Skip to content
2000
image of Alzheimer’s Disease and Inflammation Research: A Systematic Bibliometric Review and Network Visualization of the Published Literature Between 2000 and 2023

Abstract

Introduction/Objective

Alzheimer's disease is a neurodegenerative disorder characterized by progressive cognitive decline and memory loss. In recent years, inflammation has gained recognition as a key contributor to both the onset and progression of Alzheimer's disease, acting through complex pathways that include neuroinflammation and immune system dysregulation. This study aims to systematically review the relationship between Alzheimer's disease and inflammation, focusing on publication trends from 2000 to 2023.

Methods

Using the Scopus database, a bibliometric analysis was conducted through Microsoft Excel, Harzing’s Publish or Perish, and VOSviewer, examining publication trends, citation metrics, and co-network visualization.

Results

A total of 1,205 relevant publications were identified, revealing a steady increase in research output. The majority of contributions came from the United States (33.1%), China (16.8%), and the United Kingdom (8.8%). Key terms such as “neuroinflammation”, “cytokine”, “microglia”, “amyloid beta”, and “oxidative stress” dominated the literature, while emerging keywords included “neuroprotection”, “BDNF”, “inflammasome”, and “mitochondria”.

Conclusion

These findings underscore the growing focus on the role of inflammatory processes in the etiopathology of Alzheimer's disease, as well as efforts to identify biomarkers and neuroprotective therapeutic targets. This study provides a detailed mapping of the research landscape, offering insights into the evolving knowledge structure and highlighting prominent countries, institutions, authors, journals, and highly cited articles. By identifying key trends, this review advances our understanding of the interplay between inflammation and Alzheimer's disease, paving the way for future research and clinical strategies.

Loading

Article metrics loading...

/content/journals/raiad/10.2174/0127722708363344250529050252
2025-06-12
2025-10-22
Loading full text...

Full text loading...

References

  1. Ahmed T. Gilani A.H. Therapeutic potential of turmeric in Alzheimer’s disease: Curcumin or curcuminoids? Phytother. Res. 2014 28 4 517 525 10.1002/ptr.5030 23873854
    [Google Scholar]
  2. Bird T.D. Alzheimer disease overview. GeneReviews. Seattle, WA University of Washington 2018
    [Google Scholar]
  3. Long S. Benoist C. Weidner W. World Alzheimer Report 2023: Reducing dementia risk: Never too early, never too late. 2023 Available from: www.alzint.org/u/World-Alzheimer-Report-2023.pdf
  4. Walters A. Phillips E. Zheng R. Biju M. Kuruvilla T. Evidence for neuroinflammation in Alzheimer’s disease. Prog. Neurol. Psychiatry 2016 20 5 25 31 10.1002/pnp.444
    [Google Scholar]
  5. Rubio-Perez J.M. Morillas-Ruiz J.M. A review: Inflammatory process in Alzheimer’s disease, role of cytokines. Sci World J 2012 2012 1 15 10.1100/2012/756357 22566778
    [Google Scholar]
  6. Sorensen A.A. Alzheimer’s disease research: Scientific productivity and impact of the top 100 investigators in the field. J. Alzheimers Dis. 2009 16 3 451 465 10.3233/JAD‑2009‑1046 19221406
    [Google Scholar]
  7. Sorensen A.A. Seary A. Riopelle K. Alzheimer’s disease research: A COIN study using co-authorship network analytics. Procedia Soc. Behav. Sci. 2010 2 4 6582 6586 10.1016/j.sbspro.2010.04.068
    [Google Scholar]
  8. Chen H. Wan Y. Jiang S. Cheng Y. Alzheimer’s disease research in the future: Bibliometric analysis of cholinesterase inhibitors from 1993 to 2012. Scientometrics 2014 98 3 1865 1877 10.1007/s11192‑013‑1132‑3
    [Google Scholar]
  9. Song M. Heo G.E. Lee D. Identifying the landscape of Alzheimer’s disease research with network and content analysis. Scientometrics 2015 102 1 905 927 10.1007/s11192‑014‑1372‑x
    [Google Scholar]
  10. Serrano-Pozo A. Aldridge G.M. Zhang Q. Four decades of research in Alzheimer’s disease (1975–2014): A bibliometric and scientometric analysis. J. Alzheimers Dis. 2017 59 2 763 783 10.3233/JAD‑170184 28671119
    [Google Scholar]
  11. Dong R. Wang H. Ye J. Wang M. Bi Y. Publication trends for Alzheimer’s disease worldwide and in China: A 30-year bibliometric analysis. Front. Hum. Neurosci. 2019 13 259 10.3389/fnhum.2019.00259 31447661
    [Google Scholar]
  12. Schilder I.P.A. Griffioen V.D.H. Ferreira G.S. Pathways in the drug development for alzheimer’s disease (1906-2016): A bibliometric study. J Scientomet Res 2020 9 3 277 292 10.5530/jscires.9.3.35
    [Google Scholar]
  13. Qaid E.Y.A. Long I. Azman K.F. Quantitative description of publications (1986-2020) related to Alzheimer disease and oxidative stress: A bibliometric study. J Cell Neurosci Oxidat Str 2021 13 1 971 984 10.37212/jcnos.946898
    [Google Scholar]
  14. Zhu J. Liu W. A tale of two databases: The use of web of science and scopus in academic papers. Scientometrics 2020 123 1 321 335 10.1007/s11192‑020‑03387‑8
    [Google Scholar]
  15. Pranckutė R. Web of science (WoS) and Scopus: The titans of bibliographic information in today’s academic world. Publ. MDPI 2021 9 1 12 10.3390/publications9010012
    [Google Scholar]
  16. Eck V.N.J. Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010 84 2 523 538 10.1007/s11192‑009‑0146‑3 20585380
    [Google Scholar]
  17. Chen Y.B. Tong X.F. Ren J. Yu C.Q. Cui Y.L. Current research trends in traditional Chinese medicine formula: A bibliometric review from 2000 to 2016. Evid. Based Complement. Alternat. Med. 2019 2019 3961395 10.1155/2019/3961395
    [Google Scholar]
  18. Akiyama H. Barger S. Barnum S. Inflammation and Alzheimer’s disease. Neurobiol. Aging 2000 21 3 383 421 10.1016/S0197‑4580(00)00124‑X 10858586
    [Google Scholar]
  19. Heppner F.L. Ransohoff R.M. Becher B. Immune attack: The role of inflammation in Alzheimer disease. Nat. Rev. Neurosci. 2015 16 6 358 372 10.1038/nrn3880 25991443
    [Google Scholar]
  20. Kinney J.W. Bemiller S.M. Murtishaw A.S. Leisgang A.M. Salazar A.M. Lamb B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. 2018 4 1 575 590 10.1016/j.trci.2018.06.014 30406177
    [Google Scholar]
  21. Eck V.N.J. Waltman L. VOSviewer manual: Manual for VOSviewer version 1.6.15. 2020 Available from: www.vosviewer.com/documentation/Manual_VOSviewer_1.6.15.pdf
  22. Eldik V.L.J. Carrillo M.C. Cole P.E. The roles of inflammation and immune mechanisms in Alzheimer’s disease. Alzheimers Dement. 2016 2 2 99 109 10.1016/j.trci.2016.05.001 29067297
    [Google Scholar]
  23. Lim G.P. Yang F. Chu T. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J. Neurosci. 2000 20 15 5709 5714 10.1523/JNEUROSCI.20‑15‑05709.2000 10908610
    [Google Scholar]
  24. Combs C.K. Johnson D.E. Karlo J.C. Cannady S.B. Landreth G.E. Inflammatory mechanisms in Alzheimer’s disease: Inhibition of β-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. J. Neurosci. 2000 20 2 558 567 10.1523/JNEUROSCI.20‑02‑00558.2000 10632585
    [Google Scholar]
  25. Caon M. Trapp J. Baldock C. Citations are a good way to determine the quality of research. Phys Eng Sci Med 2020 43 4 1145 1148 10.1007/s13246‑020‑00941‑9 33165822
    [Google Scholar]
  26. Thelwall M. Sud P. Scopus 1900–2020: Growth in articles, abstracts, countries, fields, and journals. Quant Sci Stud 2022 3 1 37 50 10.1162/qss_a_00177
    [Google Scholar]
  27. Schwab C. McGeer P.L. Inflammatory aspects of alzheimer disease and other neurodegenerative disorders. J. Alzheimers Dis. 2017 13 4 359 369 10.3233/978‑1‑61499‑706‑1‑27
    [Google Scholar]
  28. McGeer P.L. McGeer E.G. The amyloid cascade-inflammatory hypothesis of Alzheimer disease: Implications for therapy. Acta Neuropathol. 2013 126 4 479 497 10.1007/s00401‑013‑1177‑7 24052108
    [Google Scholar]
  29. McGeer P.L. Rogers J. McGeer E.G. Inflammation, antiinflammatory agents, and alzheimer’s disease: The last 22 years. J. Alzheimers Dis. 2016 54 3 853 857 10.3233/JAD‑160488 27716676
    [Google Scholar]
  30. McGeer P.L. Guo J.P. Lee M. Kennedy K. McGeer E.G. Alzheimer’s disease can be spared by nonsteroidal anti-inflammatory drugs. J. Alzheimers Dis. 2018 62 3 1219 1222 10.3233/JAD‑170706 29103042
    [Google Scholar]
  31. McGeer P.L. McGeer E.G. Targeting microglia for the treatment of Alzheimer’s disease. Expert Opin. Ther. Targets 2015 19 4 497 506 10.1517/14728222.2014.988707 25435348
    [Google Scholar]
  32. Rogers J. Beach T. Li R. Liang Z. Lue L-F. Roher A. Inflammatory mechanisms in alzheimer’s disease and other neurodegenerative disorders. Chem Mol Asp Drug Des Act 2008 3 12 10.1201/9781420008272
    [Google Scholar]
  33. Rogers J. The inflammatory response in Alzheimer’s disease. J. Periodontol. 2008 79 8S 1535 1543 10.1902/jop.2008.080171 18673008
    [Google Scholar]
  34. Wang H. Tian X. Wang X. Wang Y. Evolution and emerging trends in depression research from 2004 to 2019: A literature visualization analysis. Front. Psychiatry 2021 12 705749 10.3389/fpsyt.2021.705749 34777037
    [Google Scholar]
  35. Yeung A.W.K. Tzvetkov N.T. Atanasov A.G. When neuroscience meets pharmacology: A neuropharmacology literature analysis. Front. Neurosci. 2018 12 852 10.3389/fnins.2018.00852 30505266
    [Google Scholar]
  36. Haller S. Jäger H.R. Vernooij M.W. Barkhof F. Neuroimaging in dementia: More than typical Alzheimer disease. Radiology 2023 308 3 e230173 10.1148/radiol.230173 37724973
    [Google Scholar]
  37. Ferrer I. Defining Alzheimer as a common age-related neurodegenerative process not inevitably leading to dementia. Prog. Neurobiol. 2012 97 1 38 51 10.1016/j.pneurobio.2012.03.005 22459297
    [Google Scholar]
  38. Jahn H. Memory loss in Alzheimer’s disease. Dialogues Clin. Neurosci. 2013 15 4 445 454 10.31887/DCNS.2013.15.4/hjahn 24459411
    [Google Scholar]
  39. Pugazhenthi S. Qin L. Reddy P.H. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochim. Biophys. Acta Mol. Basis Dis. 2017 1863 5 1037 1045 10.1016/j.bbadis.2016.04.017 27156888
    [Google Scholar]
  40. Alford S. Patel D. Perakakis N. Mantzoros C.S. Obesity as a risk factor for Alzheimer’s disease: Weighing the evidence. Obes. Rev. 2018 19 2 269 280 10.1111/obr.12629 29024348
    [Google Scholar]
  41. Dommel S. Blüher M. Does CC motif chemokine ligand 2 (CCL2) link obesity to a pro-inflammatory state? Int. J. Mol. Sci. 2021 22 3 1500 10.3390/ijms22031500 33540898
    [Google Scholar]
  42. Mohammadi M. Gozashti M.H. Aghadavood M. Mehdizadeh M.R. Hayatbakhsh M.M. Clinical significance of serum IL-6 and TNF-α levels in patients with metabolic syndrome. Rep. Biochem. Mol. Biol. 2017 6 1 74 79 29090232
    [Google Scholar]
  43. Khodabandehloo H. Gorgani-Firuzjaee S. Panahi G. Meshkani R. Molecular and cellular mechanisms linking inflammation to insulin resistance and β-cell dysfunction. Transl. Res. 2016 167 1 228 256 10.1016/j.trsl.2015.08.011 26408801
    [Google Scholar]
  44. Fu W. Patel A. Jhamandas J.H. Amylin receptor: A common pathophysiological target in Alzheimer’s disease and diabetes mellitus. Front. Aging Neurosci. 2013 5 42 10.3389/fnagi.2013.00042 23966942
    [Google Scholar]
  45. Miller B.W. Willett K.C. Desilets A.R. Rosiglitazone and pioglitazone for the treatment of Alzheimer’s disease. Ann. Pharmacother. 2011 45 11 1416 1424 10.1345/aph.1Q238 22028424
    [Google Scholar]
  46. Cao B. Rosenblat J.D. Brietzke E. Comparative efficacy and acceptability of antidiabetic agents for Alzheimer’s disease and mild cognitive impairment: A systematic review and network meta‐analysis. Diabetes Obes. Metab. 2018 20 10 2467 2471 10.1111/dom.13373 29790638
    [Google Scholar]
  47. Jucker M. Walker L.C. Amyloid-β pathology induced in humans. Nature 2015 525 7568 193 194 10.1038/525193a 26354478
    [Google Scholar]
  48. Kwon H.S. Koh S.H. Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl. Neurodegener. 2020 9 1 42 10.1186/s40035‑020‑00221‑2 33239064
    [Google Scholar]
  49. Wu Y. Eisel U.L.M. Microglia-astrocyte communication in Alzheimer’s disease. J. Alzheimers Dis. 2023 95 3 785 803 10.3233/JAD‑230199 37638434
    [Google Scholar]
  50. Tuppo E.E. Arias H.R. The role of inflammation in Alzheimer’s disease. Int. J. Biochem. Cell Biol. 2005 37 2 289 305 10.1016/j.biocel.2004.07.009 15474976
    [Google Scholar]
  51. Combs C.K. Karlo J.C. Kao S.C. Landreth G.E. β-Amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J. Neurosci. 2001 21 4 1179 1188 10.1523/JNEUROSCI.21‑04‑01179.2001 11160388
    [Google Scholar]
  52. Su C. Zhao K. Xia H. Xu Y. Peripheral inflammatory biomarkers in Alzheimer’s disease and mild cognitive impairment: A systematic review and meta‐analysis. Psychogeriatrics 2019 19 4 300 309 10.1111/psyg.12403 30790387
    [Google Scholar]
  53. Jiang S. Bhaskar K. Dynamics of the complement, cytokine, and chemokine systems in the regulation of synaptic function and dysfunction relevant to Alzheimer’s disease. J. Alzheimers Dis. 2017 57 4 1123 1135 10.3233/JAD‑161123 28372329
    [Google Scholar]
  54. Vlad S.C. Miller D.R. Kowall N.W. Felson D.T. Protective effects of NSAIDs on the development of Alzheimer disease. Neurology 2008 70 19 1672 1677 10.1212/01.wnl.0000311269.57716.63 18458226
    [Google Scholar]
  55. McGeer P.L. McGeer E.G. NSAIDs and Alzheimer disease: Epidemiological, animal model and clinical studies. Neurobiol. Aging 2007 28 5 639 647 10.1016/j.neurobiolaging.2006.03.013 16697488
    [Google Scholar]
  56. Miguel-Álvarez M. Santos-Lozano A. Sanchis-Gomar F. Non-steroidal anti-inflammatory drugs as a treatment for Alzheimer’s disease: A systematic review and meta-analysis of treatment effect. Drugs Aging 2015 32 2 139 147 10.1007/s40266‑015‑0239‑z 25644018
    [Google Scholar]
  57. Wang J.Y. Wen L.L. Huang Y.N. Chen Y.T. Ku M.C. Dual effects of antioxidants in neurodegeneration: Direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Curr. Pharm. Des. 2006 12 27 3521 3533 10.2174/138161206778343109 17017945
    [Google Scholar]
  58. Liu L. Chan C. The role of inflammasome in Alzheimer’s disease. Ageing Res. Rev. 2014 15 6 15 10.1016/j.arr.2013.12.007 24561250
    [Google Scholar]
  59. Milner M.T. Maddugoda M. Götz J. Burgener S.S. Schroder K. The NLRP3 inflammasome triggers sterile neuroinflammation and Alzheimer’s disease. Curr. Opin. Immunol. 2021 68 116 124 10.1016/j.coi.2020.10.011 33181351
    [Google Scholar]
  60. Feng Y.S. Tan Z.X. Wu L.Y. Dong F. Zhang F. The involvement of NLRP3 inflammasome in the treatment of Alzheimer’s disease. Ageing Res. Rev. 2020 64 101192 10.1016/j.arr.2020.101192 33059089
    [Google Scholar]
/content/journals/raiad/10.2174/0127722708363344250529050252
Loading
/content/journals/raiad/10.2174/0127722708363344250529050252
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test