Skip to content
2000
Volume 19, Issue 2
  • ISSN: 2772-2708
  • E-ISSN: 2772-2716

Abstract

Cyclooxygenases are enzymes involved in prostaglandin synthesis, a part of the inflammatory process. The most frequently applied anti-inflammatory drugs are NSAIDs; however, these medications exhibit very serious side effects, and often, reduce production or are withdrawn from the market. Recently, researchers were focused on finding new, safe, selective COX-2 inhibitors with safety features. This paper reviews cyclooxygenase enzyme malfunction-related diseases, current therapies and new drug discovery opportunities. Prostaglandin-endoperoxide synthases are enzymes involved in the synthesis of prostanoid peptides through the oxidation of nitric oxide and pyruvate phosphate. They are participating factors for various physiological and pathological processes, which include disorders of the oral tissues such as periodontitis, pulpitis, and oral cancer. This paper is a review of some pharmaceutical products in terms of history, efficiency, and possible side effects as inhibitors of the Cyclooxygenase enzyme. The analysis concludes that more recent Cox inhibitors, such as dietary modifications and natural supplements, hold promise for safer and more efficient treatment of diseases involving Cox enzyme function.

Loading

Article metrics loading...

/content/journals/raiad/10.2174/0127722708297531240919105551
2024-10-03
2025-08-14
Loading full text...

Full text loading...

References

  1. AgarwalS. ReddyG.V. ReddannaP. Eicosanoids in inflammation and cancer: The role of COX-2.Expert Rev. Clin. Immunol.20095214516510.1586/1744666X.5.2.14520477063
    [Google Scholar]
  2. MitchellJ.A. KirkbyN.S. Eicosanoids, prostacyclin and cyclooxygenase in the cardiovascular system.Br. J. Pharmacol.201917681038105010.1111/bph.1416729468666
    [Google Scholar]
  3. MenonM.P. HuaK.F. The long non-coding RNAs: Paramount regulators of the NLRP3 inflammasome.Front. Immunol.20201156952410.3389/fimmu.2020.56952433101288
    [Google Scholar]
  4. YahfoufiN. AlsadiN. JambiM. MatarC. The immunomodulatory and anti-inflammatory role of polyphenols.Nutrients20181011161810.3390/nu1011161830400131
    [Google Scholar]
  5. do PradoF.G. PagnoncelliM.G.B. de Melo PereiraG.V. KarpS.G. SoccolC.R. Fermented soy products and their potential health benefits: A review.Microorganisms2022108160610.3390/microorganisms1008160636014024
    [Google Scholar]
  6. DhankharS. MujwarS. GargN. ChauhanS. SainiM. SharmaP. KumarS. Kumar SharmaS. KamalM.A. RaniN. Artificial Intelligence in The Management of Neurodegenerative Disorders.CNS Neurol. Disord. Drug Targets202423893194010.2174/011871527326609523100909260337861051
    [Google Scholar]
  7. Al MuftyrM. Development and Validation Method of Analysis of Etoricoxib and Paracetamol in Effectiveness Combination in Tablet Dosage Form.JordanUniversity of Petra2021
    [Google Scholar]
  8. MalikS. MuhammadK. WaheedY. Nanotechnology: A revolution in modern industry.Molecules202328266110.3390/molecules2802066136677717
    [Google Scholar]
  9. DengZ. HassanS. RafiqM. LiH. HeY. CaiY. KangX. LiuZ. YanT. Pharmacological activity of eriodictyol: The major natural polyphenolic flavanone.Evid. Based Complement. Alternat. Med.202020201668135210.1155/2020/668135233414838
    [Google Scholar]
  10. SchunckW.H. KonkelA. FischerR. WeylandtK.H. Therapeutic potential of omega-3 fatty acid-derived epoxyeicosanoids in cardiovascular and inflammatory diseases.Pharmacol. Ther.201818317720410.1016/j.pharmthera.2017.10.01629080699
    [Google Scholar]
  11. RahmanM. BegS. VermaA. Al AbbasiF.A. AnwarF. SainiS. AkhterS. KumarV. Phytoconstituents as pharmacotherapeutics in rheumatoid arthritis: Challenges and scope of nano/submicromedicine in its effective delivery.J. Pharm. Pharmacol.201669111410.1111/jphp.1266127774648
    [Google Scholar]
  12. PatwardhanB. WarudeD. PushpangadanP. BhattN. Ayurveda and traditional Chinese medicine: A comparative overview.Evid. Based Complement. Alternat. Med.20052446547310.1093/ecam/neh14016322803
    [Google Scholar]
  13. FakiY. ErA. Different chemical structures and physiological/pathological roles of cyclooxygenases.Rambam Maimonides Med. J.2021121e000310.5041/RMMJ.1042633245277
    [Google Scholar]
  14. VodovotzY. AnG. Translational systems biology: Concepts and practice for the future of biomedical research.AmsterdamElsevier2014
    [Google Scholar]
  15. ObaidG. BroekgaardenM. BulinA.L. HuangH.C. KuriakoseJ. LiuJ. HasanT. Photonanomedicine: A convergence of photodynamic therapy and nanotechnology.Nanoscale2016825124711250310.1039/C5NR08691D27328309
    [Google Scholar]
  16. GreenhoughA. SmarttH.J.M. MooreA.E. RobertsH.R. WilliamsA.C. ParaskevaC. KaidiA. The COX-2/PGE2 pathway: Key roles in the hallmarks of cancer and adaptation to the tumour microenvironment.Carcinogenesis200930337738610.1093/carcin/bgp01419136477
    [Google Scholar]
  17. StackE. DuBoisR.N. Regulation of cyclo-oxygenase-2.Best Pract. Res. Clin. Gastroenterol.200115578780010.1053/bega.2001.023511566041
    [Google Scholar]
  18. FlowerR.J. The development of COX2 inhibitors.Nat. Rev. Drug Discov.20032317919110.1038/nrd103412612644
    [Google Scholar]
  19. RobertsS.J. van GastelN. CarmelietG. LuytenF.P. Uncovering the periosteum for skeletal regeneration: The stem cell that lies beneath.Bone201570101810.1016/j.bone.2014.08.00725193160
    [Google Scholar]
  20. DongL. MalkowskiM.G. Defining the Conformational Ensembles Associated with Ligand Binding to Cyclooxygenase-2.Biochemistry202362213134314410.1021/acs.biochem.3c0034137852627
    [Google Scholar]
  21. MiciacciaM. BelvisoB.D. IaselliM. CingolaniG. FerorelliS. CappellariM. Loguercio PolosaP. PerroneM.G. CaliandroR. ScilimatiA. Three-dimensional structure of human cyclooxygenase (hCOX)-1.Sci. Rep.2021111431210.1038/s41598‑021‑83438‑z33619313
    [Google Scholar]
  22. MarkworthJ.F. Cameron-SmithD. Prostaglandin F 2α stimulates PI3K/ERK/mTOR signaling and skeletal myotube hypertrophy.Am. J. Physiol. Cell Physiol.20113003C671C68210.1152/ajpcell.00549.200921191105
    [Google Scholar]
  23. IñiguezM.A. Cacheiro-LlagunoC. CuestaN. Díaz-MuñozM.D. FresnoM. Prostanoid function and cardiovascular disease.Arch. Physiol. Biochem.2008114320120910.1080/1381345080218088218629685
    [Google Scholar]
  24. DuBoisR.N. AbramsonS.B. CroffordL. GuptaR.A. SimonL.S. PutteL.B.A. LipskyP.E. Cyclooxygenase in biology and disease.FASEB J.199812121063107310.1096/fasebj.12.12.10639737710
    [Google Scholar]
  25. BarreraS.D. CepedaL.J.B. ParrasJ.E.C. The importance of cyclooxigenase in dentistry.Braz. J. Oral Sci.202423e24118110.20396/bjos.v23i00.8671181
    [Google Scholar]
  26. RumzhumN.N. AmmitA.J. Cyclooxygenase 2: Its regulation, role and impact in airway inflammation.Clin. Exp. Allergy201646339741010.1111/cea.1269726685098
    [Google Scholar]
  27. HariziH. Epigenetic Regulations of Inflammatory Cyclooxygenase-Derived Prostanoids: Molecular Basis and Pathophysiological Consequences.Curr. Pharm. Des.200410663564614965326
    [Google Scholar]
  28. MisraS. SharmaK. COX-2 signaling and cancer: New players in old arena.Curr. Drug Targets201415334735910.2174/138945011566614012710291524467618
    [Google Scholar]
  29. RahmanS. MalcounA. Nonsteroidal antiinflammatory drugs, cyclooxygenase-2, and the kidneys.Prim. Care201441480382110.1016/j.pop.2014.09.00125439535
    [Google Scholar]
  30. BinduS. MazumderS. BandyopadhyayU. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective.Biochem. Pharmacol.202018011414710.1016/j.bcp.2020.11414732653589
    [Google Scholar]
  31. StrillacciA. RNAi-based strategies for cyclooxygenase-2 inhibition in cancer.J Biomed Biotechnol.20102010828045
    [Google Scholar]
  32. StablesM.J. GilroyD.W. Old and new generation lipid mediators in acute inflammation and resolution.Prog. Lipid Res.2011501355110.1016/j.plipres.2010.07.00520655950
    [Google Scholar]
  33. JeffreyA. GardhouseS. KleinhenzM. HockerS.E. WeederM. MontgomeryS.R. ZhangY. PortingA. RooneyT. Examination of the pharmacokinetics and differential inhibition of cyclooxygenase isoenzymes in New Zealand white rabbits (Oryctolagus cuniculus) by the Non-Steroidal anti-inflammatory Robenacoxib.J. Vet. Pharmacol. Ther.202346210311110.1111/jvp.1310536478376
    [Google Scholar]
  34. SethiG. ShanmugamM.K. RamachandranL. KumarA.P. TergaonkarV. Multifaceted link between cancer and inflammation.Biosci. Rep.201232111510.1042/BSR2010013621981137
    [Google Scholar]
  35. SquassinaA. ManchiaM. ManolopoulosV.G. ArtacM. Lappa-ManakouC. KarkabounaS. MitropoulosK. ZompoM.D. PatrinosG.P. Realities and expectations of pharmacogenomics and personalized medicine: Impact of translating genetic knowledge into clinical practice.Pharmacogenomics20101181149116710.2217/pgs.10.9720712531
    [Google Scholar]
  36. GolubnitschajaO. CostigliolaV. EPMA J.2012315310.1007/s13167‑011‑0137‑3
    [Google Scholar]
  37. DannhardtG. KieferW. Cyclooxygenase inhibitors – current status and future prospects.Eur. J. Med. Chem.200136210912610.1016/S0223‑5234(01)01197‑711311743
    [Google Scholar]
  38. GrantR.W. MooreA.F. FlorezJ.C. Genetic architecture of type 2 diabetes:Recent progress and clinical implications.Diabetes Care20093261107111410.2337/dc08‑217119460916
    [Google Scholar]
  39. SharmaA. GoelA. Pathogenesis of rheumatoid arthritis and its treatment with anti-inflammatory natural products.Mol. Biol. Rep.20235054687470610.1007/s11033‑023‑08406‑437022525
    [Google Scholar]
  40. MooreA.E. YoungL.E. DixonD.A. A common single-nucleotide polymorphism in cyclooxygenase-2 disrupts microRNA-mediated regulation.Oncogene201231121592159810.1038/onc.2011.34921822307
    [Google Scholar]
  41. WangJ. WuM.Y. SuH. LuJ. ChenX. TanJ. LuJ.H. iNOS interacts with autophagy receptor p62 and is degraded by autophagy in macrophages.Cells2019810125510.3390/cells810125531618870
    [Google Scholar]
  42. KumarA. BehlT. JamwalS. KaurI. SoodA. KumarP. Exploring the molecular approach of COX and LOX in Alzheimer’s and Parkinson’s disorder.Mol. Biol. Rep.202047129895991210.1007/s11033‑020‑06033‑x33263931
    [Google Scholar]
  43. KharkarP.S. Cancer stem cell (CSC) inhibitors in oncology—a promise for a better therapeutic outcome: State of the art and future perspectives.J. Med. Chem.20206324152791530710.1021/acs.jmedchem.0c0133633325699
    [Google Scholar]
  44. PerroneM.G. ScilimatiA. SimoneL. VitaleP. Selective COX-1 inhibition: A therapeutic target to be reconsidered.Curr. Med. Chem.201017323769380510.2174/09298671079320540820858219
    [Google Scholar]
  45. WielandH.A. MichaelisM. KirschbaumB.J. RudolphiK.A. Osteoarthritis — an untreatable disease?Nat. Rev. Drug Discov.20054433134410.1038/nrd169315803196
    [Google Scholar]
  46. YangD.H.A. HsuC.F. LinC.Y. GuoJ.Y. YuW.C.Y. ChangV.H.S. Krüppel-like factor 10 upregulates the expression of cyclooxygenase 1 and further modulates angiogenesis in endothelial cell and platelet aggregation in gene-deficient mice.Int. J. Biochem. Cell Biol.201345241942810.1016/j.biocel.2012.11.00723178857
    [Google Scholar]
  47. HarwoodJ.L. Polyunsaturated fatty acids: Conversion to lipid mediators, roles in inflammatory diseases and dietary sources.Int. J. Mol. Sci.20232410883810.3390/ijms2410883837240183
    [Google Scholar]
  48. AhmadiM. BekeschusS. WeltmannK.D. von WoedtkeT. WendeK. Non-steroidal anti-inflammatory drugs: Recent advances in the use of synthetic COX-2 inhibitors.RSC Med. Chem.202213547149610.1039/D1MD00280E35685617
    [Google Scholar]
  49. JachakS. Cyclooxygenase inhibitory natural products: Current status.Curr. Med. Chem.200613665967810.2174/09298670677605569816529558
    [Google Scholar]
  50. CozminM. LunguI.I. GutuC. StefanacheA. DuceacL.D. ȘoltuzuB.D. DamirD. CalinG. Bogdan GorofteiE.R. GrierosuC. BoevM. Turmeric: From spice to cure. A review of the anti-cancer, radioprotective and anti-inflammatory effects of turmeric sourced compounds.Front. Nutr.202411139988810.3389/fnut.2024.139988838863589
    [Google Scholar]
  51. Bischoff-KontI. FürstR. Benefits of ginger and its constituent 6-shogaol in inhibiting inflammatory processes.Pharmaceuticals (Basel)202114657110.3390/ph1406057134203813
    [Google Scholar]
  52. DurkinL.A. ChildsC.E. CalderP.C. Omega-3 polyunsaturated fatty acids and the intestinal epithelium—a review.Foods202110119910.3390/foods1001019933478161
    [Google Scholar]
  53. KawaNI AdraSW Management of obesity and related inflammatory disorders.Inflammation and Obesity: A New and Novel Approach to Manage Obesity and its ConsequencesCambridge, MassachusettsAcademic Press202310.1016/B978‑0‑323‑90960‑0.00011‑4
    [Google Scholar]
  54. Debjit BhowmikC. Turmeric: A herbal and traditional medicine.Arch. Appl. Sci. Res.20091286108
    [Google Scholar]
  55. PengY. AoM. DongB. JiangY. YuL. ChenZ. HuC. XuR. Anti-inflammatory effects of curcumin in the inflammatory diseases: Status, limitations and countermeasures.Drug Des. Devel. Ther.2021154503452510.2147/DDDT.S32737834754179
    [Google Scholar]
  56. GuimarãesM.R. CoimbraL.S. de AquinoS.G. SpolidorioL.C. KirkwoodK.L. RossaC.Jr Potent anti-inflammatory effects of systemically administered curcumin modulate periodontal disease in vivo.J. Periodontal Res.201146226927910.1111/j.1600‑0765.2010.01342.x21306385
    [Google Scholar]
  57. MemarziaA. KhazdairM.R. BehrouzS. GholamnezhadZ. JafarnezhadM. SaadatS. BoskabadyM.H. Experimental and clinical reports on anti-inflammatory, antioxidant, and immunomodulatory effects of Curcuma longa and curcumin, an updated and comprehensive review.Biofactors202147331135010.1002/biof.171633606322
    [Google Scholar]
  58. PatnaikN. Garden of Life: An Introduction to the Healing Plants of India.New York1993
    [Google Scholar]
  59. BallesterP. CerdáB. ArcusaR. MarhuendaJ. YamedjeuK. ZafrillaP. Effect of ginger on inflammatory diseases.Molecules20222721722310.3390/molecules2721722336364048
    [Google Scholar]
  60. SpolarichA.E. AndrewsL. An examination of the bleeding complications associated with herbal supplements, antiplatelet and anticoagulant medications.Association2007813676717908423
    [Google Scholar]
  61. CrichtonM. MarshallS. MarxW. IsenringE. LohningA. Therapeutic health effects of ginger ( Zingiber officinale ): Updated narrative review exploring the mechanisms of action.Nutr. Rev.20238191213122410.1093/nutrit/nuac11536688554
    [Google Scholar]
  62. KrieglsteinC.F. AnthoniC. RijckenE.J.M. LaukötterM. SpiegelH.U. BodenS.E. SchweizerS. SafayhiH. SenningerN. SchürmannG. Acetyl-11-keto-β-boswellic acid, a constituent of a herbal medicine from Boswellia serrata resin, attenuates experimental ileitis.Int. J. Colorectal Dis.2001162889510.1007/s00384010029211355324
    [Google Scholar]
  63. RenteaR. Therapeutic advantages of highly standardized Boswellia extracts.Seman. Sch.2008
    [Google Scholar]
  64. SolankiN GuptaG ChellappanDK SinghSK GulatiM PaudelKR HansbroPM DuaK BhanS SainiM DurejaH Boswellic acids: A critical appraisal of their therapeutic and nutritional benefits in chronic inflammatory diseases.Endocr Metab Immune Disord Drug Targets202424111612910.2174/1871530323666230512154634
    [Google Scholar]
  65. NietoG. RosG. CastilloJ. Antioxidant and antimicrobial properties of rosemary (Rosmarinus officinalis, L.): A review.Medicines (Basel)2018539810.3390/medicines503009830181448
    [Google Scholar]
  66. GamaroG.D. SuyenagaE. BorsoiM. LermenJ. PereiraP. ArdenghiP. Effect of rosmarinic and caffeic acids on inflammatory and nociception process in rats.ISRN Pharmacol.2011201111610.5402/2011/45168222084714
    [Google Scholar]
  67. DuG.J. ZhangZ. WenX.D. YuC. CalwayT. YuanC.S. WangC.Z. Epigallocatechin Gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea.Nutrients20124111679169110.3390/nu411167923201840
    [Google Scholar]
  68. HossenI. KaiqiZ. HuaW. JunsongX. MingquanH. YanpingC. Epigallocatechin gallate ( EGCG ) inhibits lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells via modulating nuclear factor kappa-light-chain enhancer of activated B cells ( NF- κ B) signaling pathway.Food Sci. Nutr.20231184634465010.1002/fsn3.342737576060
    [Google Scholar]
  69. ShrikantaA. KumarA. GovindaswamyV. Resveratrol content and antioxidant properties of underutilized fruits.J. Food Sci. Technol.201552138339010.1007/s13197‑013‑0993‑z25593373
    [Google Scholar]
  70. De Sá CoutinhoD. PachecoM.T. FrozzaR.L. BernardiA. Anti-inflammatory effects of resveratrol: Mechanistic insights.Int. J. Mol. Sci.2018196181210.3390/ijms1906181229925765
    [Google Scholar]
  71. PeñalozaE.M.C. Chemical composition variability in the Uncaria tomentosa (cat’s claw) wild population.Quim. Nova201538378386
    [Google Scholar]
  72. RibeiroV.P. ArrudaC. Abd El-SalamM. BastosJ.K. Brazilian medicinal plants with corroborated anti-inflammatory activities: A review.Pharm. Biol.201856125326810.1080/13880209.2018.145448029648503
    [Google Scholar]
  73. FadlalddinN. Association of various concentrations of cat's claw herb (Uncaria tomentosa) on lymphocyte proliferation and nitric oxide expression: An in-vitro study of osteoarthritis.Semam. Sch.2018
    [Google Scholar]
  74. Sharifi-RadJ. RayessY.E. RizkA.A. SadakaC. ZgheibR. ZamW. SestitoS. RapposelliS. Neffe-SkocińskaK. ZielińskaD. SalehiB. SetzerW.N. DosokyN.S. TaheriY. El BeyrouthyM. MartorellM. OstranderE.A. SuleriaH.A.R. ChoW.C. MaroyiA. MartinsN. Turmeric and its major compound curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications.Front. Pharmacol.2020110102110.3389/fphar.2020.0102133041781
    [Google Scholar]
  75. Fernández-MorianoC González-BurgosE Gómez-SerranillosMP Curcumin: Current evidence of its therapeutic potential as a lead candidate for anti-inflammatory drugs-an overview.Discovery and Development of Anti-inflammatory Agents from Natural ProductsAmsterdamElsevier2019
    [Google Scholar]
  76. DalsassoR.R. ValenciaG.A. MonteiroA.R. Impact of drying and extractions processes on the recovery of gingerols and shogaols, the main bioactive compounds of ginger.Food Res. Int.202215411104310.1016/j.foodres.2022.11104335337584
    [Google Scholar]
  77. TerryR. PosadzkiP. WatsonL.K. ErnstE. The use of ginger (Zingiber officinale) for the treatment of pain: A systematic review of clinical trials.Pain Med.201112121808181810.1111/j.1526‑4637.2011.01261.x22054010
    [Google Scholar]
  78. KhuwijitjaruP. SayputikasikornN. SamuhasaneetooS. PenrojP. SiriwongwilaichatP. AdachiS. Subcritical water extraction of flavoring and phenolic compounds from cinnamon bark (Cinnamomum zeylanicum).J. Oleo Sci.201261634935510.5650/jos.61.34922687781
    [Google Scholar]
  79. GunawardenaD GovindaraghavanS MünchG Anti-inflammatory properties of cinnamon polyphenols and their monomeric precursors.Polyphenols in Human Health and Disease: Polyphenols in Human Health and DiseaseCambridge, MassachusettsAcademic press201410.1016/B978‑0‑12‑398456‑2.00030‑X
    [Google Scholar]
  80. DelgadoY. CasséC. Ferrer-AcostaY. Suárez-ArroyoI.J. Rodríguez-ZayasJ. TorresA. Torres-MartínezZ. PérezD. GonzálezM.J. Velázquez-AponteR.A. AndinoJ. Correa-RodríguezC. FrancoJ.C. MilánW. RosarioG. VelázquezE. VegaJ. ColónJ. BatistaC. Biomedical effects of the phytonutrients turmeric, garlic, cinnamon, graviola, and oregano: A comprehensive review.Appl. Sci. (Basel)20211118847710.3390/app11188477
    [Google Scholar]
  81. Nipa TochiB. WangZ. - Ying XuS. ZhangW. Therapeutic application of pineapple protease (bromelain): A review.Pak. J. Nutr.20087451352010.3923/pjn.2008.513.520
    [Google Scholar]
  82. ChakrabortyA. MitraS. TalleiT. TareqA. NainuF. CiciaD. DhamaK. EmranT. Simal-GandaraJ. CapassoR. Bromelain a potential bioactive compound: A comprehensive overview from a pharmacological perspective.Life (Basel)202111431710.3390/life1104031733917319
    [Google Scholar]
  83. PereiraI.C. Sátiro VieiraE.E. de Oliveira TorresL.R. Carneiro da SilvaF.C. de Castro e SousaJ.M. Torres-LealF.L. Bromelain supplementation and inflammatory markers: A systematic review of clinical trials.Clin. Nutr. ESPEN20235511612710.1016/j.clnesp.2023.02.02837202035
    [Google Scholar]
  84. SrivastavaJ. GuptaS. Extraction, characterization, stability and biological activity of flavonoids isolated from chamomile flowers.Mol. Cell. Pharmacol.20091313814710.4255/mcpharmacol.09.1820098626
    [Google Scholar]
  85. HuangW.Y. CaiY.Z. ZhangY. Natural phenolic compounds from medicinal herbs and dietary plants: Potential use for cancer prevention.Nutr. Cancer200962112010.1080/0163558090319158520043255
    [Google Scholar]
  86. SrivastavaJ.K. PandeyM. GuptaS. Chamomile, a novel and selective COX-2 inhibitor with anti-inflammatory activity.Life Sci.20098519-2066366910.1016/j.lfs.2009.09.00719788894
    [Google Scholar]
  87. SrivastavaJ.K. ShankarE. GuptaS. Chamomile: A herbal medicine of the past with bright future.Mol. Med. Rep.20103689590121132119
    [Google Scholar]
  88. GuarnerV. Rubio-RuizM.E. Low-grade systemic inflammation connects aging, metabolic syndrome and cardiovascular disease.Interdiscip Top Gerontol.2015409910610.1159/000364934
    [Google Scholar]
  89. DhankharS. ChauhanS. MehtaD.K. Nitika SainiK. SainiM. DasR. GuptaS. GautamV. Novel targets for potential therapeutic use in Diabetes mellitus.Diabetol. Metab. Syndr.20231511710.1186/s13098‑023‑00983‑536782201
    [Google Scholar]
  90. RohillaM. Rishabh BansalS. GargA. DhimanS. DhankharS. SainiM. ChauhanS. AlsubaieN. BatihaG.E.S. AlbezrahN.K.A. SinghT.G. Discussing pathologic mechanisms of Diabetic retinopathy & therapeutic potentials of curcumin and β-glucogallin in the management of Diabetic retinopathy.Biomed. Pharmacother.202316911588110.1016/j.biopha.2023.11588137989030
    [Google Scholar]
  91. SaharanR. KaurJ. DhankharS. GargN. ChauhanS. BeniwalS. SharmaH. Hydrogel-based Drug Delivery System in Diabetes Management.Pharm. Nanotechnol.202412428929910.2174/012211738526627623092806423537818559
    [Google Scholar]
  92. ShekP.N. ShephardR.J. Physical exercise as a human model of limited inflammatory response.Can. J. Physiol. Pharmacol.199876558959710.1139/y98‑0409839086
    [Google Scholar]
  93. CerqueiraÉ. MarinhoD.A. NeivaH.P. LourençoO. Inflammatory effects of high and moderate intensity exercise—a systematic review.Front. Physiol.202010155010.3389/fphys.2019.0155031992987
    [Google Scholar]
  94. MunhozC.D. García-BuenoB. MadrigalJ.L.M. LepschL.B. ScavoneC. LezaJ.C. Stress-induced neuroinflammation: Mechanisms and new pharmacological targets.Braz. J. Med. Biol. Res.200841121037104610.1590/S0100‑879X200800120000119148364
    [Google Scholar]
  95. WoleverR.Q. BobinetK.J. McCabeK. MackenzieE.R. FeketeE. KusnickC.A. BaimeM. Effective and viable mind-body stress reduction in the workplace: A randomized controlled trial.J. Occup. Health Psychol.201217224625810.1037/a002727822352291
    [Google Scholar]
  96. HaackM. SimpsonN. SethnaN. KaurS. MullingtonJ. Sleep deficiency and chronic pain: Potential underlying mechanisms and clinical implications.Neuropsychopharmacology202045120521610.1038/s41386‑019‑0439‑z31207606
    [Google Scholar]
  97. DesaiS.J. PrickrilB. RasoolyA. Mechanisms of phytonutrient modulation of cyclooxygenase-2 (COX-2) and inflammation related to cancer.Nutr. Cancer201870335037510.1080/01635581.2018.144609129578814
    [Google Scholar]
  98. PerroneM.G. CentonzeA. MiciacciaM. FerorelliS. ScilimatiA. Cyclooxygenase inhibition safety and efficacy in inflammation-based psychiatric disorders.Molecules20202522538810.3390/molecules2522538833217958
    [Google Scholar]
  99. SearsB. RicordiC. Anti-inflammatory nutrition as a pharmacological approach to treat obesity.J Obes2011201143198510.1155/2011/431985
    [Google Scholar]
  100. NunesC.R. Barreto ArantesM. Menezes de Faria PereiraS. Leandro da CruzL. de Souza PassosM. Pereira de MoraesL. VieiraI.J.C. Barros de OliveiraD. Plants as sources of anti-inflammatory agents.Molecules20202516372610.3390/molecules2516372632824133
    [Google Scholar]
  101. AhmedM.S. KhanI.J. AmanS. ChauhanS. KaurN. ShriwastavS. GoelK. SainiM. DhankarS. SinghT.G. DevJ. MujwarS. Phytochemical investigations, in-vitro antioxidant, antimicrobial potential, and in-silico computational docking analysis of Euphorbia milii Des Moul.J. Exp. Biol. Agric. Sci.202311238039310.18006/2023.11(2).380.393
    [Google Scholar]
  102. ShahbaziR. SharifzadF. BagheriR. AlsadiN. Yasavoli-SharahiH. MatarC. Anti-inflammatory and immunomodulatory properties of fermented plant foods.Nutrients2021135151610.3390/nu1305151633946303
    [Google Scholar]
  103. NigamD. YadavR. TiwariU. Omega-3 fatty acids and its role in human health.Functional Food and Human HealthChamSpringer201810.1007/978‑981‑13‑1123‑9_9
    [Google Scholar]
  104. FuY. Associations among dietary omega-3 polyunsaturated fatty acids, the gut microbiota, and intestinal immunity.Mediators Inflamm.20212021887922710.1155/2021/8879227
    [Google Scholar]
  105. WallR. RossR.P. FitzgeraldG.F. StantonC. Fatty acids from fish: The anti-inflammatory potential of long-chain omega-3 fatty acids.Nutr. Rev.201068528028910.1111/j.1753‑4887.2010.00287.x20500789
    [Google Scholar]
  106. BadriW. MiladiK. NazariQ.A. Greige-GergesH. FessiH. ElaissariA. Encapsulation of NSAIDs for inflammation management: Overview, progress, challenges and prospects.Int. J. Pharm.20165151-275777310.1016/j.ijpharm.2016.11.00227829170
    [Google Scholar]
  107. HäuserW. PerrotS. ClauwD.J. FitzcharlesM.A. Unravelling fibromyalgia—steps toward individualized management.J. Pain201819212513410.1016/j.jpain.2017.08.00928943233
    [Google Scholar]
  108. NarsinghaniT. SharmaR. Lead optimization on conventional non-steroidal anti-inflammatory drugs: An approach to reduce gastrointestinal toxicity.Chem. Biol. Drug Des.201484112310.1111/cbdd.1229224460671
    [Google Scholar]
  109. MorphyR. RankovicZ. Designed multiple ligands. An emerging drug discovery paradigm.J. Med. Chem.200548216523654310.1021/jm058225d16220969
    [Google Scholar]
/content/journals/raiad/10.2174/0127722708297531240919105551
Loading
/content/journals/raiad/10.2174/0127722708297531240919105551
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test