Skip to content
2000
image of Evaluation of Toxoplasma gondii Perforin-like Proteins (PLPs) to Find the Potential Epitopes for Immunization through in silico Approach

Abstract

Introduction

() is a widespread apicomplexan parasite that affects approximately one-third of the global population, posing particular risks to pregnant women and individuals with weakened immune systems. Despite its significant impact, there is currently no vaccine available for humans.

Objective

This study employs computational methods () to investigate the physicochemical, antigenic, and structural properties of Perforin-like proteins (PLPs) from , as well as to identify immunogenic epitopes within these antigens.

Methods

For this aim, amino acid sequences of TgPLP1 and TgPLP2 were retrieved and submitted to the ProtParam (physicochemical), VaxiJen v2.0 (antigenicity), NetSurfP-6.0 (2D structure), Robetta (3D structure) web servers, along with the IEDB server to decipher the immunogenic epitopes. Subcellular characteristics such as signal peptide, transmembrane domain, post-translational modifications (PTMs), and cellular localization were also predicted.

Results

Both proteins had a high MW of 125.50 and 92.21, respectively, with an alkaline pI, a 30 hours half-life in mammalian reticulocytes, good thermotolerance (high aliphatic index), and hydrophilicity properties (negative GRAVY). They also showed good antigenicity (0.7021 [PLP1] 0.5701 [PLP2]), while they were non-allergenic. Both proteins were extracellular with numerous post-translational modification sites (phosphorylation, glycosylation, and acetylation), and a transmembrane domain was only present in TgPLP1, with no signal peptide in both. Furthermore, numerous immunogenic B- and T-cell epitopes were identified within the TgPLPs sequences, suggesting their potential for inclusion in multi-epitope vaccine designs.

Conclusion

Further studies are needed to confirm these findings and assess the efficacy of the proposed vaccine constructs.

Loading

Article metrics loading...

/content/journals/raiad/10.2174/0127722708342006250116162454
2025-01-31
2025-09-03
Loading full text...

Full text loading...

References

  1. Saadatnia G. Golkar M. A review on human toxoplasmosis. Scand. J. Infect. Dis. 2012 44 11 805 814 10.3109/00365548.2012.693197 22831461
    [Google Scholar]
  2. Wang Z.D. Liu H.H. Ma Z.X. Ma H.Y. Li Z.Y. Yang Z.B. Zhu X.Q. Xu B. Wei F. Liu Q. Toxoplasma gondii infection in immunocompromised patients: A systematic review and meta-analysis. Front. Microbiol. 2017 8 389 10.3389/fmicb.2017.00389 28337191
    [Google Scholar]
  3. Rostami A. Riahi S.M. Gamble H.R. Fakhri Y. Nourollahpour Shiadeh M. Danesh M. Behniafar H. Paktinat S. Foroutan M. Mokdad A.H. Hotez P.J. Gasser R.B. Global prevalence of latent toxoplasmosis in pregnant women: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2020 26 6 673 683 10.1016/j.cmi.2020.01.008 31972316
    [Google Scholar]
  4. Zhang N.Z. Chen J. Wang M. Petersen E. Zhu X.Q. Vaccines against Toxoplasma gondii : New developments and perspectives. Expert Rev. Vaccines 2013 12 11 1287 1299 10.1586/14760584.2013.844652 24093877
    [Google Scholar]
  5. Chu K.B. Quan F.S. Advances in Toxoplasma gondii vaccines: Current strategies and challenges for vaccine development. Vaccines 2021 9 5 413 10.3390/vaccines9050413 33919060
    [Google Scholar]
  6. Rappuoli R. Alter G. Pulendran B. Transforming vaccinology. Cell 2024 187 19 5171 5194 10.1016/j.cell.2024.07.021 39303685
    [Google Scholar]
  7. Goumari M.M. Farhani I. Nezafat N. Mahmoodi S. Multi-epitope vaccines (MEVs), as a novel strategy against infectious diseases. Curr. Proteomics 2020 17 5 354 364 10.2174/1570164617666190919120140
    [Google Scholar]
  8. Hammed-Akanmu M. Mim M. Osman A.Y. Sheikh A.M. Behmard E. Rabaan A.A. Suppain R. Hajissa K. Designing a multi-epitope vaccine against toxoplasma gondii: An immunoinformatics approach. Vaccines 2022 10 9 1389 10.3390/vaccines10091389 36146470
    [Google Scholar]
  9. Majidiani H. Dalimi A. Ghaffarifar F. Pirestani M. Multi-epitope vaccine expressed in Leishmania tarentolae confers protective immunity to Toxoplasma gondii in BALB/c mice. Microb. Pathog. 2021 155 104925 10.1016/j.micpath.2021.104925 33933602
    [Google Scholar]
  10. Wang Y. Wang G. Cai J. Yin H. Review on the identification and role of Toxoplasma gondii antigenic epitopes. Parasitol. Res. 2016 115 2 459 468 10.1007/s00436‑015‑4824‑1 26581372
    [Google Scholar]
  11. Sassmannshausen J. Pradel G. Bennink S. Perforin-like proteins of apicomplexan parasites. Front. Cell. Infect. Microbiol. 2020 10 578883 10.3389/fcimb.2020.578883 33042876
    [Google Scholar]
  12. Kafsack B.F.C. Carruthers V.B. Apicomplexan perforin-like proteins. Commun. Integr. Biol. 2010 3 1 18 23 10.4161/cib.3.1.9794 20539776
    [Google Scholar]
  13. Flieger A. Frischknecht F. Haecker G. Hornef M.W. Pradel G. Pathways of host cell exit by intracellular pathogens. Microb. Cell 2018 5 12 525 544 10.15698/mic2018.12.659 30533418
    [Google Scholar]
  14. Wirth C.C. Pradel G. Molecular mechanisms of host cell egress by malaria parasites. Int. J. Med. Microbiol. 2012 302 4-5 172 178 10.1016/j.ijmm.2012.07.003 22951233
    [Google Scholar]
  15. Ishino T. Chinzei Y. Yuda M. A Plasmodium sporozoite protein with a membrane attack complex domain is required for breaching the liver sinusoidal cell layer prior to hepatocyte infection. Cell. Microbiol. 2005 7 2 199 208 10.1111/j.1462‑5822.2004.00447.x 15659064
    [Google Scholar]
  16. Roiko M.S. Carruthers V.B. Functional dissection of Toxoplasma gondii perforin-like protein 1 reveals a dual domain mode of membrane binding for cytolysis and parasite egress. J. Biol. Chem. 2013 288 12 8712 8725 10.1074/jbc.M113.450932 23376275
    [Google Scholar]
  17. Kafsack B.F.C. Pena J.D.O. Coppens I. Ravindran S. Boothroyd J.C. Carruthers V.B. Rapid membrane disruption by a perforin-like protein facilitates parasite exit from host cells. Science 2009 323 5913 530 533 10.1126/science.1165740 19095897
    [Google Scholar]
  18. Yan H.K. Yuan Z.G. Song H.Q. Petersen E. Zhou Y. Ren D. Zhou D.H. Li H.X. Lin R.Q. Yang G.L. Zhu X.Q. Vaccination with a DNA vaccine coding for perforin-like protein 1 and MIC6 induces significant protective immunity against Toxoplasma gondii. Clin. Vaccine Immunol. 2012 19 5 684 689 10.1128/CVI.05578‑11 22379063
    [Google Scholar]
  19. Yan H.K. Yuan Z.G. Petersen E. Zhang X.X. Zhou D.H. Liu Q. He Y. Lin R.Q. Xu M.J. Chen X.L. Zhong X.L. Zhu X.Q. Toxoplasma gondii: Protective immunity against experimental toxoplasmosis induced by a DNA vaccine encoding the perforin-like protein 1. Exp. Parasitol. 2011 128 1 38 43 10.1016/j.exppara.2011.02.005 21310148
    [Google Scholar]
  20. Tian X. Sun H. Wang M. Wan G. Xie T. Mei X. Zhang Z. Li X. Wang S. A novel vaccine candidate: Recombinant Toxoplasma gondii perforin-like protein 2 stimulates partial protective immunity against toxoplasmosis. Front. Vet. Sci. 2022 8 802250 10.3389/fvets.2021.802250 35252413
    [Google Scholar]
  21. Harb O.S. Kissinger J.C. Roos D.S. ToxoDB: the functional genomic resource for Toxoplasma and related organisms. Toxoplasma gondii. Elsevier 2020 1021 1041
    [Google Scholar]
  22. Harb O.S. Roos D.S. Toxo D.B. ToxoDB: Functional genomics resource for toxoplasma and related organisms. Methods Mol. Biol. 2020 2071 27 47 10.1007/978‑1‑4939‑9857‑9_2 31758445
    [Google Scholar]
  23. Gasteiger E. Hoogland C. Gattiker A. Protein identification and analysis tools on the ExPASy server. Springer 2005
    [Google Scholar]
  24. Dimitrov I. Bangov I. Flower D.R. Doytchinova I. AllerTOP v.2—a server for in silico prediction of allergens. J. Mol. Model. 2014 20 6 2278 10.1007/s00894‑014‑2278‑5 24878803
    [Google Scholar]
  25. Dimitrov I. Naneva L. Doytchinova I. Bangov I. AllergenFP: Allergenicity prediction by descriptor fingerprints. Bioinformatics 2014 30 6 846 851 10.1093/bioinformatics/btt619 24167156
    [Google Scholar]
  26. Doytchinova I.A. Flower D.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 2007 8 1 4 10.1186/1471‑2105‑8‑4 17207271
    [Google Scholar]
  27. Hebditch M. Carballo-Amador M.A. Charonis S. Curtis R. Warwicker J. Protein–Sol: A web tool for predicting protein solubility from sequence. Bioinformatics 2017 33 19 3098 3100 10.1093/bioinformatics/btx345 28575391
    [Google Scholar]
  28. Thumuluri V. Almagro Armenteros J.J. Johansen A.R. Nielsen H. Winther O. DeepLoc 2.0: Multi-label subcellular localization prediction using protein language models. Nucleic Acids Res. 2022 50 W1 W228 W234 10.1093/nar/gkac278 35489069
    [Google Scholar]
  29. Hallgren J. Tsirigos K.D. Pedersen M.D. Almagro Armenteros J.J. Marcatili P. Nielsen H. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. BioRxiv 2022 2022.04 10.1101/2022.04.08.487609
    [Google Scholar]
  30. Teufel F. Almagro Armenteros J.J. Johansen A.R. Gíslason M.H. Pihl S.I. Tsirigos K.D. Winther O. Brunak S. von Heijne G. Nielsen H. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 2022 40 7 1023 1025 10.1038/s41587‑021‑01156‑3 34980915
    [Google Scholar]
  31. Høie M.H. Kiehl E.N. Petersen B. Nielsen M. Winther O. Nielsen H. Hallgren J. Marcatili P. NetSurfP-3.0: Accurate and fast prediction of protein structural features by protein language models and deep learning. Nucleic Acids Res. 2022 50 W1 W510 W515 10.1093/nar/gkac439 35648435
    [Google Scholar]
  32. Malik A.A. Ojha S.C. Schaduangrat N. Nantasenamat C. ABCpred: A webserver for the discovery of acetyl- and butyryl-cholinesterase inhibitors. Mol. Divers. 2022 26 1 467 487 10.1007/s11030‑021‑10292‑6 34609711
    [Google Scholar]
  33. Yao B. Zheng D. Liang S. Zhang C. SVMTriP: A method to predict B-cell linear antigenic epitopes. Methods Mol. Biol. 2020 2131 299 307 10.1007/978‑1‑0716‑0389‑5_17 32162263
    [Google Scholar]
  34. Ponomarenko J. Bui H.H. Li W. Fusseder N. Bourne P.E. Sette A. Peters B. ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics 2008 9 1 514 10.1186/1471‑2105‑9‑514 19055730
    [Google Scholar]
  35. Vita R. Mahajan S. Overton J.A. Dhanda S.K. Martini S. Cantrell J.R. Wheeler D.K. Sette A. Peters B. The immune epitope database (IEDB): 2018 update. Nucleic Acids Res. 2019 47 D1 D339 D343 10.1093/nar/gky1006 30357391
    [Google Scholar]
  36. Parvizpour S. Pourseif M.M. Razmara J. Rafi M.A. Omidi Y. Epitope-based vaccine design: A comprehensive overview of bioinformatics approaches. Drug Discov. Today 2020 25 6 1034 1042 10.1016/j.drudis.2020.03.006 32205198
    [Google Scholar]
  37. Kumar R. Srivastava V. Baindara P. Ahmad A. Thermostable vaccines: An innovative concept in vaccine development. Expert Rev. Vaccines 2022 21 6 811 824 10.1080/14760584.2022.2053678 35285366
    [Google Scholar]
  38. Lee T.Y. Hsu J. Chang W.C. Wang T.Y. Hsu P.C. Huang H.D. A comprehensive resource for integrating and displaying protein post-translational modifications. BMC Res. Notes 2009 2 1 111 10.1186/1756‑0500‑2‑111 19549291
    [Google Scholar]
  39. Ojha R. Prajapati V.K. Cognizance of posttranslational modifications in vaccines: A way to enhanced immunogenicity. J. Cell. Physiol. 2021 236 12 8020 8034 10.1002/jcp.30483 34170014
    [Google Scholar]
  40. Zarling A.L. Ficarro S.B. White F.M. Shabanowitz J. Hunt D.F. Engelhard V.H. Phosphorylated peptides are naturally processed and presented by major histocompatibility complex class I molecules in vivo. J. Exp. Med. 2000 192 12 1755 1762 10.1084/jem.192.12.1755 11120772
    [Google Scholar]
  41. Ghaffari A.D. Rahimi F. Immunoinformatics studies and design of a novel multi-epitope peptide vaccine against Toxoplasma gondii based on calcium-dependent protein kinases antigens through an in-silico analysis. Clin. Exp. Vaccine Res. 2024 13 2 146 154 10.7774/cevr.2024.13.2.146 38752002
    [Google Scholar]
  42. Fink A. Sal-Man N. Gerber D. Shai Y. Transmembrane domains interactions within the membrane milieu: Principles, advances and challenges. Biochim. Biophys. Acta Biomembr. 2012 1818 4 974 983 10.1016/j.bbamem.2011.11.029 22155642
    [Google Scholar]
  43. MacRaild C.A. Seow J. Das S.C. Norton R.S. Disordered epitopes as peptide vaccines. Pept. Sci. 2018 110 3 e24067 10.1002/pep2.24067 32328540
    [Google Scholar]
  44. Foroutan M Ghaffarifar F Sharifi Z Dalimi A Pirestani M. Bioinformatics analysis of ROP8 protein to improve vaccine design against Toxoplasma gondii. Infect. Genet. Evol. 2018 62 193 204 10.1016/j.meegid.2018.04.033
    [Google Scholar]
  45. El-Kady I.M. T-cell immunity in human chronic toxoplasmosis. J. Egypt. Soc. Parasitol. 2011 41 1 17 28 21634238
    [Google Scholar]
  46. Sayles P.C. Gibson G.W. Johnson L.L. B cells are essential for vaccination-induced resistance to virulent Toxoplasma gondii. Infect. Immun. 2000 68 3 1026 1033 10.1128/IAI.68.3.1026‑1033.2000 10678903
    [Google Scholar]
  47. Suzuki Y. Orellana M.A. Schreiber R.D. Remington J.S. Interferon-gamma: The major mediator of resistance against Toxoplasma gondii. Science 1988 240 4851 516 518 10.1126/science.3128869 3128869
    [Google Scholar]
  48. Kazi A. Chuah C. Majeed A.B.A. Leow C.H. Lim B.H. Leow C.Y. Current progress of immunoinformatics approach harnessed for cellular- and antibody-dependent vaccine design. Pathog. Glob. Health 2018 112 3 123 131 10.1080/20477724.2018.1446773 29528265
    [Google Scholar]
  49. Del Tordello E. Rappuoli R. Delany I. Reverse vaccinology: Exploiting genomes for vaccine design. Human vaccines. Elsevier 2017 65 86
    [Google Scholar]
  50. Kolaskar A.S. Tongaonkar P.C. A semi‐empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett. 1990 276 1-2 172 174 10.1016/0014‑5793(90)80535‑Q 1702393
    [Google Scholar]
  51. Parker J.M.R. Guo D. Hodges R.S. New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: Correlation of predicted surface residues with antigenicity and x-ray-derived accessible sites. Biochemistry 1986 25 19 5425 5432 10.1021/bi00367a013 2430611
    [Google Scholar]
  52. Karplus P.A. Schulz G.E. Prediction of chain flexibility in proteins. Naturwissenschaften 1985 72 4 212 213 10.1007/BF01195768
    [Google Scholar]
  53. Emini E.A. Hughes J.V. Perlow D.S. Boger J. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J. Virol. 1985 55 3 836 839 10.1128/jvi.55.3.836‑839.1985 2991600
    [Google Scholar]
  54. Chou P Fasman G Prediction of the secondary structure of proteins from their amino acid sequence. Adv. Enzymol. Relat. Areas Mol. Biol. 1978 47 45 148
    [Google Scholar]
/content/journals/raiad/10.2174/0127722708342006250116162454
Loading
/content/journals/raiad/10.2174/0127722708342006250116162454
Loading

Data & Media loading...

Supplements

Figure S1. Conformational B-cell epitopes predicted for TgPLP1 and TgPLP2 using ElliPro tool of the IEDB server. Table S1. Human cytotoxic T-lymphocyte (CTL) specific epitope prediction for T. gondii PLP1 and PLP2 proteins against IEDB HLA reference set and subsequent screening regarding immunogenicity, allergenicity, and toxicity. Table S2. Mouse cytotoxic T-lymphocyte (CTL) specific epitope prediction for T. gondii PLP1 and PLP2 proteins against some mouse MHC-I alleles and subsequent screening regarding immunogenicity, allergenicity, and toxicity. Table S3. Human helper T-lymphocyte (HTL) specific epitope prediction for T. gondii PLP1 and PLP2 against HLA reference set with subsequent screening regarding antigenicity, allergenicity, toxicity, and cytokine (IFN-γ, IL-4) induction. Table S4. Mouse helper T-lymphocyte (HTL) specific epitope prediction for T. gondii PLP1 and PLP2 proteins against some mouse MHC-II alleles and subsequent screening regarding antigenicity, allergenicity, toxicity, and cytokine (IFN-γ, IL-4) induction. Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: PLPs ; Toxoplasma gondii ; Zoonosis ; immunoinformatics ; vaccine design ; toxoplasmosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test