Skip to content
2000
Volume 19, Issue 2
  • ISSN: 2772-2708
  • E-ISSN: 2772-2716

Abstract

The largest and most defensive organ in the human body is the skin. Skin health significantly affects the quality of life due to its crucial function in aesthetic appearance. The onset of numerous skin illnesses is frequently accompanied by chronic skin inflammation. Immune-mediated reactions defend the body against external harm and need to be quickly controlled. If unregulated, they can result in long-term cellular damage and a variety of skin diseases. Dermatological illnesses encompass a wide range of skin conditions, including but not limited to acne, eczema, psoriasis, vitiligo, dermatitis, skin cancer, and fungal infections. Phytochemicals are produced by plants as a defense mechanism against pathogens that have various biological activities and can be harnessed for therapeutic purposes. Through the quenching of free radicals and the suppression of nuclear factor-κB, phytochemicals shield the skin from damage. Phytochemicals also offer a safe topical delivery system for improving the skin and regenerative treatment. Some phytochemicals' direct molecular targets have been identified, and their underlying mechanisms of action are being researched. In this review, we summarise current studies on phytochemicals' impacts on dermal illnesses and their underlying mechanisms of action.

Loading

Article metrics loading...

/content/journals/raiad/10.2174/0127722708304650240827092452
2024-09-11
2025-10-22
Loading full text...

Full text loading...

References

  1. NaumovG.N. AkslenL.A. FolkmanJ. Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch.Cell Cycle20065161779178710.4161/cc.5.16.301816931911
    [Google Scholar]
  2. HenningsH. GlickA.B. GreenhalghD.A. MorganD.L. StricklandJ.E. TennenbaumT. YuspaS.H. Critical aspects of initiation, promotion, and progression in multistage epidermal carcinogenesis.Exp. Biol. Med. (Maywood)199320211810.3181/00379727‑202‑43511A8424089
    [Google Scholar]
  3. BrashD.E. RudolphJ.A. SimonJ.A. LinA. McKennaG.J. BadenH.P. HalperinA.J. PonténJ. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma.Proc. Natl. Acad. Sci. USA19918822101241012810.1073/pnas.88.22.101241946433
    [Google Scholar]
  4. RundhaugJ.E. FischerS.M. Molecular mechanisms of mouse skin tumor promotion.Cancers20102243648210.3390/cancers202043621297902
    [Google Scholar]
  5. LeeH.J. KimM. Skin Barrier Function and the Microbiome.Int. J. Mol. Sci.202223211307110.3390/ijms23211307136361857
    [Google Scholar]
  6. GruneT. LietzG. PalouA. RossA.C. StahlW. TangG. ThurnhamD. YinS. BiesalskiH.K. Beta-carotene is an important vitamin A source for humans.J. Nutr.2010140122268S2285S10.3945/jn.109.11902420980645
    [Google Scholar]
  7. NairS. LewisL.E. GodinhoM.A. MurthyS. LakiangT. VenkateshB.T. Factors associated with neonatal pneumonia in India: protocol for a systematic review and planned meta-analysis.BMJ Open201881e01879010.1136/bmjopen‑2017‑01879029326186
    [Google Scholar]
  8. ImranM. GhoratF. Ul-HaqI. Ur-RehmanH. AslamF. HeydariM. ShariatiM.A. OkuskhanovaE. YessimbekovZ. ThiruvengadamM. HashempurM.H. RebezovM. Lycopene as a Natural Antioxidant Used to Prevent Human Health Disorders.Antioxidants20209870610.3390/antiox908070632759751
    [Google Scholar]
  9. AzizE. BatoolR. AkhtarW. RehmanS. ShahzadT. MalikA. ShariatiM.A. LaishevtcevA. PlygunS. HeydariM. RaufA. Ahmed ArifS. Xanthophyll: Health benefits and therapeutic insights.Life Sci.202024011710410.1016/j.lfs.2019.11710431783054
    [Google Scholar]
  10. JiaoY. ReussL. WangY. β-Cryptoxanthin: Chemistry, Occurrence, and Potential Health Benefits.Curr. Pharmacol. Rep.201951203410.1007/s40495‑019‑00168‑7
    [Google Scholar]
  11. WangX. MaY. XuQ. ShikovA.N. PozharitskayaO.N. FlisyukE.V. LiuM. LiH. Vargas-MurgaL. DuezP. Flavonoids and saponins: What have we got or missed?Phytomedicine202310915458010.1016/j.phymed.2022.15458036610132
    [Google Scholar]
  12. HostetlerG.L. RalstonR.A. SchwartzS.J. Flavones: Food Sources, Bioavailability, Metabolism, and Bioactivity.Adv. Nutr.20178342343510.3945/an.116.01294828507008
    [Google Scholar]
  13. AnaC.C. JesúsP.V. HugoE.A. TeresaA.T. UlisesG.C. NeithP. Antioxidant capacity and UPLC–PDA ESI–MS polyphenolic profile of Citrus aurantium extracts obtained by ultrasound assisted extraction.J. Food Sci. Technol.201855125106511410.1007/s13197‑018‑3451‑030483007
    [Google Scholar]
  14. LiuZ. BruinsM.E. de BruijnW.J.C. VinckenJ.P. A comparison of the phenolic composition of old and young tea leaves reveals a decrease in flavanols and phenolic acids and an increase in flavonols upon tea leaf maturation.J. Food Compos. Anal.20208610338510.1016/j.jfca.2019.103385
    [Google Scholar]
  15. GuanL. FanP. LiS.H. LiangZ. WuB.H. Inheritance patterns of anthocyanins in berry skin and flesh of the interspecific population derived from teinturier grape.Euphytica201921546410.1007/s10681‑019‑2342‑4
    [Google Scholar]
  16. TsaoR. Chemistry and biochemistry of dietary polyphenols.Nutrients20102121231124610.3390/nu212123122254006
    [Google Scholar]
  17. EddinL.B. JhaN.K. MeeranM.F.N. KesariK.K. BeiramR. OjhaS. Neuroprotective Potential of Limonene and Limonene Containing Natural Products.Molecules20212615453510.3390/molecules2615453534361686
    [Google Scholar]
  18. SurendranS. QassadiF. SurendranG. LilleyD. HeinrichM. Myrcene—What Are the Potential Health Benefits of This Flavouring and Aroma Agent?Front. Nutr.2021869966610.3389/fnut.2021.69966634350208
    [Google Scholar]
  19. SalehiB. UpadhyayS. OrhanIE. Kumar JugranA. L D JayaweeraS. A DiasD. SharopovF. TaheriY. MartinsN. BaghalpourN. ChoW.C. Sharifi-RadJ. Therapeutic Potential of α- and β-Pinene: A Miracle Gift of Nature.Biomolecules201991173810.3390/biom911073831739596
    [Google Scholar]
  20. HoX.L. LokeW.M. Dietary plant sterols supplementation increases in vivo nitrite and nitrate production in healthy adults: A Randomized, Controlled Study.J. Food Sci.20178271750175610.1111/1750‑3841.1375228708316
    [Google Scholar]
  21. KumarA. PN. KumarM. JoseA. TomerV. OzE. ProestosC. ZengM. ElobeidT. KS. OzF. Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method.Molecules202328288710.3390/molecules2802088736677944
    [Google Scholar]
  22. SudeepH.V. ThomasJ.V. ShyamprasadK. A double blind, placebo-controlled randomized comparative study on the efficacy of phytosterol-enriched and conventional saw palmetto oil in mitigating benign prostate hyperplasia and androgen deficiency.BMC Urol.20202018610.1186/s12894‑020‑00648‑932620155
    [Google Scholar]
  23. AntwiA.O. ObiriD.D. OsafoN. EsselL.B. ForkuoA.D. AtobigaC. Stigmasterol Alleviates Cutaneous Allergic Responses in Rodents.BioMed Res. Int.2018201811310.1155/2018/398406830140696
    [Google Scholar]
  24. BerlucchiG. VallarG. The history of the neurophysiology and neurology of the parietal lobe.Handb. Clin. Neurol.201815133010.1016/B978‑0‑444‑63622‑5.00001‑229519464
    [Google Scholar]
  25. LeeS.R. ChoiE. JeonS.H. ZhiX.Y. YuJ.S. KimS.H. LeeJ. ParkK.M. KimK.H. Tirucallane Triterpenoids from the Stems and Stem Bark of Cornus walteri that Control Adipocyte and Osteoblast Differentiations.Molecules20182311273210.3390/molecules2311273230360474
    [Google Scholar]
  26. LiP. XuG. LiS.P. WangY.T. FanT.P. ZhaoQ.S. ZhangQ.W. Optimizing ultraperformance liquid chromatographic analysis of 10 diterpenoid compounds in Salvia miltiorrhiza using central composite design.J. Agric. Food Chem.20085641164117110.1021/jf073020u18198831
    [Google Scholar]
  27. IdrisF.N. Mohd NadzirM. Comparative Studies on Different Extraction Methods of Centella asiatica and Extracts Bioactive Compounds Effects on Antimicrobial Activities.Antibiotics202110445710.3390/antibiotics1004045733920563
    [Google Scholar]
  28. Mohammad AzminS.N.H. Abdul MananZ. Wan AlwiS.R. ChuaL.S. MustaffaA.A. YunusN.A. Herbal Processing and Extraction Technologies.Separ. Purif. Rev.201645430532010.1080/15422119.2016.1145395
    [Google Scholar]
  29. ZhangQ.W. LinL.G. YeW.C. Techniques for extraction and isolation of natural products: a comprehensive review.Chin. Med.20181312010.1186/s13020‑018‑0177‑x29692864
    [Google Scholar]
  30. MuthaR.E. TatiyaA.U. SuranaS.J. Flavonoids as natural phenolic compounds and their role in therapeutics: an overview.Future Journal of Pharmaceutical Sciences2021712510.1186/s43094‑020‑00161‑833495733
    [Google Scholar]
  31. TavakoliS.D. Prieto-AraujoE. Sánchez-SánchezE. Gomis-BellmuntO. Methodology for interaction identification in modular multi-level converter-based HVDC systems.ISA Trans.202212630031510.1016/j.isatra.2021.07.03434334180
    [Google Scholar]
  32. ĆujićN. ŠavikinK. JankovićT. PljevljakušićD. ZdunićG. IbrićS. Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique.Food Chem.201619413514210.1016/j.foodchem.2015.08.00826471536
    [Google Scholar]
  33. FotsingY.S.F. KezetasB. BatihaG. AliI. LentaB. Extraction of Bioactive Compounds from Medicinal Plants and Herbs. [Internet].Natl Med Plants2022Available from:10.5772/intechopen.98602
    [Google Scholar]
  34. RawatP. SinghP.K. KumarV. Natural compounds extracted from medicinal plants and their applications in the treatment of diabetes and hypertension. In: Swamy M, Akhter M. (eds) Natural Bio-active Compounds. Springer, Singapore.2019; pp. 251-27410.1007/978‑981‑13‑7205‑6_11
    [Google Scholar]
  35. CorrêaP.S. Morais JúniorW.G. MartinsA.A. CaetanoN.S. MataT.M. Microalgae biomolecules: Extraction, separation and purification methods.Processes (Basel)2020911010.3390/pr9010010
    [Google Scholar]
  36. PereraP.R.D. EkanayakeS. RanaweeraK.K.D.S. Antidiabetic compounds in Syzygium cumini decoction and ready to serve herbal drink.Evid. Based Complement. Alternat. Med.201720171510.1155/2017/108358928572825
    [Google Scholar]
  37. AyubM.A. GoksenG. FatimaA. ZubairM. AbidM.A. StarowiczM. Comparison of conventional extraction techniques with superheated steam distillation on chemical characterization and biological activities of Syzygium aromaticum L. essential oil.Separations20231012710.3390/separations10010027
    [Google Scholar]
  38. Lope PihieA.H. ZakariaZ.A. OthmanF. Antiproliferative and Proapoptotic Effects of Labisia pumila Ethanol Extract and Its Active Fraction in Human Melanoma HM3KO Cells.Evid. Based Complement. Alternat. Med.2012201211210.1155/2012/12347022474490
    [Google Scholar]
  39. TrentiniC.P. CucoR.P. Cardozo-FilhoL. SilvaC. Extraction of macauba kernel oil using supercritical carbon dioxide and compressed propane.Can. J. Chem. Eng.201997378579210.1002/cjce.23236
    [Google Scholar]
  40. AbubakarA. HaqueM. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes.J. Pharm. Bioallied Sci.202012111010.4103/jpbs.JPBS_175_1932801594
    [Google Scholar]
  41. RahmaliaW. FabreJ.F. MoulounguiZ. Effects of cyclohexane/acetone ratio on bixin extraction yield by accelerated solvent extraction method.Procedia Chem.20151445546410.1016/j.proche.2015.03.061
    [Google Scholar]
  42. KryževičiūtėN. KraujalisP. VenskutonisP.R. Optimization of high pressure extraction processes for the separation of raspberry pomace into lipophilic and hydrophilic fractions.J. Supercrit. Fluids2016108616810.1016/j.supflu.2015.10.025
    [Google Scholar]
  43. Carreira-CasaisA. OteroP. Garcia-PerezP. Garcia-OliveiraP. PereiraA.G. CarpenaM. Soria-LopezA. Simal-GandaraJ. PrietoM.A. Benefits and Drawbacks of Ultrasound-Assisted Extraction for the Recovery of Bioactive Compounds from Marine Algae.Int. J. Environ. Res. Public Health20211817915310.3390/ijerph1817915334501743
    [Google Scholar]
  44. VeggiP.C. MartinezJ. MeirelesM.A.A. Fundamentals of Microwave Extraction.Microwave-assisted Extraction for Bioactive Compounds: Theory and Practice. ChematF. CravottoG. Food Engineering SeriesBoston, MASpringer US20131552
    [Google Scholar]
  45. YusoffI.M. Mat TaherZ. RahmatZ. ChuaL.S. A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins.Food Res. Int.202215711126810.1016/j.foodres.2022.11126835761580
    [Google Scholar]
  46. KinrossA.D. HagemanK.J. DoucetteW.J. FosterA.L. Comparison of Accelerated Solvent Extraction (ASE) and Energized Dispersive Guided Extraction (EDGE) for the analysis of pesticides in leaves.J. Chromatogr. A2020162746141410.1016/j.chroma.2020.46141432823112
    [Google Scholar]
  47. MianM. Silfvast-KaiserA.S. PaekS.Y. KivelevitchD. MenterA. A Review of the Most Common Dermatologic Conditions and their Debilitating Psychosocial Impacts.International Archives of Internal Medicine20193210.23937/2643‑4466/1710018
    [Google Scholar]
  48. HayR.J. JohnsN.E. WilliamsH.C. BolligerI.W. DellavalleR.P. MargolisD.J. MarksR. NaldiL. WeinstockM.A. WulfS.K. MichaudC. J L MurrayC. NaghaviM. The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions.J. Invest. Dermatol.201413461527153410.1038/jid.2013.44624166134
    [Google Scholar]
  49. RaharjaA. MahilS.K. BarkerJ.N. Psoriasis: a brief overview.Clin. Med202121317017310.7861/clinmed.2021‑025734001566
    [Google Scholar]
  50. Abu HashimI. Abo El-MagdN. El-SheakhA. HamedM. Abd El-GawadA.E.G. Pivotal role of Acitretin nanovesicular gel for effective treatment of psoriasis: ex vivo–in vivo evaluation study.Int. J. Nanomedicine2018131059107910.2147/IJN.S15641229503541
    [Google Scholar]
  51. BadriT. KumarP. OakleyA.M. Plaque Psoriasis.In: StatPearls.Treasure Island, FLStatPearls Publishing2022
    [Google Scholar]
  52. SánchezM. González-BurgosE. IglesiasI. Gómez-SerranillosM.P. Pharmacological Update Properties of Aloe Vera and its Major Active Constituents.Molecules2020256132410.3390/molecules2506132432183224
    [Google Scholar]
  53. AghmiuniA.I. KhiaviA.A. Medicinal Plants to Calm and Treat Psoriasis Disease.Aromatic and Medicinal Plants - Back to Nature. El-ShemyH.A. InTech201710.5772/67062
    [Google Scholar]
  54. RadhaM.H. LaxmipriyaN.P. Evaluation of biological properties and clinical effectiveness of Aloe vera: A systematic review.J. Tradit. Complement. Med.201551212610.1016/j.jtcme.2014.10.00626151005
    [Google Scholar]
  55. HaH. LeeH. SeoC.S. LimH.S. LeeJ.K. LeeM.Y. ShinH. Artemisia capillaris inhibits atopic dermatitis-like skin lesions in Dermatophagoides farinae-sensitized Nc/Nga mice.BMC Complement. Altern. Med.201414110010.1186/1472‑6882‑14‑10024624888
    [Google Scholar]
  56. SyedT.A. AhmadS.A. HoltA.H. AhmadS.A. AhmadS.H. AfzalM. Management of psoriasis with Aloe vera extract in a hydrophilic cream: a placebo-controlled, double-blind study.Trop. Med. Int. Health19961450550910.1046/j.1365‑3156.1996.d01‑91.x8765459
    [Google Scholar]
  57. KhatoonK. AliA. AhmadF.J. HafeezZ. RizviM.M.A. AkhterS. BegS. Novel nanoemulsion gel containing triple natural bio-actives combination of curcumin, thymoquinone, and resveratrol improves psoriasis therapy: in vitro and in vivo studies.Drug Deliv. Transl. Res.20211131245126010.1007/s13346‑020‑00852‑y32965640
    [Google Scholar]
  58. WangY. QiC. FengF. HuX. ZhaoN. ZhaoJ. DiT. MengY. YangD. ZhuH. ZhangX. LiP. WangY. Resveratrol ameliorates imiquimod-induced psoriasis-like mouse model via reducing macrophage infiltration and inhibiting glycolysis.J. Inflamm. Res.2023163823383610.2147/JIR.S41641737667801
    [Google Scholar]
  59. Nowak-PerlakM. SzpadelK. JabłońskaI. PizonM. WoźniakM. Promising strategies in plant-derived treatments of psoriasis-update of in vitro, in vivo, and clinical trials studies.Molecules202227359110.3390/molecules2703059135163855
    [Google Scholar]
  60. LiuC. LiuH. LuC. DengJ. YanY. ChenH. WangY. LiangC-L. WeiJ. HanL. DaiZ. Kaempferol attenuates imiquimod-induced psoriatic skin inflammation in a mouse model.Clin. Exp. Immunol.2019198340341510.1111/cei.1336331407330
    [Google Scholar]
  61. QiongH. HanL. ZhangN. ChenH. YanK. ZhangZ. MaY. XuJ. Glycyrrhizin improves the pathogenesis of psoriasis partially through IL-17A and the SIRT1-STAT3 axis.BMC Immunol.20212213410.1186/s12865‑021‑00421‑z34044769
    [Google Scholar]
  62. HusseinA. El- AmmawiT. MadyF. Abd elkaderH. EssaH. Formulation and clinical evaluation of silymarin pluronic-lecithin organogels for treatment of atopic dermatitis.Drug Des. Devel. Ther.2016101101111010.2147/DDDT.S10342327022248
    [Google Scholar]
  63. XiongX. TangN. LaiX. ZhangJ. WenW. LiX. LiA. WuY. LiuZ. Insights Into Amentoflavone: A Natural Multifunctional Biflavonoid.Front. Pharmacol.20211276870810.3389/fphar.2021.76870835002708
    [Google Scholar]
  64. PuigL. Induction phase, primary endpoint, time to decide on primary failure, and therapeutic goals in biologic treatment of psoriasis.J. Eur. Acad. Dermatol. Venereol.2013272e257e26010.1111/j.1468‑3083.2012.04585.x22632099
    [Google Scholar]
  65. LeeH-J. KimM. Challenges and future trends in the treatment of Psoriasis.Int J Mol Sci2023241713313
    [Google Scholar]
  66. KuboI. XiaoP. FujitaK. Antifungal activity of octyl gallate: structural criteria and mode of action.Bioorg. Med. Chem. Lett.200111334735010.1016/S0960‑894X(00)00656‑911212107
    [Google Scholar]
  67. HeydariP. Zargar KharaziA. AsgaryS. ParhamS. Comparing the wound healing effect of a controlled release wound dressing containing curcumin/ciprofloxacin and simvastatin/ciprofloxacin in a rat model: A preclinical study.J. Biomed. Mater. Res. A2022110234135210.1002/jbm.a.3729234378857
    [Google Scholar]
  68. PanchatcharamM. MiriyalaS. GayathriV.S. SugunaL. Curcumin improves wound healing by modulating collagen and decreasing reactive oxygen species.Mol. Cell. Biochem.20062901-2879610.1007/s11010‑006‑9170‑216770527
    [Google Scholar]
  69. YenY.H. PuC.M. LiuC.W. ChenY.C. ChenY.C. LiangC.J. HsiehJ.H. HuangH.F. ChenY.L. Curcumin accelerates cutaneous wound healing via multiple biological actions: The involvement of TNF-α, MMP-9, α-SMA, and collagen.Int. Wound J.201815460561710.1111/iwj.1290429659146
    [Google Scholar]
  70. DasG. KimD.Y. FanC. Gutiérrez-GrijalvaE.P. HerediaJ.B. NissapatornV. MitsuwanW. PereiraM.L. NawazM. SiyadatpanahA. NorouziR. SawickaB. ShinH.S. PatraJ.K. Plants of the Genus Terminalia: An Insight on Its Biological Potentials, Pre-Clinical and Clinical Studies.Front. Pharmacol.20201156124810.3389/fphar.2020.56124833132909
    [Google Scholar]
  71. HęśM. DziedzicK. GóreckaD. Jędrusek-GolińskaA. GujskaE. Aloe vera (L.) Webb.: Natural Sources of Antioxidants – A Review.Plant Foods Hum. Nutr.201974325526510.1007/s11130‑019‑00747‑531209704
    [Google Scholar]
  72. TashkandiH. Honey in wound healing: An updated review.Open Life Sci.20211611091110010.1515/biol‑2021‑008434708153
    [Google Scholar]
  73. MolanP.C. Potential of honey in the treatment of wounds and burns.Am. J. Clin. Dermatol.200121131910.2165/00128071‑200102010‑0000311702616
    [Google Scholar]
  74. Minden-BirkenmaierB.A. BowlinG.L. Honey-based templates in wound healing and tissue engineering.Bioengineering (Basel)2018524610.3390/bioengineering502004629903998
    [Google Scholar]
  75. ScepankovaH. Combarros-FuertesP. FresnoJ.M. TornadijoM.E. DiasM.S. PintoC.A. SaraivaJ.A. EstevinhoL.M. Role of honey in advanced wound care.Molecules20212616478410.3390/molecules2616478434443372
    [Google Scholar]
  76. JingW. XiaolanC. YuC. FengQ. HaifengY. Pharmacological effects and mechanisms of tannic acid.Biomed. Pharmacother.202215411356110.1016/j.biopha.2022.11356136029537
    [Google Scholar]
  77. OrlowskiP. ZmigrodzkaM. TomaszewskaE. Ranoszek-SoliwodaK. CzuprynM. Antos-BielskaM. SzemrajJ. CelichowskiG. GrobelnyJ. KrzyzowskaM. Tannic acid-modified silver nanoparticles for wound healing: the importance of size.Int. J. Nanomedicine201813991100710.2147/IJN.S15479729497293
    [Google Scholar]
  78. ChenY. TianL. YangF. TongW. JiaR. ZouY. YinL. LiL. HeC. LiangX. YeG. LvC. SongX. YinZ. Tannic acid accelerates cutaneous wound healing in rats via activation of the ERK 1/2 signaling pathways.Adv. Wound Care20198734135410.1089/wound.2018.085331737421
    [Google Scholar]
  79. TeplickiE. MaQ. CastilloD.E. ZareiM. HustadA.P. ChenJ. LiJ. The effects of aloe vera on wound healing in cell proliferation, migration, and viability.Wounds201830926326830256753
    [Google Scholar]
  80. MaistroE.L. CarvalhoJ.C.T. MantovaniM.S. Evaluation of the genotoxic potential of the Casearia sylvestris extract on HTC and V79 cells by the comet assay.Toxicol. In Vitro 200418333734210.1016/j.tiv.2003.10.00215046781
    [Google Scholar]
  81. MousaviS.M. HashemiS.A. BehbudiG. MazraedoostS. OmidifarN. GholamiA. ChiangW.H. BabapoorA. Pynadathu RumjitN. A Review on Health Benefits of Malva sylvestris L. Nutritional Compounds for Metabolites, Antioxidants, and Anti-Inflammatory, Anticancer, and Antimicrobial Applications.Evid. Based Complement. Alternat. Med.2021202111310.1155/2021/554840434434245
    [Google Scholar]
  82. GomathiK. GopinathD. Rafiuddin AhmedM. JayakumarR. Quercetin incorporated collagen matrices for dermal wound healing processes in rat.Biomaterials200324162767277210.1016/S0142‑9612(03)00059‑012711523
    [Google Scholar]
  83. GianfaldoniS. WollinaU. TirantM. TchernevG. LottiJ. SatolliF. RovestiM. FrançaK. LottiT. Herbal Compounds for the Treatment of Vitiligo: A Review.Open Access Maced. J. Med. Sci.20186120320710.3889/oamjms.2018.04829484024
    [Google Scholar]
  84. ShakhbazovaA. WuH. ChambersC.J. SivamaniR.K. A Systematic Review of Nutrition, Supplement, and Herbal-Based Adjunctive Therapies for Vitiligo.J. Altern. Complement. Med.202127429431110.1089/acm.2020.029233337930
    [Google Scholar]
  85. KimJ.K. KimY.S. KimY. UddinM.R. KimY.B. KimH.H. ParkS.Y. LeeM.Y. ChungS.O. ParkS.U. Comparative analysis of flavonoids and polar metabolites from hairy roots of Scutellaria baicalensis and Scutellaria lateriflora.World J. Microbiol. Biotechnol.201430388789210.1007/s11274‑013‑1498‑724162949
    [Google Scholar]
  86. RoskoskiR.Jr Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes.Pharmacol. Res.2016103264810.1016/j.phrs.2015.10.02126529477
    [Google Scholar]
  87. GaoZ. HuangK. YangX. XuH. Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi.Biochim. Biophys. Acta, Gen. Subj.19991472364365010.1016/S0304‑4165(99)00152‑X10564778
    [Google Scholar]
  88. Alvarez-ArellanoL. Salazar-GarcíaM. CoronaJ.C. Neuroprotective effects of quercetin in pediatric neurological diseases.Molecules20202523559710.3390/molecules2523559733260783
    [Google Scholar]
  89. ZhangB. WangJ. ZhaoG. LinM. LangY. ZhangD. FengD. TuC. Apigenin protects human melanocytes against oxidative damage by activation of the Nrf2 pathway.Cell Stress Chaperones202025227728510.1007/s12192‑020‑01071‑731953635
    [Google Scholar]
  90. TakekoshiS. NagataH. KitataniK. Flavonoids enhance melanogenesis in human melanoma cells.Tokai J. Exp. Clin. Med.201439311612125248426
    [Google Scholar]
  91. YangC.C. HsiaoL.D. YangC.M. Galangin inhibits LPS-induced MMP-9 expression via suppressing protein kinase-dependent AP-1 and FoxO1 activation in rat brain astrocytes.J. Inflamm. Res.20201394596010.2147/JIR.S27692533244253
    [Google Scholar]
  92. TaiebA. AlomarA. BöhmM. Dell’AnnaM.L. De PaseA. EleftheriadouV. EzzedineK. GauthierY. GawkrodgerD.J. JouaryT. LeoneG. MorettiS. Nieuweboer-KrobotovaL. OlssonM.J. ParsadD. PasseronT. TanewA. van der VeenW. van GeelN. WhittonM. WolkerstorferA. PicardoM. Vitiligo european task force (VETF). European academy of dermatology and venereology (EADV). Union Europe´enne des Me´decins Spe´cialistes (UEMS). Guidelines for the management of vitiligo: The European Dermatology Forum consensus.Br. J. Dermatol.2013168151910.1111/j.1365‑2133.2012.11197.x22860621
    [Google Scholar]
  93. LiangX. WangP. YangC. HuangF. WuH. ShiH. WuX. Galangin inhibits gastric cancer growth through enhancing STAT3 mediated ROS production.Front. Pharmacol.20211264662810.3389/fphar.2021.64662833981228
    [Google Scholar]
  94. DingX. MeiE. HuM. ZhouC. LiX. CaiL. LiZ. Effect of puerarin on melanogenesis in human melanocytes and vitiligo mouse models and the underlying mechanism.Phytother. Res.201933120521310.1002/ptr.621830421463
    [Google Scholar]
  95. Sharifi-RadJ. QuispeC. Herrera-BravoJ. BelénL.H. KaurR. KregielD. UpretyY. BeyatliA. YeskaliyevaB. KırkınC. ÖzçelikB. SenS. AcharyaK. SharopovF. Cruz-MartinsN. KumarM. RazisA.F.A. SunusiU. KamalR.M. ShaheenS. SuleriaH.A.R. Glycyrrhiza genus: Enlightening phytochemical components for pharmacological and health-promoting abilities.Oxid. Med. Cell. Longev.2021202112010.1155/2021/757113234349875
    [Google Scholar]
  96. PangY. WuS. HeY. NianQ. LeiJ. YaoY. GuoJ. ZengJ. Plant-derived compounds as promising therapeutics for vitiligo.Front. Pharmacol.20211268511610.3389/fphar.2021.68511634858164
    [Google Scholar]
  97. AtalayS. Jarocka-KarpowiczI. SkrzydlewskaE. Antioxidative and anti-inflammatory properties of cannabidiol.Antioxidants2019912110.3390/antiox901002131881765
    [Google Scholar]
  98. BenedecD. HanganuD. OnigaI. TiperciucB. OlahN-K. RaitaO. BischinC. Silaghi-DumitrescuR. VlaseL. Assessment of rosmarinic acid content in six Lamiaceae species extracts and their antioxidant and antimicrobial potential.Pak. J. Pharm. Sci.2015286Suppl.2297230326687747
    [Google Scholar]
  99. Bischoff-KontI. FürstR. Benefits of Ginger and Its Constituent 6-Shogaol in Inhibiting Inflammatory Processes.Pharmaceuticals202114657110.3390/ph1406057134203813
    [Google Scholar]
  100. Sampath KumarN.S. SarbonN.M. RanaS.S. ChintaguntaA.D. PrathibhaS. IngilalaS.K. Jeevan KumarS.P. Sai AnveshB. DirisalaV.R. Extraction of bioactive compounds from Psidium guajava leaves and its utilization in preparation of jellies.AMB Express20211113610.1186/s13568‑021‑01194‑933646462
    [Google Scholar]
  101. LanW.J. WangH.Y. LanW. WangK.Y. Geniposide enhances melanogenesis by stem cell factor/c-Kit signalling in norepinephrine-exposed normal human epidermal melanocyte.Basic Clin. Pharmacol. Toxicol.20081031889310.1111/j.1742‑7843.2008.00251.x18598300
    [Google Scholar]
  102. KatoK. HoribaA. HayashiH. MizukamiH. TerasakaK. Characterization of triterpene saponin glycyrrhizin transport by Glycyrrhiza glabra. Plants2022119125010.3390/plants1109125035567251
    [Google Scholar]
  103. RothsteinB. JoshipuraD. SaraiyaA. AbdatR. AshkarH. TurkowskiY. ShethV. HuangV. AuS.C. KachukC. DumontN. GottliebA.B. RosmarinD. Treatment of vitiligo with the topical Janus kinase inhibitor ruxolitinib.J. Am. Acad. Dermatol.201776610541060.e110.1016/j.jaad.2017.02.04928390737
    [Google Scholar]
  104. Sánchez-BorgesM. Capriles-HulettA. TorresJ. Ansotegui-ZubeldiaI.J. CastilloA. DhersyA. MonzónX. Diagnosis of allergic sensitization in patients with allergic rhinitis and asthma in a tropical environment.Rev. Alerg. Mex.2019661445410.29262/ram.v66i1.57031013406
    [Google Scholar]
  105. PaudelD. DhunganaB. CaffeM. KrishnanP. A Review of Health-Beneficial Properties of Oats.Foods20211011259110.3390/foods1011259134828872
    [Google Scholar]
  106. Dawid-PaćR. Medicinal plants used in treatment of inflammatory skin diseases.Postepy Dermatol. Alergol.20133317017710.5114/pdia.2013.3562024278070
    [Google Scholar]
  107. VollonoL. FalconiM. GazianoR. IacovelliF. DikaE. TerraccianoC. BianchiL. CampioneE. Potential of Curcumin in Skin Disorders.Nutrients2019119216910.3390/nu1109216931509968
    [Google Scholar]
  108. SinghO. KhanamZ. MisraN. SrivastavaM. Chamomile (Matricaria chamomilla L.): An overview.Pharmacogn. Rev.201159829510.4103/0973‑7847.7910322096322
    [Google Scholar]
  109. PatelT. IshiujiY. YosipovitchG. Menthol: A refreshing look at this ancient compound.J. Am. Acad. Dermatol.200757587387810.1016/j.jaad.2007.04.00817498839
    [Google Scholar]
  110. WangF. XueY. FuL. WangY. HeM. ZhaoL. LiaoX. Extraction, purification, bioactivity and pharmacological effects of capsaicin: a review.Crit. Rev. Food Sci. Nutr.202262195322534810.1080/10408398.2021.188484033591238
    [Google Scholar]
  111. WeisshaarE. HeyerG. ForsterC. HandwerkerH.O. Effect of topical capsaicin on the cutaneous reactions and itching to histamine in atopic eczema compared to healthy skin.Arch. Dermatol. Res.1998290630631110.1007/s0040300503099705161
    [Google Scholar]
  112. PapoiuA.D.P. YosipovitchG. Topical capsaicin. The fire of a ‘hot’ medicine is reignited.Expert Opin. Pharmacother.20101181359137110.1517/14656566.2010.48167020446852
    [Google Scholar]
  113. BonfantiL. Couillard-DesprésS. Neuron and Brain Maturation 2.0.Int. J. Mol. Sci.202324231711310.3390/ijms24231711338069434
    [Google Scholar]
  114. EichenfieldD.Z. SpragueJ. EichenfieldL.F. Management of acne vulgaris.JAMA2021326202055206710.1001/jama.2021.1763334812859
    [Google Scholar]
  115. NasriH. BahmaniM. ShahinfardN. Moradi NafchiA. SaberianpourS. Rafieian KopaeiM. Medicinal plants for the treatment of acne vulgaris: A review of recent evidences.Jundishapur J. Microbiol.2015811e2558010.5812/jjm.2558026862380
    [Google Scholar]
  116. HinoH. KasaiS. HattoriN. KenjoK. A case of allergic urticaria caused by erythritol.J. Dermatol.200027316316510.1111/j.1346‑8138.2000.tb02143.x10774141
    [Google Scholar]
  117. BhatS.A. RatherS.A. Medicinal benefits and scientific justification of Commiphora mukul (Muqil): A review.J. Drug Deliv. Ther.2021111-s17017210.22270/jddt.v11i1‑s.4550
    [Google Scholar]
  118. WeckesserS. EngelK. Simon-HaarhausB. WittmerA. PelzK. SchemppC.M. Screening of plant extracts for antimicrobial activity against bacteria and yeasts with dermatological relevance.Phytomedicine2007147-850851610.1016/j.phymed.2006.12.01317291738
    [Google Scholar]
  119. MazzarelloV. DonaduM. FerrariM. PigaG. UsaiD. ZanettiS. SotgiuM.A. Treatment of acne with a combination of propolis, tea tree oil, and Aloe vera compared to erythromycin cream: two double-blind investigations.Clin. Pharmacol.20181017518110.2147/CPAA.S18047430588129
    [Google Scholar]
  120. PazyarN. YaghoobiR. BagheraniN. KazerouniA. A review of applications of tea tree oil in dermatology.Int. J. Dermatol.201352778479010.1111/j.1365‑4632.2012.05654.x22998411
    [Google Scholar]
  121. GollnickH. CunliffeW. BersonD. DrenoB. FinlayA. LeydenJ.J. ShalitaA.R. ThiboutotD. Global alliance to improve outcomes in acne. Management of acne.J. Am. Acad. Dermatol.2003491Suppl.S1S3710.1067/mjd.2003.61812833004
    [Google Scholar]
  122. Li PomiF. PapaV. BorgiaF. VaccaroM. AllegraA. CiceroN. GangemiS. Rosmarinus officinalis and skin: Antioxidant activity and possible therapeutical role in cutaneous diseases.Antioxidants202312368010.3390/antiox1203068036978928
    [Google Scholar]
  123. SachdevS. AnsariS.A. AnsariM.I. FujitaM. HasanuzzamanM. Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms.Antioxidants202110227710.3390/antiox1002027733670123
    [Google Scholar]
  124. Cláudia Paiva-SantosA. GamaM. PeixotoD. Sousa-OliveiraI. Ferreira-FariaI. ZeinaliM. Abbaspour-RavasjaniS. Mascarenhas-MeloF. HamishehkarH. VeigaF. Nanocarrier-based dermopharmaceutical formulations for the topical management of atopic dermatitis.Int. J. Pharm.202261812165610.1016/j.ijpharm.2022.12165635278601
    [Google Scholar]
  125. FaniaL. DidonaD. Di PietroF.R. VerkhovskaiaS. MoreseR. PaolinoG. DonatiM. RicciF. CocoV. RicciF. CandiE. AbeniD. DellambraE. Cutaneous Squamous Cell Carcinoma: From Pathophysiology to Novel Therapeutic Approaches.Biomedicines20219217110.3390/biomedicines902017133572373
    [Google Scholar]
  126. HammadiR. KúszN. DávidC.Z. BehányZ. PappL. KeményL. HohmannJ. LakatosL. VasasA. Ingol and ingenol-type diterpenes from Euphorbia trigona miller with keratinocyte inhibitory activity.Plants2021106120610.3390/plants1006120634198524
    [Google Scholar]
  127. RamsayJ.R. SuhrbierA. AylwardJ.H. OgbourneS. CozziS.J. PoulsenM.G. BaumannK.C. WelburnP. RedlichG.L. ParsonsP.G. The sap from Euphorbia peplus is effective against human nonmelanoma skin cancers.Br. J. Dermatol.20111643no10.1111/j.1365‑2133.2010.10184.x21375515
    [Google Scholar]
  128. GaliczynskiE.M. VidimosA.T. Nonsurgical treatment of nonmelanoma skin cancer.Dermatol. Clin.2011292297309, x10.1016/j.det.2011.01.01121421153
    [Google Scholar]
  129. MohamedF.F. AnhlanD. SchöfbänkerM. SchreiberA. ClassenN. HenselA. HempelG. ScholzW. KühnJ. HrinciusE.R. LudwigS. Hypericum perforatum and its ingredients hypericin and pseudohypericin demonstrate an antiviral activity against SARS-CoV-2.Pharmaceuticals (Basel)202215553010.3390/ph1505053035631357
    [Google Scholar]
  130. ChoudharyN. CollignonT.E. TewariD. BishayeeA. Hypericin and its anticancer effects: From mechanism of action to potential therapeutic application.Phytomedicine202210515435610.1016/j.phymed.2022.15435635985181
    [Google Scholar]
  131. TianZ. YaoW. Albumin-bound paclitaxel: Worthy of further study in sarcomas.Front. Oncol.20221281590010.3389/fonc.2022.81590035223497
    [Google Scholar]
  132. PhillipsJ.M. ClarkC. Herman-FerdinandezL. Moore-MedlinT. RongX. GillJ.R. CliffordJ.L. AbreoF. NathanC.A.O. Curcumin inhibits skin squamous cell carcinoma tumor growth in vivo.Otolaryngol. Head Neck Surg.20111451586310.1177/019459981140071121493306
    [Google Scholar]
  133. MCY Topical curcumin: A review of mechanisms and uses in aermatology.International Journal of Dermatology and Clinical Research201701001710.17352/2455‑8605.000020
    [Google Scholar]
  134. KassemM.A. El-SawyH.S. Abd-AllahF.I. AbdelghanyT.M. El-SayK.M. Maximizing the Therapeutic Efficacy of Imatinib Mesylate–Loaded Niosomes on Human Colon Adenocarcinoma Using Box-Behnken Design.J. Pharm. Sci.2017106111112210.1016/j.xphs.2016.07.00727544432
    [Google Scholar]
  135. HoskingA.M. JuhaszM. Atanaskova MesinkovskaN. Complementary and Alternative Treatments for Alopecia: A Comprehensive Review.Skin Appendage Disord.201952728910.1159/00049203530815439
    [Google Scholar]
  136. ChoE.C. KimK. A comprehensive review of biochemical factors in herbs and their constituent compounds in experimental studies on alopecia.J. Ethnopharmacol.202025811290710.1016/j.jep.2020.11290732360043
    [Google Scholar]
  137. SuchonwanitP. ThammaruchaS. LeerunyakulK. Minoxidil and Its Use in Hair Disorders: A Review.DDDT2019132777278610.2147/DDDT.S214907
    [Google Scholar]
  138. PetrukG. Del GiudiceR. RiganoM.M. MontiD.M. Antioxidants from Plants Protect against Skin Photoaging.Oxid. Med. Cell. Longev.2018201811110.1155/2018/145493630174780
    [Google Scholar]
  139. EspositoE. CuzzocreaS. Antiinflammatory activity of melatonin in central nervous system.Curr. Neuropharmacol.20108322824210.2174/15701591079224615521358973
    [Google Scholar]
  140. DezmireanD.S. PaşcaC. MoiseA.R. BobişO. Plant sources responsible for the chemical composition and main bioactive properties of poplar-type propolis.Plants20201012210.3390/plants1001002233374275
    [Google Scholar]
  141. ShiY. RenJ. ZhaoB. ZhuT. QiH. Photoprotective mechanism of fucoxanthin in ultraviolet B irradiation-induced retinal müller cells based on lipidomics analysis.J. Agric. Food Chem.202270103181319310.1021/acs.jafc.1c0798035199529
    [Google Scholar]
  142. HeoH. LeeH. YangJ. SungJ. KimY. JeongH.S. LeeJ. Protective Activity and Underlying Mechanism of Ginseng Seeds against UVB-Induced Damage in Human Fibroblasts.Antioxidants202110340310.3390/antiox1003040333800272
    [Google Scholar]
  143. GhidoliM. ColomboF. SangiorgioS. LandoniM. GiupponiL. NielsenE. PiluR. Food containing bioactive flavonoids and other phenolic or sulfur phytochemicals with antiviral effect: Can we design a promising diet against COVID-19?Front. Nutr.2021866133110.3389/fnut.2021.66133134222300
    [Google Scholar]
  144. DunawayS. OdinR. ZhouL. JiL. ZhangY. KadekaroA.L. Natural antioxidants: Multiple mechanisms to protect skin from solar radiation.Front. Pharmacol.2018939210.3389/fphar.2018.0039229740318
    [Google Scholar]
  145. ByunS. LeeE. JangY.J. KimY. LeeK.W. The NADPH oxidase inhibitor apocynin inhibits UVB-induced skin carcinogenesis.Exp. Dermatol.201625648949110.1111/exd.1298926914271
    [Google Scholar]
  146. LiuR.H. Health-promoting components of fruits and vegetables in the diet.Adv. Nutr.201343384S392S10.3945/an.112.00351723674808
    [Google Scholar]
  147. SirotkinA.V. HarrathA.H. Phytoestrogens and their effects.Eur. J. Pharmacol.201474123023610.1016/j.ejphar.2014.07.05725160742
    [Google Scholar]
  148. LephartE.D. Phytoestrogens (resveratrol and equol) for estrogen-deficient skin-controversies/misinformation versus anti-aging in vitro and clinical evidence via nutraceutical-cosmetics.Int. J. Mol. Sci.202122201121810.3390/ijms22201121834681876
    [Google Scholar]
  149. MessinaM. Soy foods, isoflavones, and the health of postmenopausal women.Am. J. Clin. Nutr.2014100Suppl. 1423S430S10.3945/ajcn.113.07146424898224
    [Google Scholar]
  150. RizzoG. BaroniL. Soy, Soy Foods and Their Role in Vegetarian Diets.Nutrients20181014310.3390/nu1001004329304010
    [Google Scholar]
  151. MtewaA.G. EgbunaC. BeressaT.B. NgwiraK.J. LampiaoF. Chapter 2- phytopharmaceuticals: Efficacy, safety, and regulation.In Preparation of Phytopharmaceuticals for the Management of DisordersAcademic Press20212538
    [Google Scholar]
  152. BhattA. Phytopharmaceuticals: A new drug class regulated in India.Perspect. Clin. Res.201672596110.4103/2229‑3485.17943527141470
    [Google Scholar]
/content/journals/raiad/10.2174/0127722708304650240827092452
Loading
/content/journals/raiad/10.2174/0127722708304650240827092452
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test