Skip to content
2000
image of Therapeutic Potential of Plant Phenolic Acids Combating Cancer Drug Resistance

Abstract

Despite notable progress in treatment modalities, cancer continues to be a prominent cause of death globally. Chemotherapy is the main method used to treat cancer, and chemotherapeutic medications are categorized according to how they work. Nevertheless, the issue of multidrug resistance (MDR) is a significant obstacle, impacting almost 90% of cancer patients who receive chemotherapy or innovative targeted medicines. MDR processes involve the quick metabolism of foreign substances, the accelerated removal of drugs from cells, the stimulation of growth hormones, the enhancement of DNA repair ability, and the influence of genetic variables. Recent studies have mostly concentrated on studying the anticancer effects of dietary phytoconstituents as a possible remedy for overcoming multidrug resistance (MDR). Various bioactive compounds, such as phenolic acids, phenylpropanoids, flavonoids, stilbenes, terpenoids, and organo-sulfur compounds, have shown potential in fighting cancer. It is worth mentioning that a number of phenylpropanoids are now being tested in clinical trials to evaluate their effectiveness in fighting cancer. This review presents a comprehensive summary of the existing knowledge regarding dietary phytoconstituents as possible agents for treating cancer, particularly their ability to overcome MDR. This discussion will focus on the mechanisms by which these compounds work, as well as the data from both preclinical and clinical studies. Additionally, we have explored the potential future applications of these compounds in the development of cancer therapeutics.

Loading

Article metrics loading...

/content/journals/rafna/10.2174/012772574X350275241230053727
2025-01-22
2025-09-26
Loading full text...

Full text loading...

References

  1. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  2. Siegel R.L. Giaquinto A.N. Jemal A. Cancer statistics, 2024. CA Cancer J. Clin. 2024 74 1 12 49 10.3322/caac.21820 38230766
    [Google Scholar]
  3. Siegel R.L. Miller K.D. Fuchs H.E. Jemal A. Cancer statistics, 2021. CA Cancer J. Clin. 2021 71 1 7 33 10.3322/caac.21654 33433946
    [Google Scholar]
  4. Cao W. Chen H.D. Yu Y.W. Li N. Chen W.Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin. Med. J. 2021 134 7 783 791 10.1097/CM9.0000000000001474 33734139
    [Google Scholar]
  5. Dolman M.E.M. Ekert P.G. Functional precision medicine for pediatric cancers. Nat. Med. 2024 30 4 940 941 10.1038/s41591‑024‑02863‑5 38605165
    [Google Scholar]
  6. Torre L.A. Siegel R.L. Ward E.M. Jemal A. Global cancer incidence and mortality rates and trends - An update. Cancer Epidemiol. Biomarkers Prev. 2016 25 1 16 27 10.1158/1055‑9965.EPI‑15‑0578 26667886
    [Google Scholar]
  7. Wu Q. Yang Z. Nie Y. Shi Y. Fan D. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Lett. 2014 347 2 159 166 10.1016/j.canlet.2014.03.013 24657660
    [Google Scholar]
  8. Duan C. Yu M. Xu J. Li B.Y. Zhao Y. Kankala R.K. Overcoming Cancer Multi-drug Resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges. Biomed. Pharmacother. 2023 162 114643 10.1016/j.biopha.2023.114643 37031496
    [Google Scholar]
  9. Zou J.Y. Chen Q.L. Luo X.C. Damdinjav D. Abdelmohsen U.R. Li H.Y. Battulga T. Chen H.B. Wang Y.Q. Zhang J.Y. Natural products reverse cancer multidrug resistance. Front. Pharmacol. 2024 15 1348076 10.3389/fphar.2024.1348076 38572428
    [Google Scholar]
  10. Guo Q. Cao H. Qi X. Li H. Ye P. Wang Z. Wang D. Sun M. Research progress in reversal of tumor multi-drug resistance via natural products. Anticancer. Agents Med. Chem. 2017 17 11 1466 1476 10.2174/1871520617666171016105704 29034843
    [Google Scholar]
  11. Wei W.L. Zeng R. Gu C.M. Qu Y. Huang L.F. Angelica sinensis in China-A review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. J. Ethnopharmacol. 2016 190 116 141 10.1016/j.jep.2016.05.023 27211015
    [Google Scholar]
  12. Gong J. Zhou S. Yang S. Vanillic acid suppresses HIF-1α expression via inhibition of mTOR/p70S6K/4E-BP1 and Raf/MEK/ERK pathways in human colon cancer HCT116 cells. Int. J. Mol. Sci. 2019 20 3 465 10.3390/ijms20030465 30678221
    [Google Scholar]
  13. Das AB Goud V V. Das C. Phenolic compounds as functional ingredients in beverages. Academic Press 2019 10.1016/B978‑0‑12‑816687‑1.00009‑6
    [Google Scholar]
  14. Lin H.H. Chen J.H. Chou F.P. Wang C.J. Protocatechuic acid inhibits cancer cell metastasis involving the down‐regulation of Ras/Akt/NF‐κB pathway and MMP‐2 production by targeting RhoB activation. Br. J. Pharmacol. 2011 162 1 237 254 10.1111/j.1476‑5381.2010.01022.x 20840540
    [Google Scholar]
  15. Ashrafizadeh M. Zarrabi A. Mirzaei S. Hashemi F. Samarghandian S. Zabolian A. Hushmandi K. Ang H.L. Sethi G. Kumar A.P. Ahn K.S. Nabavi N. Khan H. Makvandi P. Varma R.S. Gallic acid for cancer therapy: Molecular mechanisms and boosting efficacy by nanoscopical delivery. Food Chem. Toxicol. 2021 157 112576 10.1016/j.fct.2021.112576 34571052
    [Google Scholar]
  16. Gupta A. Singh A.K. Loka M. Pandey A.K. Bishayee A. Ferulic acid-mediated modulation of apoptotic signaling pathways in cancer. Adv. Protein Chem. Struct. Biol. 2021 125 215 257 10.1016/bs.apcsb.2020.12.005 33931140
    [Google Scholar]
  17. Shakeel I. Khan S. Roy S. Sherwani F. Ahmad S.F. Sohal S.S. Afzal M. Hassan M.I. Investigating potential of cholic acid, syringic acid, and mangiferin as cancer therapeutics through sphingosine kinase 1 inhibition. Int. J. Biol. Macromol. 2023 253 Pt 5 127036 10.1016/j.ijbiomac.2023.127036 37788733
    [Google Scholar]
  18. Peleg H. Naim M. Rouseff R.L. Zehavi U. Distribution of bound and free phenolic acids in oranges ( Citrus sinensis ) and Grapefruits ( Citrus paradisi ). J. Sci. Food Agric. 1991 57 3 417 426 10.1002/jsfa.2740570312
    [Google Scholar]
  19. Yang Y.S. Wang B. Liu J. Li Q. Jiao Q.C. Qin P. Discovery of coumaric acid derivatives hinted by coastal marine source to seek for uric acid lowering agents. J. Enzyme Inhib. Med. Chem. 2023 38 1 2163241 10.1080/14756366.2022.2163241 36629443
    [Google Scholar]
  20. Zhou Y. Fu X. Guan Y. Gong M. He K. Huang B. 1,3-Dicaffeoylquinic acid targeting 14-3-3 tau suppresses human breast cancer cell proliferation and metastasis through IL6/JAK2/PI3K pathway. Biochem. Pharmacol. 2020 172 113752 10.1016/j.bcp.2019.113752 31836387
    [Google Scholar]
  21. Annaji M. Poudel I. Boddu S.H.S. Arnold R.D. Tiwari A.K. Babu R.J. Resveratrol‐loaded nanomedicines for cancer applications. Cancer Rep. 2021 4 3 e1353 10.1002/cnr2.1353 33655717
    [Google Scholar]
  22. Varoni E.M. Lo Faro A.F. Sharifi-Rad J. Iriti M. Anticancer molecular mechanisms of resveratrol. Front. Nutr. 2016 3 8 10.3389/fnut.2016.00008 27148534
    [Google Scholar]
  23. Reyes-Farias M. Carrasco-Pozo C. The anti-cancer effect of quercetin: Molecular implications in cancer metabolism. Int. J. Mol. Sci. 2019 20 13 3177 10.3390/ijms20133177 31261749
    [Google Scholar]
  24. Ming T. Tao Q. Tang S. Zhao H. Yang H. Liu M. Ren S. Xu H. Curcumin: An epigenetic regulator and its application in cancer. Biomed. Pharmacother. 2022 156 113956 10.1016/j.biopha.2022.113956 36411666
    [Google Scholar]
  25. Mielecki M. Lesyng B. Cinnamic acid derivatives as inhibitors of oncogenic protein kinases – Structure, mechanisms and biomedical effects. Curr. Med. Chem. 2016 23 10 954 982 10.2174/0929867323666160316123609 26980568
    [Google Scholar]
  26. Nauman M.C. Johnson J.J. The purple mangosteen (Garcinia mangostana): Defining the anticancer potential of selected xanthones. Pharmacol. Res. 2022 175 106032 10.1016/j.phrs.2021.106032 34896543
    [Google Scholar]
  27. Chaitanya M.V.N.L. Ramanunny A.K. Babu M.R. Gulati M. Vishwas S. Singh T.G. Chellappan D.K. Adams J. Dua K. Singh S.K. Journey of rosmarinic acid as biomedicine to nano-biomedicine for treating cancer: Current strategies and future perspectives. Pharmaceutics 2022 14 11 2401 10.3390/pharmaceutics14112401 36365218
    [Google Scholar]
  28. Ozdal T. Caba Z.T. Cavdar H. Karaca A.C. Capanoglu E. Tomas M. Narirutin: Advances on resources, biosynthesis pathway, bioavailability, bioactivity, and pharmacology. Handbook of Dietary Flavonoids Springer Cham 2023 1 22 10.1007/978‑3‑030‑94753‑8_32‑1
    [Google Scholar]
  29. Hatami E. Jaggi M. Chauhan S.C. Yallapu M.M. Gambogic acid: A shining natural compound to nanomedicine for cancer therapeutics. Biochim. Biophys. Acta Rev. Cancer 2020 1874 1 188381 10.1016/j.bbcan.2020.188381 32492470
    [Google Scholar]
  30. Zhang L. Chinnathambi A. Alharbi S.A. Veeraraghavan V.P. Mohan S.K. Zhang G. Punicalagin promotes the apoptosis in human cervical cancer (ME-180) cells through mitochondrial pathway and by inhibiting the NF-kB signaling pathway. Saudi J. Biol. Sci. 2020 27 4 1100 1106 10.1016/j.sjbs.2020.02.015 32256171
    [Google Scholar]
  31. Alibakhshi A Malekzadeh R Hosseini SA Yaghoobi H Investigation of the therapeutic role of native plant compounds against colorectal cancer based on system biology and virtual screening. Sci Rep 2023 13 1 11451 10.1038/s41598‑023‑38134‑5
    [Google Scholar]
  32. Junkins K. Rodgers M. Phelan S.A. Oleuropein induces cytotoxicity and peroxiredoxin over-expression in MCF-7 human breast cancer cells. Anticancer Res. 2023 43 10 4333 4339 10.21873/anticanres.16628 37772594
    [Google Scholar]
  33. Imran M. Saeed F. Gilani S.A. Shariati M.A. Imran A. Afzaal M. Atif M. Tufail T. Anjum F.M. Fisetin: An anticancer perspective. Food Sci. Nutr. 2021 9 1 3 16 10.1002/fsn3.1872 33473265
    [Google Scholar]
  34. Huang G. Li S. Zhang Y. Zhou X. Chen W. Vicenin-2 is a novel inhibitor of STAT3 signaling pathway in human hepatocellular carcinoma. J. Funct. Foods 2020 69 103921 10.1016/j.jff.2020.103921
    [Google Scholar]
  35. Cheriet T. Ben-Bachir B. Thamri O. Seghiri R. Mancini I. Isolation and biological properties of the natural flavonoids pectolinarin and pectolinarigenin—A review. Antibiotics 2020 9 7 417 10.3390/antibiotics9070417 32708783
    [Google Scholar]
  36. Woo S.M. Seo S.U. Kim S.H. Nam J.O. Kim S. Park J.W. Min K. Kwon T.K. Hispidulin enhances trail-mediated apoptosis via CaMKKβ/AMPK/USP51 axis-mediated bim stabilization. Cancers 2019 11 12 1960 10.3390/cancers11121960 31817696
    [Google Scholar]
  37. Hsu R.J. Hsu Y.C. Chen S.P. Fu C.L. Yu J.C. Chang F.W. Chen Y.H. Liu J.M. Ho J.Y. Yu C.P. The triterpenoids of Hibiscus syriacus induce apoptosis and inhibit cell migration in breast cancer cells. BMC Complement. Altern. Med. 2015 15 1 65 10.1186/s12906‑015‑0592‑9 25885960
    [Google Scholar]
  38. Yan X. Qi M. Li P. Zhan Y. Shao H. Apigenin in cancer therapy: Anti-cancer effects and mechanisms of action. Cell Biosci. 2017 7 1 50 10.1186/s13578‑017‑0179‑x 29034071
    [Google Scholar]
  39. Zubair H. Bhardwaj A. Ahmad A. Srivastava S.K. Khan M.A. Patel G.K. Singh S. Singh A.P. Hydroxytyrosol induces apoptosis and cell cycle arrest and suppresses multiple oncogenic signaling pathways in prostate cancer cells. Nutr. Cancer 2017 69 6 932 942 10.1080/01635581.2017.1339818 28718667
    [Google Scholar]
  40. Turrini E. Maffei F. Milelli A. Calcabrini C. Fimognari C. Overview of the anticancer profile of avenanthramides from oat. Int. J. Mol. Sci. 2019 20 18 4536 10.3390/ijms20184536 31540249
    [Google Scholar]
  41. Li X. Pham V. Tippin M. Fu D. Rendon R. Song L. Uchio E. Hoang B.H. Zi X. Flavokawain B targets protein neddylation for enhancing the anti-prostate cancer effect of Bortezomib via Skp2 degradation. Cell Commun. Signal. 2019 17 1 25 10.1186/s12964‑019‑0338‑2 30885218
    [Google Scholar]
  42. Chen CH Wang BW Hsiao YC Wu CY Cheng FJ Hsia TC PKCδ-mediated SGLT1 upregulation confers the acquired resistance of NSCLC to EGFR TKIs. Oncogene 2021 40 29 4796 4808 10.1038/s41388‑021‑01889‑0
    [Google Scholar]
  43. Yalameha B. Nejabati H.R. Nouri M. Cardioprotective potential of vanillic acid. Clin. Exp. Pharmacol. Physiol. 2023 50 3 193 204 10.1111/1440‑1681.13736 36370144
    [Google Scholar]
  44. Liu H. Xiao M. Zuo J. He X. Lu P. Li Y. Zhao Y. Xia F. Vanillic acid combats Vibrio alginolyticus by cell membrane damage and biofilm reduction. J. Fish Dis. 2021 44 11 1799 1809 10.1111/jfd.13498 34310732
    [Google Scholar]
  45. Mentese A. Demir S. Kucuk H. Yulug E. Alemdar N.T. Demir E.A. Aliyazicioglu Y. Vanillic acid abrogates cisplatin-induced ovotoxicity through activating Nrf2 pathway. Tissue Cell 2023 84 102161 10.1016/j.tice.2023.102161 37478646
    [Google Scholar]
  46. Lashgari N.A. Roudsari N.M. Momtaz S. Abdolghaffari A.H. Atkin S.L. Sahebkar A. Regulatory mechanisms of vanillic acid in cardiovascular diseases: A review. Curr. Med. Chem. 2023 30 22 2562 2576 10.2174/0929867329666220831152608 36045525
    [Google Scholar]
  47. Saeedavi M. Goudarzi M. Fatemi I. Basir Z. Noori S.M.A. Mehrzadi S. Gentisic acid mitigates gentamicin-induced nephrotoxicity in rats. Tissue Cell 2023 84 102191 10.1016/j.tice.2023.102191 37556917
    [Google Scholar]
  48. Abedi F. Razavi B.M. Hosseinzadeh H. A review on gentisic acid as a plant derived phenolic acid and metabolite of aspirin: Comprehensive pharmacology, toxicology, and some pharmaceutical aspects. Phytother. Res. 2020 34 4 729 741 10.1002/ptr.6573 31825145
    [Google Scholar]
  49. Sun S. Kee H.J. Ryu Y. Choi S.Y. Kim G.R. Kim H.S. Kee S.J. Jeong M.H. Gentisic acid prevents the transition from pressure overload-induced cardiac hypertrophy to heart failure. Sci. Rep. 2019 9 1 3018 10.1038/s41598‑019‑39423‑8 30816171
    [Google Scholar]
  50. Pignet A.L. Schellnegger M. Hecker A. Kohlhauser M. Kotzbeck P. Kamolz L.P. Resveratrol-induced signal transduction in wound healing. Int. J. Mol. Sci. 2021 22 23 12614 10.3390/ijms222312614 34884419
    [Google Scholar]
  51. Qi W. Qi W. Xiong D. Long M. Quercetin: Its antioxidant mechanism, antibacterial properties and potential application in prevention and control of toxipathy. Molecules 2022 27 19 6545 10.3390/molecules27196545 36235082
    [Google Scholar]
  52. Singh P. Arif Y. Bajguz A. Hayat S. The role of quercetin in plants. Plant Physiol. Biochem. 2021 166 10 19 10.1016/j.plaphy.2021.05.023 34087741
    [Google Scholar]
  53. Di Petrillo A. Orrù G. Fais A. Fantini M.C. Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytother. Res. 2022 36 1 266 278 10.1002/ptr.7309 34709675
    [Google Scholar]
  54. Nguyen T.L.A. Bhattacharya D. Antimicrobial activity of quercetin: An approach to its mechanistic principle. Molecules 2022 27 8 2494 10.3390/molecules27082494 35458691
    [Google Scholar]
  55. Shen P. Lin W. Deng X. Ba X. Han L. Chen Z. Qin K. Huang Y. Tu S. Potential implications of quercetin in autoimmune diseases. Front. Immunol. 2021 12 689044 10.3389/fimmu.2021.689044 34248976
    [Google Scholar]
  56. Deepika Maurya P.K. Health benefits of quercetin in age-related diseases. Molecules 2022 27 8 2498 10.3390/molecules27082498
    [Google Scholar]
  57. Andres S. Pevny S. Ziegenhagen R. Bakhiya N. Schäfer B. Hirsch-Ernst K.I. Lampen A. Safety aspects of the use of quercetin as a dietary supplement. Mol. Nutr. Food Res. 2018 62 1 1700447 10.1002/mnfr.201700447 29127724
    [Google Scholar]
  58. Nelson K.M. Dahlin J.L. Bisson J. Graham J. Pauli G.F. Walters M.A. The essential medicinal chemistry of curcumin. J. Med. Chem. 2017 60 5 1620 1637 10.1021/acs.jmedchem.6b00975 28074653
    [Google Scholar]
  59. Gupta S.C. Patchva S. Aggarwal B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J. 2013 15 1 195 218 10.1208/s12248‑012‑9432‑8 23143785
    [Google Scholar]
  60. Kotha R.R. Luthria D.L. Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules 2019 24 16 2930 10.3390/molecules24162930 31412624
    [Google Scholar]
  61. Vollono L. Falconi M. Gaziano R. Iacovelli F. Dika E. Terracciano C. Bianchi L. Campione E. Potential of curcumin in skin disorders. Nutrients 2019 11 9 2169 10.3390/nu11092169 31509968
    [Google Scholar]
  62. Heidari H. Bagherniya M. Majeed M. Sathyapalan T. Jamialahmadi T. Sahebkar A. Curcumin‐piperine co‐supplementation and human health: A comprehensive review of preclinical and clinical studies. Phytother. Res. 2023 37 4 1462 1487 10.1002/ptr.7737 36720711
    [Google Scholar]
  63. Priyadarsini K. The chemistry of curcumin: From extraction to therapeutic agent. Molecules 2014 19 12 20091 20112 10.3390/molecules191220091 25470276
    [Google Scholar]
  64. Tomeh M.A. Hadianamrei R. Zhao X. A review of curcumin and its derivatives as anticancer agents. Int. J. Mol. Sci. 2019 20 5 1033 10.3390/ijms20051033 30818786
    [Google Scholar]
  65. Yavarpour-Bali H. Ghasemi-Kasman M. Pirzadeh M. Curcumin-loaded nanoparticles: A novel therapeutic strategy in treatment of central nervous system disorders. Int. J. Nanomedicine 2019 14 4449 4460 10.2147/IJN.S208332 31417253
    [Google Scholar]
  66. Zhou D.D. Luo M. Huang S.Y. Saimaiti A. Shang A. Gan R.Y. Li H.B. Effects and mechanisms of resveratrol on aging and age‐related diseases. Oxid. Med. Cell. Longev. 2021 2021 1 9932218 10.1155/2021/9932218 34336123
    [Google Scholar]
  67. Breuss J.M. Atanasov A.G. Uhrin P. Resveratrol and its effects on the vascular system. Int. J. Mol. Sci. 2019 20 7 1523 10.3390/ijms20071523 30934670
    [Google Scholar]
  68. Shaito A. Posadino A.M. Younes N. Hasan H. Halabi S. Alhababi D. Al-Mohannadi A. Abdel-Rahman W.M. Eid A.H. Nasrallah G.K. Pintus G. Potential adverse effects of resveratrol: A literature review. Int. J. Mol. Sci. 2020 21 6 2084 10.3390/ijms21062084 32197410
    [Google Scholar]
  69. Kataria R. Khatkar A. Resveratrol in various pockets: A review. Curr. Top. Med. Chem. 2019 19 2 116 122 10.2174/1568026619666190301173958 30834833
    [Google Scholar]
  70. Nadile M. Retsidou M.I. Gioti K. Beloukas A. Tsiani E. Resveratrol against cervical cancer: Evidence from in vitro and in vivo studies. Nutrients 2022 14 24 5273 10.3390/nu14245273 36558430
    [Google Scholar]
  71. Tian B. Liu J. Resveratrol: A review of plant sources, synthesis, stability, modification and food application. J. Sci. Food Agric. 2020 100 4 1392 1404 10.1002/jsfa.10152 31756276
    [Google Scholar]
  72. Pyo I.S. Yun S. Yoon Y.E. Choi J.W. Lee S.J. Mechanisms of aging and the preventive effects of resveratrol on age-related diseases. Molecules 2020 25 20 4649 10.3390/molecules25204649 33053864
    [Google Scholar]
  73. Matos M.J. Coumarin and its derivatives—editorial. Molecules 2021 26 20 6320 10.3390/molecules26206320 34684900
    [Google Scholar]
  74. Bhattarai N. Kumbhar A.A. Pokharel Y.R. Yadav P.N. Anticancer potential of coumarin and its derivatives. Mini Rev. Med. Chem. 2021 21 19 2996 3029 10.2174/18755607MTE1uMjAm4 33820507
    [Google Scholar]
  75. G A.C. Gondru R. Li Y. Banothu J. G AC Coumarin–benzimidazole hybrids: A review of developments in medicinal chemistry. Eur. J. Med. Chem. 2022 227 113921 10.1016/j.ejmech.2021.113921
    [Google Scholar]
  76. Di Stasi L.C. Coumarin derivatives in inflammatory bowel disease. Molecules 2021 26 2 422 10.3390/molecules26020422 33467396
    [Google Scholar]
  77. Bhatia R. Rawal R.K. Coumarin hybrids: Promising Scaffolds in the treatment of breast cancer. Mini Rev. Med. Chem. 2019 19 17 1443 1458 10.2174/1389557519666190308122509 30854961
    [Google Scholar]
  78. Supuran C.T. Coumarin carbonic anhydrase inhibitors from natural sources. J. Enzyme Inhib. Med. Chem. 2020 35 1 1462 1470 10.1080/14756366.2020.1788009 32779543
    [Google Scholar]
  79. Xia D. Liu H. Cheng X. Maraswami M. Chen Y. Lv X. Recent developments of coumarin-based hybrids in drug discovery. Curr. Top. Med. Chem. 2022 22 4 269 283 10.2174/1568026622666220105105450 34986774
    [Google Scholar]
  80. Song X.F. Fan J. Liu L. Liu X.F. Gao F. Coumarin derivatives with anticancer activities: An update. Arch. Pharm. 2020 353 8 2000025 10.1002/ardp.202000025 32383190
    [Google Scholar]
  81. Qiao O. Zhang L. Han L. Wang X. Li Z. Bao F. Hao H. Hou Y. Duan X. Li N. Gong Y. Rosmarinic acid plus deferasirox inhibits ferroptosis to alleviate crush syndrome-related AKI via Nrf2/Keap1 pathway. Phytomedicine 2024 129 155700 10.1016/j.phymed.2024.155700 38704914
    [Google Scholar]
  82. Ghoniem A.A. Abd El-Hai K.M. El-khateeb A.Y. Eldadamony N.M. Mahmoud S.F. Elsayed A. Enhancing the potentiality of Trichoderma harzianum against pythium pathogen of beans using chamomile (Matricaria chamomilla, L.) flower extract. Molecules 2021 26 4 1178 10.3390/molecules26041178 33671833
    [Google Scholar]
  83. Budhiraja A. Dhingra G. Development and characterization of a novel antiacne niosomal gel of rosmarinic acid. Drug Deliv. 2015 22 6 723 730 10.3109/10717544.2014.903010 24786487
    [Google Scholar]
  84. Page M. Pacico N. Ourtioualous S. Deprez T. Koshibu K. Procognitive compounds promote neurite outgrowth. Pharmacology 2015 96 3-4 131 136 10.1159/000436974 26228694
    [Google Scholar]
  85. Qiao J. Wang L. Wang L. Li Z. Huai Y. Zhang S. Yu Y. Development and characterization of modified gelatin-based cling films with antimicrobial and antioxidant activities and their application in the preservation of cherry tomatoes. Antioxidants 2024 13 4 431 10.3390/antiox13040431 38671879
    [Google Scholar]
  86. Zhao S. Zhou X. Dang J. Wang Y. Jiang J. Zhao T. Sun D. Chen C. Dai X. Liu Y. Zhang M. Construction of a layer-by-layer self-assembled rosemarinic acid delivery system on the surface of CFRPEEK implants for enhanced anti-inflammatory and osseointegration activities. J. Mater. Chem. B Mater. Biol. Med. 2024 12 12 3031 3046 10.1039/D3TB02599C 38411199
    [Google Scholar]
  87. Mitra S. Lami M.S. Uddin T.M. Das R. Islam F. Anjum J. Hossain M.J. Emran T.B. Prospective multifunctional roles and pharmacological potential of dietary flavonoid narirutin. Biomed. Pharmacother. 2022 150 112932 10.1016/j.biopha.2022.112932 35413599
    [Google Scholar]
  88. Park K.H. Makki H.M.M. Kim S.H. Chung H.J. Jung J. Narirutin ameliorates alcohol-induced liver injury by targeting MAPK14 in zebrafish larvae. Biomed. Pharmacother. 2023 166 115350 10.1016/j.biopha.2023.115350 37633055
    [Google Scholar]
  89. Singh S. Maurya A.K. Meena A. Mishra N. Luqman S. Narirutin downregulates lipoxygenase-5 expression and induces G0/G1 arrest in triple-negative breast carcinoma cells. Biochim. Biophys. Acta, Gen. Subj. 2023 1867 6 130340 10.1016/j.bbagen.2023.130340 36868290
    [Google Scholar]
  90. Shi X. Zhao L. Niu L. Wei J. Li X. Jin Y. Enzyme-assisted extraction of narirutin from citri reticulatae pericarpium and anti-allergic asthma activity. Iran. J. Immunol. 2022 19 4 385 394 10.22034/iji.2022.91640.2095 36585880
    [Google Scholar]
  91. Pandey P. Khan F. Ramniwas S. Saeed M. Ahmad I. A mechanistic review of the pharmacological potential of narirutin: A dietary flavonoid. Naunyn Schmiedebergs Arch. Pharmacol. 2024 397 8 5449 5461 10.1007/s00210‑024‑03022‑w 38457040
    [Google Scholar]
  92. Shi X. Zhao L. Niu L. Yan Y. Chen Q. Jin Y. Li X. Oral intervention of narirutin ameliorates the allergic response of ovalbumin allergy. J. Agric. Food Chem. 2022 70 41 13313 13326 10.1021/acs.jafc.2c05383 36217946
    [Google Scholar]
  93. Li M. Su F. Zhu M. Zhang H. Wei Y. Zhao Y. Li J. Lv S. Research progress in the field of gambogic acid and its derivatives as antineoplastic drugs. Molecules 2022 27 9 2937 10.3390/molecules27092937 35566290
    [Google Scholar]
  94. Kashyap D. Mondal R. Tuli H.S. Kumar G. Sharma A.K. Molecular targets of gambogic acid in cancer: Recent trends and advancements. Tumour Biol. 2016 37 10 12915 12925 10.1007/s13277‑016‑5194‑8 27448303
    [Google Scholar]
  95. Li Y. Wang G. Wang T. Li C. Zhang X. Li J. Wang Y. Liu N. Chen J. Su X. PEGylated gambogic acid nanoparticles enable efficient renal-targeted treatment of acute kidney injury. Nano Lett. 2023 23 12 5641 5647 10.1021/acs.nanolett.3c01235 37294146
    [Google Scholar]
  96. Wang S. Wang Y. Zhu H. Chen M. Zhang L. Gambogic acid inhibits gastric cancer cell proliferation through necroptosis. Can. J. Gastroenterol. Hepatol. 2023 2023 1 10 10.1155/2023/7532367 37588664
    [Google Scholar]
  97. Pandey M.K. Karelia D. Amin S.G. Gambogic acid and its role in chronic diseases. Adv. Exp. Med. Biol. 2016 928 375 395 10.1007/978‑3‑319‑41334‑1_15 27671824
    [Google Scholar]
  98. Luo H. Vong C.T. Chen H. Gao Y. Lyu P. Qiu L. Zhao M. Liu Q. Cheng Z. Zou J. Yao P. Gao C. Wei J. Ung C.O.L. Wang S. Zhong Z. Wang Y. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin. Med. 2019 14 1 48 10.1186/s13020‑019‑0270‑9 31719837
    [Google Scholar]
  99. Kumar K. Srivastav S. Sharanagat V.S. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason. Sonochem. 2021 70 105325 10.1016/j.ultsonch.2020.105325 32920300
    [Google Scholar]
  100. Ren X. Meng X. Zhang Z. Du H. Li T. Wang N. Effects of ultrasound-assisted extraction on structure and rheological properties of flaxseed gum. Gels 2023 9 4 318 10.3390/gels9040318 37102930
    [Google Scholar]
  101. Mojerlou Z. Elhamirad A. Optimization of ultrasound-assisted extraction (UAE) of phenolic compounds from olive cake. J. Food Sci. Technol. 2018 55 3 977 984 10.1007/s13197‑017‑3005‑x 29487439
    [Google Scholar]
  102. Milićević N. Kojić P. Sakač M. Mišan A. Kojić J. Perussello C. Banjac V. Pojić M. Tiwari B. Kinetic modelling of ultrasound-assisted extraction of phenolics from cereal brans. Ultrason. Sonochem. 2021 79 105761 10.1016/j.ultsonch.2021.105761 34601448
    [Google Scholar]
  103. Linares G. Rojas M.L. Ultrasound-assisted extraction of natural pigments from food processing by-products: A review. Front. Nutr. 2022 9 891462 10.3389/fnut.2022.891462 35685880
    [Google Scholar]
  104. Belwal T. Pandey A. Bhatt I.D. Rawal R.S. Optimized microwave assisted extraction (MAE) of alkaloids and polyphenols from Berberis roots using multiple-component analysis. Sci. Rep. 2020 10 1 917 10.1038/s41598‑020‑57585‑8 31969583
    [Google Scholar]
  105. Herawati D. Hendradi E. Zaidan A.H. Pudjiastut P. Microwave-assisted extraction of fucoidan from Sargassum plagiophyllum and its activities. Pak. J. Biol. Sci. 2022 25 11 1008 1013 10.3923/pjbs.2022.1008.1013 36591932
    [Google Scholar]
  106. Jiménez-Amezcua I. González-Prada A. Díez-Municio M. Soria A.C. Ruiz-Matute A.I. Sanz M.L. Simultaneous microwave-assisted extraction of bioactive compounds from aged garlic. J. Chromatogr. A 2023 1704 464128 10.1016/j.chroma.2023.464128 37302253
    [Google Scholar]
  107. Farhadpour M. Hashempour H. Talebpour Z. A-Bagheri N. Shushtarian M.S. Gruber C.W. Ghassempour A. Microwave-assisted extraction of cyclotides from Viola ignobilis. Anal. Biochem. 2016 497 83 89 10.1016/j.ab.2015.12.001 26706804
    [Google Scholar]
  108. Jitrangsri K. Chaidedgumjorn A. Satiraphan M. Supercritical fluid extraction (SFE) optimization of trans-resveratrol from peanut kernels (Arachis hypogaea) by experimental design. J. Food Sci. Technol. 2020 57 4 1486 1494 10.1007/s13197‑019‑04184‑9 32180645
    [Google Scholar]
  109. Bader C.D. Neuber M. Panter F. Krug D. Müller R. Supercritical fluid extraction enhances discovery of secondary metabolites from myxobacteria. Anal. Chem. 2020 92 23 15403 15411 10.1021/acs.analchem.0c02995 33171050
    [Google Scholar]
  110. Yousefi M. Rahimi-Nasrabadi M. Mirsadeghi S. Pourmortazavi S.M. Supercritical fluid extraction of pesticides and insecticides from food samples and plant materials. Crit. Rev. Anal. Chem. 2020 51 5 1 20 10.1080/10408347.2020.1743965 32295402
    [Google Scholar]
  111. Capuzzo A. Maffei M. Occhipinti A. Supercritical fluid extraction of plant flavors and fragrances. Molecules 2013 18 6 7194 7238 10.3390/molecules18067194 23783457
    [Google Scholar]
  112. Atwi-Ghaddar S. Zerwette L. Destandau E. Lesellier E. Supercritical fluid extraction (SFE) of polar compounds from Camellia sinensis leaves: Use of ethanol/water as a green polarity modifier. Molecules 2023 28 14 5485 10.3390/molecules28145485 37513357
    [Google Scholar]
  113. da Silva J.J. da Silva B.F. Stradiotto N.R. Petrovic M. Gago-Ferrero P. Gros M. Pressurized Liquid Extraction (PLE) and QuEChERS evaluation for the analysis of antibiotics in agricultural soils. MethodsX 2020 7 101171 10.1016/j.mex.2020.101171 33318963
    [Google Scholar]
  114. Otero P. Quintana S.E. Reglero G. Fornari T. García-Risco M.R. Pressurized Liquid Extraction (PLE) as an innovative green technology for the effective enrichment of galician algae extracts with high quality fatty acids and antimicrobial and antioxidant properties. Mar. Drugs 2018 16 5 156 10.3390/md16050156 29748479
    [Google Scholar]
  115. Perez-Vazquez A. Carpena M. Barciela P. Cassani L. Simal-Gandara J. Prieto M.A. Pressurized liquid extraction for the recovery of bioactive compounds from seaweeds for food industry application: A review. Antioxidants 2023 12 3 612 10.3390/antiox12030612 36978860
    [Google Scholar]
  116. Barp L. Višnjevec A.M. Moret S. Pressurized liquid extraction: A powerful tool to implement extraction and purification of food contaminants. Foods 2023 12 10 2017 10.3390/foods12102017 37238835
    [Google Scholar]
  117. Dobroslavić E. Elez Garofulić I. Šeparović J. Zorić Z. Pedisić S. Dragović-Uzelac V. Pressurized liquid extraction as a novel technique for the isolation of Laurus nobilis L. leaf polyphenols. Molecules 2022 27 16 5099 10.3390/molecules27165099 36014331
    [Google Scholar]
  118. Domínguez-Rodríguez G. García M.C. Marina M.L. Plaza M. Pressurized liquid extraction combined with enzymatic-assisted extraction to obtain bioactive non-extractable polyphenols from sweet cherry (Prunus avium L.) pomace. Nutrients 2021 13 9 3242 10.3390/nu13093242 34579121
    [Google Scholar]
  119. Amulya P. ul Islam R. Optimization of enzyme-assisted extraction of anthocyanins from eggplant (Solanum melongena L.) peel. Food Chem. X 2023 18 100643 10.1016/j.fochx.2023.100643 36968313
    [Google Scholar]
  120. Cortes-Ferre H.E. Antunes-Ricardo M. Gutiérrez-Uribe J.A. Enzyme-assisted extraction of anti-inflammatory compounds from habanero chili pepper (Capsicum chinense) seeds. Front. Nutr. 2022 9 942805 10.3389/fnut.2022.942805 36159478
    [Google Scholar]
  121. Lin Y. Pi J. Jin P. Liu Y. Mai X. Li P. Fan H. Enzyme and microwave co-assisted extraction, structural characterization and antioxidant activity of polysaccharides from purple-heart radish. Food Chem. 2022 372 131274 10.1016/j.foodchem.2021.131274 34638061
    [Google Scholar]
  122. Martínez J.M. Delso C. Álvarez I. Raso J. Pulsed electric field‐assisted extraction of valuable compounds from microorganisms. Compr. Rev. Food Sci. Food Saf. 2020 19 2 530 552 10.1111/1541‑4337.12512 33325176
    [Google Scholar]
  123. Ranjha M.M.A.N. Kanwal R. Shafique B. Arshad R.N. Irfan S. Kieliszek M. Kowalczewski P.Ł. Irfan M. Khalid M.Z. Roobab U. Aadil R.M. A critical review on pulsed electric field: A novel technology for the extraction of phytoconstituents. Molecules 2021 26 16 4893 10.3390/molecules26164893 34443475
    [Google Scholar]
  124. Wang M. Zhou J. Castagnini J.M. Berrada H. Barba F.J. Pulsed electric field (PEF) recovery of biomolecules from Chlorella: Extract efficiency, nutrient relative value, and algae morphology analysis. Food Chem. 2023 404 Pt A 134615 10.1016/j.foodchem.2022.134615 36444042
    [Google Scholar]
  125. Buchmann L. Brändle I. Haberkorn I. Hiestand M. Mathys A. Pulsed electric field based cyclic protein extraction of microalgae towards closed-loop biorefinery concepts. Bioresour. Technol. 2019 291 121870 10.1016/j.biortech.2019.121870 31382092
    [Google Scholar]
  126. Ntourtoglou G. Tsapou E.A. Drosou F. Bozinou E. Lalas S. Tataridis P. Dourtoglou V. Pulsed electric field extraction of α and β-acids from pellets of Humulus lupulus (Hop). Front. Bioeng. Biotechnol. 2020 8 297 10.3389/fbioe.2020.00297 32363185
    [Google Scholar]
  127. Carpentieri S. Režek Jambrak A. Ferrari G. Pataro G. Pulsed electric field-assisted extraction of aroma and bioactive compounds from aromatic plants and food by-products. Front. Nutr. 2022 8 792203 10.3389/fnut.2021.792203 35155517
    [Google Scholar]
  128. Martínez J.M. Luengo E. Saldaña G. Álvarez I. Raso J. C-phycocyanin extraction assisted by pulsed electric field from Artrosphira platensis. Food Res. Int. 2017 99 Pt 3 1042 1047 10.1016/j.foodres.2016.09.029 28865615
    [Google Scholar]
  129. Patil Y. Sonawane S.H. Shyam P. Sun X. Manickam S. Hybrid hydrodynamic cavitation (HC) technique for the treatment and disinfection of lake water. Ultrason. Sonochem. 2023 97 106454 10.1016/j.ultsonch.2023.106454 37271031
    [Google Scholar]
  130. Cvetković M. Kompare B. Klemenčič A.K. Application of hydrodynamic cavitation in ballast water treatment. Environ. Sci. Pollut. Res. Int. 2015 22 10 7422 7438 10.1007/s11356‑015‑4360‑7 25810104
    [Google Scholar]
  131. Sun X. Liu J. Ji L. Wang G. Zhao S. Yoon J.Y. Chen S. A review on hydrodynamic cavitation disinfection: The current state of knowledge. Sci. Total Environ. 2020 737 139606 10.1016/j.scitotenv.2020.139606 32783818
    [Google Scholar]
  132. Li X. Long Z. Li X. Hydrodynamic cavitation degradation of hydroquinone using swirl-type micro-nano bubble reactor. Environmental Technology United Kingdom 2023 10.1080/09593330.2023.2248557
    [Google Scholar]
  133. Odehnalová K. Přibilová P. Maršálková E. Zezulka Š. Pochylý F. Rudolf P. Maršálek B. Hydrodynamic cavitation-enhanced activation of sodium percarbonate for estrogen removal. Water Sci. Technol. 2023 88 11 2905 2916 10.2166/wst.2023.382 38096077
    [Google Scholar]
  134. Kataoka H. Solid-phase microextraction and related techniques in bioanalysis. Molecules 2023 28 6 2467 10.3390/molecules28062467 36985438
    [Google Scholar]
  135. Ruesgas-Ramón M. Figueroa-Espinoza M.C. Durand E. Application of deep eutectic solvents (DES) for phenolic compounds extraction: overview, challenges, and opportunities. J. Agric. Food Chem. 2017 65 18 3591 3601 10.1021/acs.jafc.7b01054 28414232
    [Google Scholar]
  136. Farzan M. Farzan M. Amini-Khoei H. Shahrani M. Bijad E. Anjomshoa M. Shabani S. Protective effects of vanillic acid on autistic-like behaviors in a rat model of maternal separation stress: Behavioral, electrophysiological, molecular and histopathological alterations. Int. Immunopharmacol. 2023 118 110112 10.1016/j.intimp.2023.110112 37030116
    [Google Scholar]
  137. Sreelekshmi M. Raghu K.G. Vanillic acid mitigates the impairments in glucose metabolism in HepG2 cells through BAD–GK interaction during hyperinsulinemia. J. Biochem. Mol. Toxicol. 2021 35 6 1 8 10.1002/jbt.22750 33651899
    [Google Scholar]
  138. Santos Oliveira A.J.M. de Castro R.D. Pessôa H.L.F. Wadood A. de Sousa D.P. Amides derived from vanillic acid: Coupling reactions, antimicrobial evaluation, and molecular docking. BioMed Res. Int. 2019 2019 1 11 10.1155/2019/9209676 31139660
    [Google Scholar]
  139. Mohan S. Nair A. Poornima M.S. Raghu K.G. Vanillic acid mitigates hyperinsulinemia induced ER stress mediated altered calcium homeostasis, MAMs distortion and surplus lipogenesis in HepG2 cells. Chem. Biol. Interact. 2023 375 110365 10.1016/j.cbi.2023.110365 36764371
    [Google Scholar]
  140. Yao X. Jiao S. Qin M. Hu W. Yi B. Liu D. Vanillic acid alleviates acute myocardial hypoxia/reoxygenation injury by inhibiting oxidative stress. Oxid. Med. Cell. Longev. 2020 2020 1 12 10.1155/2020/8348035 32377308
    [Google Scholar]
  141. Qurtam A.A. Mechchate H. Es-safi I. Al-zharani M. Nasr F.A. Noman O.M. Aleissa M. Imtara H. Aleissa A.M. Bouhrim M. Alqahtani A.S. Citrus flavanone narirutin, in vitro and in silico mechanistic antidiabetic potential. Pharmaceutics 2021 13 11 1818 10.3390/pharmaceutics13111818 34834233
    [Google Scholar]
  142. Fang Z. Xu Y. Liu G. Shao Q. Niu X. Tai W. Shen T. Fan M. Chen M. Lei L. Gao W. Song Y. Wang Z. Du X. Li X. Narirutin activates TFEB (transcription factor EB) to protect against Acetaminophen-induced liver injury by targeting PPP3/calcineurin. Autophagy 2023 19 8 2240 2256 10.1080/15548627.2023.2179781 36779633
    [Google Scholar]
  143. Ri M.H. Li M.Y. Xing Y. Zuo H.X. Li G. Li C. Ma J. Jin X. Narirutin exerts anti‐inflammatory activity by inhibiting NLRP3 inflammasome activation in macrophages. Phytother. Res. 2023 37 4 1293 1308 10.1002/ptr.7686 36751854
    [Google Scholar]
  144. Lyndem S. Gazi R. Jana M. Belwal V.K. Singha Roy A. Molecular recognition of two bioactive coumarin derivatives 7-hydroxycoumarin and 4-methyl-7-hydroxycoumarin by hen egg white lysozyme: Exploring the binding mechanism, thermodynamic parameters and structural changes using multispectroscopic and computational approaches. J. Biomol. Struct. Dyn. 2022 40 24 13872 13888 10.1080/07391102.2021.1995499 34751096
    [Google Scholar]
  145. Sharma P. Biology and management of patients with triple-negative breast cancer. Oncologist 2016 21 9 1050 1062 10.1634/theoncologist.2016‑0067 27401886
    [Google Scholar]
  146. Waks A.G. Winer E.P. Breast cancer treatment. JAMA 2019 321 3 288 300 10.1001/jama.2018.19323 30667505
    [Google Scholar]
  147. Turk A.A. Wisinski K.B. PARP inhibitors in breast cancer: Bringing synthetic lethality to the bedside. Cancer 2018 124 12 2498 2506 10.1002/cncr.31307 29660759
    [Google Scholar]
  148. Shen T. Zhang K. Siegal G.P. Wei S. Prognostic value of E-cadherin and β-catenin in triple-negative breast cancer. Am. J. Clin. Pathol. 2016 146 5 603 610 10.1093/ajcp/aqw183 27780797
    [Google Scholar]
  149. Garrido-Castro A.C. Lin N.U. Polyak K. Insights into molecular classifications of triple-negative breast cancer: Improving patient selection for treatment. Cancer Discov. 2019 9 2 176 198 10.1158/2159‑8290.CD‑18‑1177 30679171
    [Google Scholar]
  150. Tate C.R. Rhodes L.V. Segar H.C. Driver J.L. Pounder F.N. Burow M.E. Collins-Burow B.M. Targeting triple-negative breast cancer cells with the histone deacetylase inhibitor panobinostat. Breast Cancer Res. 2012 14 3 R79 10.1186/bcr3192 22613095
    [Google Scholar]
  151. Wan Mohd Tajuddin W.N.B. Lajis N.H. Abas F. Othman I. Naidu R. Mechanistic understanding of curcumin’s therapeutic effects in lung cancer. Nutrients 2019 11 12 2989 10.3390/nu11122989 31817718
    [Google Scholar]
  152. Tang C. Liu Y. Liu S. Yang C. Chen L. Tang F. Wang F. Zhan L. Deng H. Zhou W. Lin Y. Yuan X. Curcumin and its analogs as potential epigenetic modulators: Prevention of diabetes and its complications. Pharmacology 2022 107 1-2 1 13 10.1159/000520311 34915505
    [Google Scholar]
  153. Soflaei S.S. Momtazi-Borojeni A.A. Majeed M. Derosa G. Maffioli P. Sahebkar A. Curcumin: A natural Pan-HDAC inhibitor in cancer. Curr. Pharm. Des. 2018 24 2 123 129 10.2174/1381612823666171114165051 29141538
    [Google Scholar]
  154. Neuwirthová J. Gál B. Smilek P. Urbánková P. Potential of the flavonoid quercetin to prevent and treat cancer – Current status of research. Klin. Onkol. 2018 31 3 184 190 10.14735/amko2018184 30441971
    [Google Scholar]
  155. Carlos-Reyes Á. López-González J.S. Meneses-Flores M. Gallardo-Rincón D. Ruíz-García E. Marchat L.A. Astudillo-de la Vega H. Hernández de la Cruz O.N. López-Camarillo C. Dietary compounds as epigenetic modulating agents in cancer. Front. Genet. 2019 10 79 10.3389/fgene.2019.00079 30881375
    [Google Scholar]
  156. Khan A. Khan A. Khan M.A. Malik Z. Massey S. Parveen R. Mustafa S. Shamsi A. Husain S.A. Phytocompounds targeting epigenetic modulations: An assessment in cancer. Front. Pharmacol. 2024 14 1273993 10.3389/fphar.2023.1273993 38596245
    [Google Scholar]
  157. Kim D.H. Khan H. Ullah H. Hassan S.T.S. Šmejkal K. Efferth T. Mahomoodally M.F. Xu S. Habtemariam S. Filosa R. Lagoa R. Rengasamy K.R.R. MicroRNA targeting by quercetin in cancer treatment and chemoprotection. Pharmacol. Res. 2019 147 104346 10.1016/j.phrs.2019.104346 31295570
    [Google Scholar]
  158. Ebert T. Tran N. Schurgers L. Stenvinkel P. Shiels P.G. Ageing – Oxidative stress, PTMs and disease. Mol. Aspects Med. 2022 86 101099 10.1016/j.mam.2022.101099 35689974
    [Google Scholar]
  159. Rajendran P. Abdelsalam S.A. Renu K. Veeraraghavan V. Ben Ammar R. Ahmed E.A. Polyphenols as potent epigenetics agents for cancer. Int. J. Mol. Sci. 2022 23 19 11712 10.3390/ijms231911712 36233012
    [Google Scholar]
  160. Irshad R. Husain M. Natural products in the reprogramming of cancer epigenetics. Toxicol. Appl. Pharmacol. 2021 417 115467 10.1016/j.taap.2021.115467 33631231
    [Google Scholar]
  161. Harris Z. Donovan M.G. Branco G.M. Limesand K.H. Burd R. Quercetin as an emerging anti-melanoma agent: A four-focus area therapeutic development strategy. Front. Nutr. 2016 3 48 10.3389/fnut.2016.00048 27843913
    [Google Scholar]
  162. Ren B. Kwah M.X.Y. Liu C. Ma Z. Shanmugam M.K. Ding L. Xiang X. Ho P.C.L. Wang L. Ong P.S. Goh B.C. Resveratrol for cancer therapy: Challenges and future perspectives. Cancer Lett. 2021 515 63 72 10.1016/j.canlet.2021.05.001 34052324
    [Google Scholar]
  163. Ranneh Y. Akim A.M. Hamid H.A. Khazaai H. Fadel A. Zakaria Z.A. Albujja M. Bakar M.F.A. Honey and its nutritional and anti-inflammatory value. BMC Complement. Med. Ther. 2021 21 1 30 10.1186/s12906‑020‑03170‑5 33441127
    [Google Scholar]
  164. Yang C. Han M. Li R. Zhou L. Zhang Y. Duan L. Su S. Li M. Wang Q. Chen T. Mo Y. Curcumin nanoparticles inhibiting ferroptosis for the enhanced treatment of intracerebral hemorrhage. Int. J. Nanomedicine 2021 16 8049 8065 10.2147/IJN.S334965 34938072
    [Google Scholar]
  165. Ratnatilaka Na Bhuket P. El-Magboub A. Haworth I.S. Rojsitthisak P. Enhancement of curcumin bioavailability via the prodrug approach: Challenges and prospects. Eur. J. Drug Metab. Pharmacokinet. 2017 42 3 341 353 10.1007/s13318‑016‑0377‑7 27683187
    [Google Scholar]
  166. Nanavati K. Rutherfurd-Markwick K. Lee S.J. Bishop N.C. Ali A. Effect of curcumin supplementation on exercise-induced muscle damage: A narrative review. Eur. J. Nutr. 2022 61 8 3835 3855 10.1007/s00394‑022‑02943‑7 35831667
    [Google Scholar]
  167. Haddad F. Sawalha M. Khawaja Y. Najjar A. Karaman R. Dopamine and levodopa prodrugs for the treatment of parkinson’s disease. Molecules 2017 23 1 40 10.3390/molecules23010040 29295587
    [Google Scholar]
  168. Erdogan C. Vang O. Challenges in analyzing the biological effects of resveratrol. Nutrients 2016 8 6 353 10.3390/nu8060353 27294953
    [Google Scholar]
  169. Cai Y. Huang C. Zhou M. Xu S. Xie Y. Gao S. Yang Y. Deng Z. Zhang L. Shu J. Yan T. Wan C.C. Role of curcumin in the treatment of acute kidney injury: Research challenges and opportunities. Phytomedicine 2022 104 154306 10.1016/j.phymed.2022.154306 35809376
    [Google Scholar]
  170. Vlčková H.K. Catapano M.C. Mitašík L. Kotland O. Nejmanová I. Pourová J. Mladěnka P. Nováková L. Featuring ultimate sensitivity of high‐resolution LC‐MS analysis of phenolics in rat plasma. J. Sep. Sci. 2021 44 9 1893 1903 10.1002/jssc.202100054 33650236
    [Google Scholar]
  171. LeWitt P.A. Levodopa therapy for parkinson’s disease: Pharmacokinetics and pharmacodynamics. Mov. Disord. 2015 30 1 64 72 10.1002/mds.26082 25449210
    [Google Scholar]
  172. Garavand F. Jalai-Jivan M. Assadpour E. Jafari S.M. Encapsulation of phenolic compounds within nano/microemulsion systems: A review. Food Chem. 2021 364 130376 10.1016/j.foodchem.2021.130376 34171813
    [Google Scholar]
  173. Nikou T. Karampetsou K.V. Koutsoni O.S. Skaltsounis A.L. Dotsika E. Halabalaki M. Pharmacokinetics and metabolism investigation of oleocanthal. J. Nat. Prod. 2024 87 3 530 543 10.1021/acs.jnatprod.3c00422 37910854
    [Google Scholar]
  174. Nabavi S.M. Russo G.L. Tedesco I. Daglia M. Orhan I.E. Nabavi S.F. Bishayee A. Nagulapalli Venkata K.C. Abdollahi M. Hajheydari Z. Curcumin and melanoma: From chemistry to medicine. Nutr. Cancer 2018 70 2 164 175 10.1080/01635581.2018.1412485 29300102
    [Google Scholar]
  175. Tao T.P. Brandmair K. Gerlach S. Przibilla J. Géniès C. Jacques-Jamin C. Schepky A. Marx U. Hewitt N.J. Maschmeyer I. Kühnl J. Demonstration of the first‐pass metabolism in the skin of the hair dye, 4‐amino‐2‐hydroxytoluene, using the Chip2 skin–liver microphysiological model. J. Appl. Toxicol. 2021 41 10 1553 1567 10.1002/jat.4146 33594739
    [Google Scholar]
  176. Tolcher M.C. Sangi-Haghpeykar H. Mendez-Figueroa H. Aagaard K.M. Low-dose aspirin for preeclampsia prevention: Efficacy by ethnicity and race. Am. J. Obstet. Gynecol. MFM 2020 2 4 100184 10.1016/j.ajogmf.2020.100184 33345910
    [Google Scholar]
  177. Summerlin N. Soo E. Thakur S. Qu Z. Jambhrunkar S. Popat A. Resveratrol nanoformulations: Challenges and opportunities. Int. J. Pharm. 2015 479 2 282 290 10.1016/j.ijpharm.2015.01.003 25572692
    [Google Scholar]
  178. Fang J. Bioavailability of anthocyanins. Drug Metab. Rev. 2014 46 4 508 520 10.3109/03602532.2014.978080 25347327
    [Google Scholar]
  179. Stocchi F. Vacca L. Grassi A. Torti M. An evaluation of the efficacy and value of CVT-301 for the treatment of parkinson’s disease. Expert Opin. Pharmacother. 2021 22 8 965 972 10.1080/14656566.2021.1895748 33629617
    [Google Scholar]
  180. Xie L. Diao Z. Xia J. Zhang J. Xu Y. Wu Y. Liu Z. Jiang C. Peng Y. Song Z. Wang G. Zhu J. Sun J. Comprehensive evaluation of metabolism and the contribution of the hepatic first-pass effect in the bioavailability of glabridin in rats. J. Agric. Food Chem. 2023 71 4 1944 1956 10.1021/acs.jafc.2c06460 36649475
    [Google Scholar]
  181. Gowd V. Kanika Jori C. Chaudhary A.A. Rudayni H.A. Rashid S. Khan R. Resveratrol and resveratrol nano-delivery systems in the treatment of inflammatory bowel disease. J. Nutr. Biochem. 2022 109 109101 10.1016/j.jnutbio.2022.109101 35777588
    [Google Scholar]
  182. Rudrapal M. Mishra A.K. Rani L. Sarwa K.K. Zothantluanga J.H. Khan J. Kamal M. Palai S. Bendale A.R. Talele S.G. Pathan V.T. Borse L.B. Neharkar V.S. Sahoo P.K. Nanodelivery of dietary polyphenols for therapeutic applications. Molecules 2022 27 24 8706 10.3390/molecules27248706 36557841
    [Google Scholar]
  183. Hafez Ghoran S. Calcaterra A. Abbasi M. Taktaz F. Nieselt K. Babaei E. Curcumin-based nanoformulations: A promising adjuvant towards cancer treatment. Molecules 2022 27 16 5236 10.3390/molecules27165236 36014474
    [Google Scholar]
  184. Wang K. Guo C. Zou S. Yu Y. Fan X. Wang B. Liu M. Fang L. Chen D. Synthesis, characterization and in vitro/in vivo evaluation of novel reduction-sensitive hybrid nano-echinus-like nanomedicine. Artif. Cells Nanomed. Biotechnol. 2018 46 sup2 659 667 10.1080/21691401.2018.1466147 29703084
    [Google Scholar]
  185. He H. Qin Q. Xu F. Chen Y. Rao S. Wang C. Jiang X. Lu X. Xie C. Oral polyphenol-armored nanomedicine for targeted modulation of gut microbiota–brain interactions in colitis. Sci. Adv. 2023 9 21 eadf3887 10.1126/sciadv.adf3887 37235662
    [Google Scholar]
  186. Quispe C. Cruz-Martins N. Manca M.L. Manconi M. Sytar O. Hudz N. Shanaida M. Kumar M. Taheri Y. Martorell M. Sharifi-Rad J. Pintus G. Cho W.C. Nano‐derived therapeutic formulations with curcumin in inflammation‐related diseases. Oxid. Med. Cell. Longev. 2021 2021 1 3149223 10.1155/2021/3149223 34584616
    [Google Scholar]
  187. Verma A.K. Kumari N. Daram N. Alam M.S. Rationalizing the use of polyphenol nano-formulations in the therapy of neurodegenerative diseases. CNS Neurol. Disord. Drug Targets 2022 21 10 966 976 10.2174/1871527321666220512153854 35549866
    [Google Scholar]
  188. Perris A. Bhattacharya S. Jawed J.J. Hoda M. Oncotherapeutic application of resveratrol-based inorganic nanoparticles. Pharm. Nanotechnol. 2021 9 4 271 280 10.2174/2211738509666210906164727 34488608
    [Google Scholar]
  189. Valizadeh H. Abdolmohammadi-vahid S. Danshina S. Ziya Gencer M. Ammari A. Sadeghi A. Roshangar L. Aslani S. Esmaeilzadeh A. Ghaebi M. Valizadeh S. Ahmadi M. Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. Int. Immunopharmacol. 2020 89 Pt B 107088 10.1016/j.intimp.2020.107088 33129099
    [Google Scholar]
  190. Fereydouni N. Movaffagh J. Amiri N. Darroudi S. Gholoobi A. Goodarzi A. Hashemzadeh A. Darroudi M. Synthesis of nano-fibers containing nano-curcumin in zein corn protein and its physicochemical and biological characteristics. Sci. Rep. 2021 11 1 1902 10.1038/s41598‑020‑73678‑w 33479286
    [Google Scholar]
/content/journals/rafna/10.2174/012772574X350275241230053727
Loading
/content/journals/rafna/10.2174/012772574X350275241230053727
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test