 279 285 21537836
    [Google Scholar]
  59. Belaidi A.A. Bush A.I. Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: Targets for therapeutics. J. Neurochem. 2016 139 S1 179 197 10.1111/jnc.13425 26545340
    [Google Scholar]
  60. Niedzielska E. Smaga I. Gawlik M. Moniczewski A. Stankowicz P. Pera J. Filip M. Oxidative stress in neurodegenerative diseases. Mol. Neurobiol. 2016 53 6 4094 4125 10.1007/s12035‑015‑9337‑5 26198567
    [Google Scholar]
  61. Bastianetto S. Yao Z.X. Papadopoulos V. Quirion R. Neuroprotective effects of green and black teas and their catechin gallate esters against β-amyloid-induced toxicity. Eur. J. Neurosci. 2006 23 1 55 64 10.1111/j.1460‑9568.2005.04532.x 16420415
    [Google Scholar]
  62. Szwajgier D. Borowiec K. Pustelniak K. The neuroprotective effects of phenolic acids: Molecular mechanism of action. Nutrients 2017 9 5 477 10.3390/nu9050477 28489058
    [Google Scholar]
  63. Latunde-Dada G.O. Ferroptosis: Role of lipid peroxidation, iron and ferritinophagy. Biochim. Biophys. Acta, Gen. Subj. 2017 1861 8 1893 1900 10.1016/j.bbagen.2017.05.019 28552631
    [Google Scholar]
  64. Salau V.F. Erukainure O.L. Ibeji C.U. Olasehinde T.A. Koorbanally N.A. Islam M.S. Vanillin and vanillic acid modulate antioxidant defense system via amelioration of metabolic complications linked to Fe2+-induced brain tissues damage. Metab. Brain Dis. 2020 35 5 727 738 10.1007/s11011‑020‑00545‑y 32065337
    [Google Scholar]
  65. Schrauzer G.N. Selenomethionine: A review of its nutritional significance, metabolism and toxicity. J. Nutr. 2000 130 7 1653 1656 10.1093/jn/130.7.1653 10867031
    [Google Scholar]
  66. Mukherjee A.A. Kandhare A.D. Rojatkar S.R. Bodhankar S.L. Ameliorative effects of Artemisia pallens in a murine model of ovalbumin-induced allergic asthma via modulation of biochemical perturbations. Biomed. Pharmacother. 2017 94 880 889 10.1016/j.biopha.2017.08.017 28810518
    [Google Scholar]
  67. Kumar S. Prahalathan P. Raja B. Antihypertensive and antioxidant potential of vanillic acid, a phenolic compound in l -NAME-induced hypertensive rats: A dose-dependence study. Redox Rep. 2011 16 5 208 215 10.1179/1351000211Y.0000000009 22005341
    [Google Scholar]
  68. Kim Y.Y. Je I.G. Kim M.J. Kang B.C. Choi Y.A. Baek M.C. Lee B. Choi J.K. Park H.R. Shin T.Y. Lee S. Yoon S.B. Lee S.R. Khang D. Kim S.H. 2-Hydroxy-3-methoxybenzoic acid attenuates mast cell-mediated allergic reaction in mice via modulation of the FcεRI signaling pathway. Acta Pharmacol. Sin. 2017 38 1 90 99 10.1038/aps.2016.112 27890918
    [Google Scholar]
  69. Zhang M. Cui Z. Cui H. Wang Y. Zhong C. Astaxanthin protects astrocytes against trauma-induced apoptosis through inhibition of NKCC1 expression via the NF-κB signaling pathway. BMC Neurosci. 2017 18 1 42 10.1186/s12868‑017‑0358‑z 28049513
    [Google Scholar]
  70. Ono N. Kusunoki T. Miwa M. Hirotsu M. Shiozawa A. Ikeda K. Reduction in superoxide dismutase expression in the epithelial mucosa of eosinophilic chronic rhinosinusitis with nasal polyps. Int. Arch. Allergy Immunol. 2013 162 2 173 180 10.1159/000353122 23921602
    [Google Scholar]
  71. Dejager L. Dendoncker K. Eggermont M. Souffriau J. Van Hauwermeiren F. Willart M. Van Wonterghem E. Naessens T. Ballegeer M. Vandevyver S. Hammad H. Lambrecht B. De Bosscher K. Grooten J. Libert C. Neutralizing TNFα restores glucocorticoid sensitivity in a mouse model of neutrophilic airway inflammation. Mucosal Immunol. 2015 8 6 1212 1225 10.1038/mi.2015.12 25760421
    [Google Scholar]
  72. Shalaby R.H. Rashed L.A. Ismaail A.E. Madkour N.K. Elwakeel S.H. Hematopoietic stem cells derived from human umbilical cord ameliorate cisplatin-induced acute renal failure in rats. Am. J. Stem Cells 2014 3 2 83 96 25232508
    [Google Scholar]
  73. Elsherbiny N.M. Eladl M.A. Al-Gayyar M.M.H. Renal protective effects of arjunolic acid in a cisplatin-induced nephrotoxicity model. Cytokine 2016 77 26 34 10.1016/j.cyto.2015.10.010 26517155
    [Google Scholar]
  74. Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol. 2009 1 6 a001651 10.1101/cshperspect.a001651 20457564
    [Google Scholar]
  75. Sung M.J. Kim D.H. Jung Y.J. Kang K.P. Lee A.S. Lee S. Kim W. Davaatseren M. Hwang J.T. Kim H.J. Kim M.S. Kwon D.Y. Park S.K. Genistein protects the kidney from cisplatin-induced injury. Kidney Int. 2008 74 12 1538 1547 10.1038/ki.2008.409 18716605
    [Google Scholar]
  76. Ramesh G. Kimball S.R. Jefferson L.S. Reeves W.B. Endotoxin and cisplatin synergistically stimulate TNF-α production by renal epithelial cells. Am. J. Physiol. Renal Physiol. 2007 292 2 F812 F819 10.1152/ajprenal.00277.2006 17032936
    [Google Scholar]
  77. Sánchez-González P.D. López-Hernández F.J. López-Novoa J.M. Morales A.I. An integrative view of the pathophysiological events leading to cisplatin nephrotoxicity. Crit. Rev. Toxicol. 2011 41 10 803 821 10.3109/10408444.2011.602662 21838551
    [Google Scholar]
  78. Bayomi H.S. Elsherbiny N.M. El-Gayar A.M. Al-Gayyar M.M.H. Evaluation of renal protective effects of inhibiting TGF-β type I receptor in a cisplatin-induced nephrotoxicity model. Eur. Cytokine Netw. 2013 24 4 139 147 10.1684/ecn.2014.0344 24590376
    [Google Scholar]
  79. Ramesh G. Zhang B. Uematsu S. Akira S. Reeves W.B. Endotoxin and cisplatin synergistically induce renal dysfunction and cytokine production in mice. Am. J. Physiol. Renal Physiol. 2007 293 1 F325 F332 10.1152/ajprenal.00158.2007 17494092
    [Google Scholar]
  80. Boor P. Sebeková K. Ostendorf T. Floege J. Treatment targets in renal fibrosis. Nephrol. Dial. Transplant. 2007 22 12 3391 3407 10.1093/ndt/gfm393 17890247
    [Google Scholar]
  81. Schnaper H.W. Jandeska S. Runyan C.E. Hubchak S.C. Basu R.K. Curley J.F. Smith R.D. Hayashida T. TGF-beta signal transduction in chronic kidney disease. Front. Biosci. 2009 Volume 14 2448 2465 10.2741/3389 19273211
    [Google Scholar]
  82. Barrera-Chimal J. Pérez-Villalva R. Ortega J.A. Sánchez A. Rodríguez-Romo R. Durand M. Jaisser F. Bobadilla N.A. Mild ischemic injury leads to long-term alterations in the kidney: Amelioration by spironolactone administration. Int. J. Biol. Sci. 2015 11 8 892 900 10.7150/ijbs.11729 26157344
    [Google Scholar]
  83. Liu Y. Hepatocyte growth factor and the kidney. Curr. Opin. Nephrol. Hypertens. 2002 11 1 23 30 10.1097/00041552‑200201000‑00004
    [Google Scholar]
  84. Declèves A.E. Sharma K. Novel targets of antifibrotic and anti-inflammatory treatment in CKD. Nat. Rev. Nephrol. 2014 10 5 257 267 10.1038/nrneph.2014.31 24662433
    [Google Scholar]
  85. Matsumoto K. Nakamura T. Hepatocyte growth factor: Renotropic role and potential therapeutics for renal diseases. Kidney Int. 2001 59 6 2023 2038 10.1046/j.1523‑1755.2001.00717.x 11380804
    [Google Scholar]
  86. Beasley R. Ellwood P. Asher I. International patterns of the prevalence of pediatric asthma. Pediatr. Clin. North Am. 2003 50 3 539 553 10.1016/S0031‑3955(03)00050‑6 12877235
    [Google Scholar]
  87. Moon P.D. Kim H.M. Thymic stromal lymphopoietin is expressed and produced by caspase-1/NF-κB pathway in mast cells. Cytokine 2011 54 3 239 243 10.1016/j.cyto.2011.03.007 21463955
    [Google Scholar]
  88. Galli S.J. Tsai M. IgE and mast cells in allergic disease. Nat. Med. 2012 18 5 693 704 10.1038/nm.2755 22561833
    [Google Scholar]
  89. Barnes P.J. The cytokine network in asthma and chronic obstructive pulmonary disease. J. Clin. Invest. 2008 118 11 3546 3556 10.1172/JCI36130 18982161
    [Google Scholar]
  90. Han N.R. Oh H.A. Nam S.Y. Moon P.D. Kim D.W. Kim H.M. Jeong H.J. TSLP induces mast cell development and aggravates allergic reactions through the activation of MDM2 and STAT6. J. Invest. Dermatol. 2014 134 10 2521 2530 10.1038/jid.2014.198 24751726
    [Google Scholar]
  91. Jeong H.J. Oh H.A. Lee B.J. Kim H.M. Inhibition of IL-32 and TSLP production through the attenuation of caspase-1 activation in an animal model of allergic rhinitis by Naju Jjok (Polygonum tinctorium). Int. J. Mol. Med. 2014 33 1 142 150 10.3892/ijmm.2013.1548 24190435
    [Google Scholar]
  92. Kim M.H. Seo J.H. Kim H.M. Jeong H.J. Aluminum-doped zinc oxide nanoparticles attenuate the TSLP levels via suppressing caspase-1 in activated mast cells. J. Biomater. Appl. 2016 30 9 1407 1416 10.1177/0885328216629822 26825457
    [Google Scholar]
  93. Jeong H.J. Koo H.N. Na H.J. Kim M.S. Hong S.H. Eom J.W. Kim K.S. Shin T.Y. Kim H.M. Inhibition of TNF-α and IL-6 production by aucubin through blockade of NF-ΚB activation in RBL-2H3 mast cells. Cytokine 2002 18 5 252 259 10.1006/cyto.2002.0894 12161100
    [Google Scholar]
  94. Borish L. Allergic rhinitis. J. Allergy Clin. Immunol. 2003 112 6 1021 1031 10.1016/j.jaci.2003.09.015 14657851
    [Google Scholar]
  95. Shyamala B.N. Naidu M.M. Sulochanamma G. Srinivas P. Studies on the antioxidant activities of natural vanilla extract and its constituent compounds through in vitro models. J. Agric. Food Chem. 2007 55 19 7738 7743 10.1021/jf071349+ 17715988
    [Google Scholar]
  96. Palasap A. Limpaiboon T. Boonsiri P. Thapphasaraphong S. Daduang S. Suwannalert P. Daduang J. Cytotoxic effects of phytophenolics from caesalpinia mimosoides Lamk on cervical carcinoma cell lines through an apoptotic pathway. Asian Pac. J. Cancer Prev. 2014 15 1 449 454 10.7314/APJCP.2014.15.1.449 24528072
    [Google Scholar]
  97. Chou T.H. Ding H.Y. Hung W.J. Liang C.H. Antioxidative characteristics and inhibition of α-melanocyte-stimulating hormone-stimulated melanogenesis of vanillin and vanillic acid from Origanum vulgare. Exp. Dermatol. 2010 19 8 742 750 10.1111/j.1600‑0625.2010.01091.x 20482617
    [Google Scholar]
  98. Dhalla N. Elmoselhi A.B. Hata T. Makino N. Status of myocardial antioxidants in ischemia–reperfusion injury. Cardiovasc. Res. 2000 47 3 446 456 10.1016/S0008‑6363(00)00078‑X 10963718
    [Google Scholar]
  99. Dianat M. Hamzavi G.R. Badavi M. Samarbafzadeh A. Effects of losartan and vanillic Acid co-administration on ischemia-reperfusion-induced oxidative stress in isolated rat heart. Iran. Red Crescent Med. J. 2014 16 7 16664 10.5812/ircmj.16664 25237570
    [Google Scholar]
  100. Osada M. Netticadan T. Tamura K. Dhalla N.S. Modification of ischemia-reperfusion-induced changes in cardiac sarcoplasmic reticulum by preconditioning. Am. J. Physiol. 1998 274 6 H2025 H2034 9841529
    [Google Scholar]
  101. Brook R.D. Rajagopalan S. Particulate matter air pollution and atherosclerosis. Curr. Atheroscler. Rep. 2010 12 5 291 300 10.1007/s11883‑010‑0122‑7 20617466
    [Google Scholar]
  102. Natella F. Nardini M. Di Felice M. Scaccini C. Benzoic and cinnamic acid derivatives as antioxidants: Structure-activity relation. J. Agric. Food Chem. 1999 47 4 1453 1459 10.1021/jf980737w 10563998
    [Google Scholar]
  103. Silva F.A.M. Borges F. Guimarães C. Lima J.L.F.C. Matos C. Reis S. Phenolic acids and derivatives: Studies on the relationship among structure, radical scavenging activity, and physicochemical parameters. J. Agric. Food Chem. 2000 48 6 2122 2126 10.1021/jf9913110 10888509
    [Google Scholar]
  104. Radmanesh E. Dianat M. Badavi M. Goudarzi G. Mard S.A. The cardioprotective effect of vanillic acid on hemodynamic parameters, malondialdehyde, and infarct size in ischemia-reperfusion isolated rat heart exposed to PM10. Iran. J. Basic Med. Sci. 2017 20 7 760 768 28852440
    [Google Scholar]
  105. Steinberg D. Thematic review series: The pathogenesis of atherosclerosis. An interpretive history of the cholesterol controversy, part V: The discovery of the statins and the end of the controversy. J. Lipid Res. 2006 47 7 1339 1351 10.1194/jlr.R600009‑JLR200 16585781
    [Google Scholar]
  106. Szekanecz Z. Shah M.R. Pearce W.H. Koch A.E. Human atherosclerotic abdominal aortic aneurysms produce interleukin (IL)-6 and interferon-gamma but not IL-2 and IL-4: The possible role for IL-6 and interferon-gamma in vascular inflammation. Agents Actions 1994 42 3-4 159 162 10.1007/BF01983484 7879703
    [Google Scholar]
  107. Hlatky M.A. Greenland P. Arnett D.K. Ballantyne C.M. Criqui M.H. Elkind M.S.V. Go A.S. Harrell F.E. Jr Hong Y. Howard B.V. Howard V.J. Hsue P.Y. Kramer C.M. McConnell J.P. Normand S.L.T. O’Donnell C.J. Smith S.C. Jr Wilson P.W.F. Criteria for evaluation of novel markers of cardiovascular risk: A scientific statement from the American Heart Association. Circulation 2009 119 17 2408 2416 10.1161/CIRCULATIONAHA.109.192278 19364974
    [Google Scholar]
  108. Samad F. Yamamoto K. Pandey M. Loskutoff D.J. Elevated expression of transforming growth factor-β in adipose tissue from obese mice. Mol. Med. 1997 3 1 37 48 10.1007/BF03401666 9132278
    [Google Scholar]
  109. Fried S.K. Bunkin D.A. Greenberg A.S. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: Depot difference and regulation by glucocorticoid. J. Clin. Endocrinol. Metab. 1998 83 3 847 850 10.1210/jc.83.3.847 9506738
    [Google Scholar]
  110. Mahabadi A.A. Massaro J.M. Rosito G.A. Levy D. Murabito J.M. Wolf P.A. O’Donnell C.J. Fox C.S. Hoffmann U. Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: The Framingham Heart Study. Eur. Heart J. 2008 30 7 850 856 10.1093/eurheartj/ehn573 19136488
    [Google Scholar]
  111. Bergström C.A.S. Strafford M. Lazorova L. Avdeef A. Luthman K. Artursson P. Absorption classification of oral drugs based on molecular surface properties. J. Med. Chem. 2003 46 4 558 570 10.1021/jm020986i 12570377
    [Google Scholar]
  112. Koch K.M. Reddy N.J. Cohen R.B. Lewis N.L. Whitehead B. Mackay K. Stead A. Beelen A.P. Lewis L.D. Effects of food on the relative bioavailability of lapatinib in cancer patients. J. Clin. Oncol. 2009 27 8 1191 1196 10.1200/JCO.2008.18.3285 19188677
    [Google Scholar]
  113. Koziolek M. Alcaro S. Augustijns P. Basit A.W. Grimm M. Hens B. Hoad C.L. Jedamzik P. Madla C.M. Maliepaard M. Marciani L. Maruca A. Parrott N. Pávek P. Porter C.J.H. Reppas C. van Riet-Nales D. Rubbens J. Statelova M. Trevaskis N.L. Valentová K. Vertzoni M. Čepo D.V. Corsetti M. The mechanisms of pharmacokinetic food-drug interactions – A perspective from the UNGAP group. Eur. J. Pharm. Sci. 2019 134 31 59 10.1016/j.ejps.2019.04.003 30974173
    [Google Scholar]
  114. Azman M. Sabri A.H. Anjani Q.K. Mustaffa M.F. Hamid K.A. Intestinal absorption study: Challenges and absorption enhancement strategies in improving oral drug delivery. Pharmaceuticals 2022 15 8 975 10.3390/ph15080975 36015123
    [Google Scholar]
  115. Shaikh M.S.I. Derle N.D. Bhamber R. Permeability enhancement techniques for poorly permeable drugs: A review. J. Appl. Pharm. Sci. 2012 2 7 34 39 10.7324/JAPS.2012.2705
    [Google Scholar]
  116. Cheng L. Wong H. Food effects on oral drug absorption: Application of physiologically-based pharmacokinetic modeling as a predictive tool. Pharmaceutics 2020 12 7 672 10.3390/pharmaceutics12070672 32708881
    [Google Scholar]
  117. Ramachandra Rao S. Ravishankar G.A. Vanilla flavour: Production by conventional and biotechnological routes. J. Sci. Food Agric. 2000 80 3 289 304 10.1002/1097‑0010(200002)80:3<289::AID‑JSFA543>3.0.CO;2‑2
    [Google Scholar]
  118. Gallage N.J. Hansen E.H. Kannangara R. Olsen C.E. Motawia M.S. Jørgensen K. Holme I. Hebelstrup K. Grisoni M. Møller B.L. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme. Nat. Commun. 2014 5 1 4037 10.1038/ncomms5037 24941968
    [Google Scholar]
  119. Walton N.J. Mayer M.J. Narbad A. Vanillin. Phytochemistry 2003 63 5 505 515 10.1016/S0031‑9422(03)00149‑3 12809710
    [Google Scholar]
  120. Zhao D. Jiang Y. Sun J. Li H. Huang M. Sun X. Zhao M. Elucidation of the anti-inflammatory effect of vanillin in LPS-activated THP-1 cells. J. Food Sci. 2019 84 7 1920 1928 10.1111/1750‑3841.14693 31264720
    [Google Scholar]
  121. Cheng H.M. Chen F.Y. Li C.C. Lo H.Y. Liao Y.F. Ho T.Y. Hsiang C.Y. Oral administration of vanillin improves imiquimod-induced psoriatic skin inflammation in mice. J. Agric. Food Chem. 2017 65 47 10233 10242 10.1021/acs.jafc.7b04259 29073354
    [Google Scholar]
  122. Costantini E. Sinjari B. Falasca K. Reale M. Caputi S. Jagarlapodii S. Murmura G. Assessment of the vanillin anti-inflammatory and regenerative potentials in inflamed primary human gingival fibroblast. Mediators Inflamm. 2021 2021 1 1 9 10.1155/2021/5562340 34035660
    [Google Scholar]
  123. Yan X. Liu D.F. Zhang X.Y. Liu D. Xu S.Y. Chen G.X. Huang B.X. Ren W.Z. Wang W. Fu S.P. Liu J.X. Vanillin protects dopaminergic neurons against inflammation-mediated cell death by inhibiting ERK1/2, P38 and the NF-κB signaling pathway. Int. J. Mol. Sci. 2017 18 2 389 10.3390/ijms18020389 28208679
    [Google Scholar]
  124. Salau V.F. Erukainure O.L. Olofinsan K.O. Msomi N.Z. Ijomone O.M. Islam M.S. Vanillin improves glucose homeostasis and modulates metabolic activities linked to type 2 diabetes in fructose–streptozotocin induced diabetic rats. Arch. Physiol. Biochem. 2024 130 2 169 182 10.1080/13813455.2021.1988981 34752171
    [Google Scholar]
  125. Wu S.L. Chen J.C. Li C.C. Lo H.Y. Ho T.Y. Hsiang C.Y. Vanillin improves and prevents trinitrobenzene sulfonic acid-induced colitis in mice. J. Pharmacol. Exp. Ther. 2009 330 2 370 376 10.1124/jpet.109.152835 19423842
    [Google Scholar]
  126. Khoshnam S.E. Sarkaki A. Rashno M. Farbood Y. Memory deficits and hippocampal inflammation in cerebral hypoperfusion and reperfusion in male rats: Neuroprotective role of vanillic acid. Life Sci. 2018 211 126 132 10.1016/j.lfs.2018.08.065 30195619
    [Google Scholar]
  127. Iannuzzi C. Liccardo M. Sirangelo I. Overview of the role of vanillin in neurodegenerative diseases and neuropathophysiological conditions. Int. J. Mol. Sci. 2023 24 3 1817 10.3390/ijms24031817 36768141
    [Google Scholar]
  128. Li X. Lou X. Xu S. Du J. Wu J. Hypoxia inducible factor-1 (HIF-1α) reduced inflammation in spinal cord injury via miR-380-3p/ NLRP3 by Circ 0001723. Biol. Res. 2020 53 1 35 10.1186/s40659‑020‑00302‑6
    [Google Scholar]
  129. Odoux É. Glucosylated aroma precursors and glucosidase(s) in vanilla bean ( Vanilla planifolia G. Jackson). Fruits 2006 61 3 171 184 10.1051/fruits:2006015
    [Google Scholar]
  130. Dignum M.J.W. Kerler J. Verpoorte R. β-Glucosidase and peroxidase stability in crude enzyme extracts from green beans of Vanilla planifolia Andrews. Phytochem. Anal. 2001 12 3 174 179 10.1002/pca.578 11705022
    [Google Scholar]
  131. Funk C. Brodelius P.E. Phenylpropanoid metabolism in suspension cultures of vanilla planifolia andr.: IV. Induction of vanillic acid formation. Plant Physiol. 1992 99 1 256 262 10.1104/pp.99.1.256 16668858
    [Google Scholar]
  132. Funk C. Brodelius P.E. Phenylpropanoid Metabolism in Suspension Cultures of Vanilla planifolia Andr. Plant Physiol. 1990 94 1 102 108 10.1104/pp.94.1.102 16667674
    [Google Scholar]
  133. French C.J. Vance C.P. Neil Towers G.H. Conversion of p-coumaric acid to p-hydroxybenzoic acid by cell free extracts of potato tubers and Polyporus hispidus. Phytochemistry 1976 15 4 564 566 10.1016/S0031‑9422(00)88979‑7
    [Google Scholar]
  134. Dignum M.J.W. van der Heijden R. Kerler J. Winkel C. Verpoorte R. Identification of glucosides in green beans of Vanilla planifolia Andrews and kinetics of vanilla β-glucosidase. Food Chem. 2004 85 2 199 205 10.1016/S0308‑8146(03)00293‑0
    [Google Scholar]
  135. Dignum M.J.W. van der Heijden R. Kerler J. Winkel C. Verpoorte R. French C.J. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme. Plant Physiol. 1990 94 1 564 566
    [Google Scholar]
  136. Cai Y. Gu F. Hong Y. Chen Y. Xu F. An K. Metabolite transformation and enzyme activities of hainan vanilla beans during curing to improve flavor formation. Molecules 2019 24 15 2781 10.3390/molecules24152781 31370187
    [Google Scholar]
  137. Brown S.S. Book Review: The excretory function of bile: The elimination of drugs and toxic substances in bile. Annals of clinical biochemistry. Inter. J. Laborat. Med. 1974 11 1–6 204 205
    [Google Scholar]
  138. Scheline R.R. Drug metabolism by intestinal microorganisms. J. Pharm. Sci. 1968 57 12 2021 2037 10.1002/jps.2600571202 4974346
    [Google Scholar]
  139. Aldridge WN Mechanisms and Concepts in Toxicology London CRC Press 1996 254 10.4324/9780203211212
    [Google Scholar]
  140. Strand L.P. Scheline R.R. The metabolism of vanillin and isovanillin in the rat. Xenobiotica 1975 5 1 49 63 10.3109/00498257509056093 1154798
    [Google Scholar]
  141. Isoflavone in prostate-specific antigen recurrent prostate cancer. NCT Patent 0059689 2011
  142. Effects of Vanilla on Hypoxic Intermittent Events in Premature Infants (Vanilla). NCT Patent 02630147 2023
  143. Kafali M. Finos M.A. Tsoupras A. Vanillin and its derivatives: A critical review of their anti-inflammatory, anti-infective, wound-healing, neuroprotective, and anti-cancer health-promoting benefits. Nutraceuticals 2024 4 4 522 561 10.3390/nutraceuticals4040030
    [Google Scholar]
  144. Wang J. An W. Wang Z. Zhao Y. Han B. Tao H. Wang J. Wang X. Vanillin has potent antibacterial, antioxidant, and anti-inflammatory activities in vitro and in mouse colitis induced by multidrug-resistant Escherichia coli. Antioxidants 2024 13 12 1544 10.3390/antiox13121544 39765873
    [Google Scholar]
  145. Rakoczy K. Szlasa W. Saczko J. Kulbacka J. Therapeutic role of vanillin receptors in cancer. Adv. Clin. Exp. Med. 2021 30 12 1293 1301 10.17219/acem/139398 34610223
    [Google Scholar]
/content/journals/raiad/10.2174/0127722708368753250713180110
Loading
/content/journals/raiad/10.2174/0127722708368753250713180110
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Vanillin ; neuroprotective ; anti-inflammatory ; anticancer ; clinical trials ; antioxidant
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test