Skip to content
2000
Volume 16, Issue 3
  • ISSN: 2772-574X
  • E-ISSN: 2772-5758

Abstract

Green Revolution aims to boost food production and feed millions of Indians, but it also has negative effects on agriculture and society's health. Natural manures like cow dung and cow urine can counteract the adverse effects of inorganic fertilizer on soil along with improving physicochemical qualities, maintaining the soil quality, and increasing crop output. Zero Budget Natural Farming (ZBNF) formulations like Jivamrit promote soil health and microbial activities and are an excellent source of macronutrients, other micronutrients needed for plant growth, plus adds beneficial microbes, nitrogen (N), phosphorus (P), potassium (K), and natural carbon (C). Further, conventional agricultural methods, like monocropping and heavy tillage, can damage soil bacteria which contributes to sustainable agriculture through nitrogen fixation, siderophore synthesis and nutrient absorption. A sustainable agricultural system is resource-efficient, socially and commercially competitive, ecologically sound, and supportive of society. Jivamrit, a natural organic manure, is gaining interest due to concerns about the sustainability of input-intensive agriculture systems. It promotes crop growth, quality, and yield, enhances soil pH, population, and activity of beneficial microorganisms, and helps with nitrogen fixation, phosphate solubilization, and easy decomposition. Long-term use of Jivamrit, may disrupt soil microbial balance, may leading to overpopulation of certain species. The current review on the Jivamrit emphasizes on the biological and chemical characterization and its significance to the agriculture.

Loading

Article metrics loading...

/content/journals/rafna/10.2174/012772574X332918240911033507
2024-10-22
2025-11-16
Loading full text...

Full text loading...

References

  1. KakadiaJ. BhavsarD. VachhaniU.D. ShahC.P. PatelD.M. DhamiP.D. In vitro Screening of Antibacterial Activity of Cow Urine against Pathogenic Human Bacterial Strains.Int. J. Curr. Pharm. Res.201139192
    [Google Scholar]
  2. YadavJ.P. Sustainable Agriculture Development through Organic Farming in India.SPAST Abstracts20211114919
    [Google Scholar]
  3. JohnD.A. BabuG.R. Lessons From the Aftermaths of Green Revolution on Food System and Health.Front. Sustain. Food Syst.2021564455910.3389/fsufs.2021.644559 34212131
    [Google Scholar]
  4. NiemiecM. ChowaniakM. SikoraJ. Szeląg-SikoraA. Gródek-SzostakZ. KomorowskaM. Selected Properties of Soils for Long-Term Use in Organic Farming.Sustainability (Basel)2020126250910.3390/su12062509
    [Google Scholar]
  5. BharuchaZ.P. MitjansS.B. PrettyJ. Towards redesign at scale through zero budget natural farming in Andhra Pradesh, India.Int. J. Agric. Sustain.202018112010.1080/14735903.2019.1694465
    [Google Scholar]
  6. RayP. LakshmananV. LabbéJ.L. CravenK.D. Microbe to Microbiome: A Paradigm Shift in the Application of Microorganisms for Sustainable Agriculture.Front. Microbiol.20201162292610.3389/fmicb.2020.622926 33408712
    [Google Scholar]
  7. DhawaleM.R. WilsonJ.J. KhachatouriansG.G. IngledewW.M. Improved method for detection of starch hydrolysis.Appl. Environ. Microbiol.198244374775010.1128/aem.44.3.747‑750.1982 16346102
    [Google Scholar]
  8. OlutiolaP.O. FamurewaO. SonntagH.G. An Introduction to General Microbiology: A Practical Approach.GermanyHeidelberger Verlagsanstalt Und Druckerei GmbH Heidelberg1991267
    [Google Scholar]
  9. VeereshJ. NarayanaJ.A. SilvaN. Karmegam. Influence of Jeevamrutha (Biodynamic Formulation) on Agro-Industrial Waste Vermicomposting.Vermitechnol2010II9699
    [Google Scholar]
  10. SutarR. SujithG. DevakumarN. Growth and Yield of Cowpea [Vigna unguiculata (L.) Walp] as Influenced by Jeevamrutha and Panchagavya Application.Legume Res. Int. J.2019201982484210.18805/LR‑3932
    [Google Scholar]
  11. GoreN.S. SreenivasaM. Influence of Liquid Organic Manures on Growth, Nutrient Content and Yield of Tomato (Lycopersicon esculentum Mill.) in the Sterilized Soil.Karnataka J. Agric. Sci.201124153157
    [Google Scholar]
  12. BhattacharyyaC. BanerjeeS. AcharyaU. MitraA. MallickI. HaldarA. HaldarS. GhoshA. GhoshA. Evaluation of plant growth promotion properties and induction of antioxidative defense mechanism by tea rhizobacteria of Darjeeling, India.Sci. Rep.20201011553610.1038/s41598‑020‑72439‑z
    [Google Scholar]
  13. Nitin; Purohit, D.H.S. Effect of different Jeevamrut based liquid organic formulations on biochemical properties of soil and on plant growth of blackgram [Vigna mungo (L.) Hepper] under pot culture conditions.Int. J. Chem. Stud.2021912280228310.22271/chemi.2021.v9.i1af.11564
    [Google Scholar]
  14. PathakH. MishraJ.P. MohapatraT. Indian Agriculture after Independence.New DelhiIndian Council of Agricultural Research2022426
    [Google Scholar]
  15. LuginbuehlL.H. MenardG.N. KurupS. Van ErpH. RadhakrishnanG.V. BreakspearA. OldroydG.E.D. EastmondP.J. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant.Science201735663431175117810.1126/science.aan0081 28596311
    [Google Scholar]
  16. TimsinaJ. Can organic sources of nutrients increase crop yields to match modern chemical fertilizers? a meta-analysis.Agric. Ecosyst. Environ.20182513752
    [Google Scholar]
  17. LiuJ. WangD. YanX. JiaL. ChenN. LiuJ. ZhaoP. ZhouL. CaoQ. Effect of nitrogen, phosphorus and potassium fertilization management on soil properties and leaf traits and yield of Sapindus mukorossi.Front. Plant Sci.202415130068310.3389/fpls.2024.1300683 38529062
    [Google Scholar]
  18. BoraiahB. DevakumarN. ShubhaS. PalannaK.B. Effect of Panchagavya, Jeevamrutha and Cow Urine on Beneficial Microorganisms and Yield of Capsicum (Capsicum annuum L. var. grossum).Int. J. Curr. Microbiol. Appl. Sci.2017683226323410.20546/ijcmas.2017.609.397
    [Google Scholar]
  19. KumarR. DevK. Effects of chemical fertilizers on human health and environment: a review.Adv. Res. J. Sci. Eng. Technol201746203205
    [Google Scholar]
  20. KhadseA. RossetP. Zero budget natural farming in india – from inception to institutionalization.Desenvolv. Meio Ambient.20215857960310.5380/dma.v58i0.81370
    [Google Scholar]
  21. BharadwajK. Influence of zbnf components on the growth and yield of wheat in combination with fym, biofertilizer and nitrogen.Int. J. Creat. Res. Thoughts202195
    [Google Scholar]
  22. ZayedO. HewedyO.A. AbdelmotelebA. AliM. YoussefM.S. RoumiaA.F. SeymourD. YuanZ.C. Nitrogen journey in plants: from uptake to metabolism, stress response, and microbe interaction.Biomolecules20231310144310.3390/biom13101443 37892125
    [Google Scholar]
  23. ZhangX. LiJ. ShaoL. QinF. YangJ. GuH. ZhaiP. PanX. Effects of organic fertilizers on yield, soil physico-chemical property, soil microbial community diversity and structure of Brassica rapa var.Chinensis. Front. Microbiol.202314113285310.3389/fmicb.2023.1132853 37323918
    [Google Scholar]
  24. XiaW.J. ZhangL.F. LiuZ.B. ZhangW.X. LanX.J. LiuX.M. LiuJ. LiuG.R. LiZ.Z. WangP. Effects of Long-Term Application of Chemical Fertilizers and Organic Fertilizers on Heavy Metals and Their Availability in Reddish Paddy Soil.Huan Jing Ke Xue202142524692479 33884818
    [Google Scholar]
  25. SharmaN. SinghviR. Effects of chemical fertilizers and pesticides on human health and environment: a review.Int. J. Agric. Environ. Biotechnol.201710667567910.5958/2230‑732X.2017.00083.3
    [Google Scholar]
  26. RaniL. ThapaK. KanojiaN. SharmaN. SinghS. GrewalA.S. KaushalJ. An extensive review on the consequences of chemical pesticides on human health and environment.J. Clean. Prod.20202020124657
    [Google Scholar]
  27. PalekarS. Text Book on Shoonya Bandovalada Naisargika Krushi.BangaloreSwamy Anand, Agri Prakashana2006
    [Google Scholar]
  28. SwainM.R. RayR.C. Biocontrol and other beneficial activities of Bacillus subtilis isolated from cowdung microflora.Microbiol. Res.2009164212113010.1016/j.micres.2006.10.009 17320363
    [Google Scholar]
  29. Félix HerránJ.A. Sañudo TorresR.R. Rojo MartínezG.E. Martínez RuizR. Olalde PortugalV. Importancia de los abonos orgánicos.Ra Ximhai20084576810.35197/rx.04.01.2008.04.jf
    [Google Scholar]
  30. PapenH. GeßlerA. ZumbuschE. RennenbergH. Chemolithoautotrophic nitrifiers in the phyllosphere of a spruce ecosystem receiving high atmospheric nitrogen input.Curr. Microbiol.2002441566010.1007/s00284‑001‑0074‑9 11727042
    [Google Scholar]
  31. PanpatteD. Microorganisms: a backbone of organic farming.Microbiology20190318810
    [Google Scholar]
  32. KumarR. SharmaV. SureshS. RamraoD.P. VeershettyA. KumarS. PriscillaK. HangargiB. NarasannaR. PandeyM.K. NaikG.R. ThomasS. KumarA. Understanding omics driven plant improvement and de novo crop domestication: some examples.Front. Genet.20211263714110.3389/fgene.2021.637141 33889179
    [Google Scholar]
  33. Van EmonJ.M. The omics revolution in agricultural research.J. Agric. Food Chem.2016641364410.1021/acs.jafc.5b04515 26468989
    [Google Scholar]
  34. OveryD.P. BellM.A. HabtewoldJ. HelgasonB.L. GregorichE.G. “Omics” technologies for the study of soil carbon stabilization: a review.Front. Environ. Sci.2021961795210.3389/fenvs.2021.617952
    [Google Scholar]
  35. LiQ. YanJ. Sustainable agriculture in the era of omics: knowledge-driven crop breeding.Genome Biol.202021115410.1186/s13059‑020‑02073‑5 32591012
    [Google Scholar]
  36. PatelJ.S. KumarG. BajpaiR. TeliB. RashidM. SarmaB.K. PGPR Formulations and Application in the Management of Pulse Crop Health. Biofertilizers; Rakshit, A.; Meena, V.S.; Parihar, M.; Singh, H.B. SinghA.K. New Delhi, IndiaWoodhead Publishing202110.1016/B978‑0‑12‑821667‑5.00012‑9
    [Google Scholar]
  37. CortésA.J. CastillejoM.Á. YocktengR. ‘Omics’ approaches for crop improvement.Agronomy (Basel)2023135140110.3390/agronomy13051401
    [Google Scholar]
  38. KonerN. LahaA. Economics of zero budget natural farming in purulia district of west bengal: is it economically viable.Stud. Agric. Econ. (Bp.)202012212228
    [Google Scholar]
  39. GopalV. GurusiddappaL.H. Influence of Jeevamrutha (fermented liquid manure) on growth and yield parameters of tomato (Solanum Lycopersicum L.).World Journal of Environmental Biosciences20221131710.51847/WFD516GS8o
    [Google Scholar]
  40. ShA.L.K. MaA. WaA.S. HsA.R. Evaluation of composted agricultural crop wastes application on growth, mineral content, yield, and fruit quality of tomato.J. Exp. Biol. Agric. Sci.20186115916710.18006/2018.6(1).159.167
    [Google Scholar]
  41. DuddiganS. ShawL.J. SizmurT. GoguD. HussainZ. JirraK. KalikiH. SankaR. SohailM. SomaR. ThallamV. VattikutiH. CollinsC.D. Natural farming improves crop yield in SE India when compared to conventional or organic systems by enhancing soil quality.Agron. Sustain. Dev.20234323110.1007/s13593‑023‑00884‑x 36974061
    [Google Scholar]
  42. ZhangN. WangD. LiuY. LiS. ShenQ. ZhangR. Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains.Plant Soil20143741-268970010.1007/s11104‑013‑1915‑6
    [Google Scholar]
  43. AdekiyaA.O. EjueW.S. OlayanjuA. DunsinO. AboyejiC.M. AremuC. AdegbiteK. AkinpeluO. Different organic manure sources and NPK fertilizer on soil chemical properties, growth, yield and quality of okra.Sci. Rep.20201011608310.1038/s41598‑020‑73291‑x 32999383
    [Google Scholar]
  44. BohraM. NautiyalB.P. Sustainable production of tuberose through integrated nutrient management: a review.Curr. Hortic.201971121710.5958/2455‑7560.2019.00002.5
    [Google Scholar]
  45. Shraddha; Shukla, Y.R.; Thakur, K.; Vashishat, R.K.; Sharma, S.; Chandel, R.S.; Dhingra, S.; Alam, T.; Khargotra, R.; Jyoti, K. Impact of fermented organic formulations combined with inorganic fertilizers on broccoli (Brassica oleracea L. var. italica Plenck) cv. Palam Samridhi.Heliyon202399e2032110.1016/j.heliyon.2023.e20321 37809921
    [Google Scholar]
  46. AayogN.I.T.I. Natural Farming BenefitsAvailable from: https://naturalfarming.niti.gov.in/benefits/ (accessed on 20-8-2024)
    [Google Scholar]
  47. VishwakarmaK. KumarN. ShandilyaC. MohapatraS. BhayanaS. VarmaA. Revisiting Plant–Microbe Interactions and Microbial Consortia Application for Enhancing Sustainable Agriculture: A Review.Front. Microbiol.20201156040610.3389/fmicb.2020.560406 33408698
    [Google Scholar]
  48. PantH. SinghK. SinghM.K. SwaroopD. Emerging Trends in Agricultural, Environmental and Rural Developmental Challenges and Solution: An Overview.Society of Biological Sciences and Rural Development20171407
    [Google Scholar]
  49. HartmannM. FreyB. MayerJ. MäderP. WidmerF. Distinct soil microbial diversity under long-term organic and conventional farming.ISME J.2015951177119410.1038/ismej.2014.210 25350160
    [Google Scholar]
  50. YadavS.K. SoniR. RajputA.S. Role of Microbes in Organic Farming for Sustainable Agro-Ecosystem. Microorganisms for Sustainability.Springer201810.1007/978‑981‑10‑7146‑1_12
    [Google Scholar]
  51. LoudenB.C. HaarmannD. LynneA.M. Use of Blue Agar CAS Assay for Siderophore Detection.J. Microbiol. Biol. Educ.2011121515310.1128/jmbe.v12i1.249 23653742
    [Google Scholar]
  52. KiranK.S.P. SatyavaniY. Chandana LakshmiM.V.V. SrideviV. Production of Protease Enzyme Using Various Sources.Res. J. Biotechnol.20027250258[Review]
    [Google Scholar]
  53. HusseyM.A. ZayaitzA. Endospore Stain Protocol.Am. Soc. Microbiol.20078111
    [Google Scholar]
  54. SaharanB.S. TyagiS. KumarR. Vijay; Om, H.; Mandal, B.S.; Duhan, J.S. Application of Jeevamrit Improves Soil Properties in Zero Budget Natural Farming Fields.Agriculture202313119610.3390/agriculture13010196
    [Google Scholar]
  55. BoraiahB. DevakumarN. PalannaK.B. Growth and Yield of Capsicum (Capsicum annuum L. Var. Grossum) as Influenced by Organic Liquid Formulations.Int. J. Appl. Pure Sci. Agric.20172114117
    [Google Scholar]
  56. AulakhC.S. SinghH. WaliaS.S. PhutelaR.P. SinghG. Evaluation of microbial culture (Jeevamrit) preparation and its effect on productivity of field crops.Indian J. Agron.200158218218610.59797/ija.v58i2.4191
    [Google Scholar]
  57. SutarR. SujithG.M. DevakumarN. Growth and yield of Cowpea [Vignaunguiculata (L.) Walp] as influenced by jeevamrutha and panchagavya application.Legume Res.2018420082482810.18805/LR‑3932
    [Google Scholar]
  58. BasavarajK. DevakumarN. SheshadriT. Influence of Farm Yard Manure, Jeevamrutha, and Panchagavya on Growth and Yield of French Bean (Phaseolus vulgaris L.).Mysore J. Agric. Sci.201650279283
    [Google Scholar]
  59. VivancoL. AustinA.T. Intrinsic effects of species on leaf litter and root decomposition: a comparison of temperate grasses from North and South America.Oecologia200615019710710.1007/s00442‑006‑0495‑z 16917779
    [Google Scholar]
  60. WardleD. YeatesG. BarkerG. BonnerK. The influence of plant litter diversity on decomposer abundance and diversity.Soil Biol. Biochem.20063851052106210.1016/j.soilbio.2005.09.003
    [Google Scholar]
  61. AyresE. SteltzerH. BergS. WallD.H. Soil biota accelerate decomposition in high‐elevation forests by specializing in the breakdown of litter produced by the plant species above them.J. Ecol.200997590191210.1111/j.1365‑2745.2009.01539.x
    [Google Scholar]
  62. BrayS.R. KitajimaK. MackM.C. Temporal dynamics of microbial communities on decomposing leaf litter of 10 plant species in relation to decomposition rate.Soil Biol. Biochem.201249303710.1016/j.soilbio.2012.02.009
    [Google Scholar]
  63. HobbieS.E. Plant species effects on nutrient cycling: revisiting litter feedbacks.Trends Ecol. Evol.201530635736310.1016/j.tree.2015.03.015 25900044
    [Google Scholar]
  64. SofoA. ElshafieH.S. CameleI. Structural and Functional Organization of the Root System: A Comparative Study on Five Plant Species.Plants2020910133810.3390/plants9101338 33050531
    [Google Scholar]
  65. GurjarR.P.S. BhatiD. SinghS.K. Impact of Jeevamrut formulations and biofertilizers on soil microbial and chemical attributes during potato cultivation.J. Appl. Biol. Biotechnol.202412415817110.7324/JABB.2024.165084
    [Google Scholar]
  66. ReddyA.A. MeltsI. MohanG. RaniC.R. PawarV. SinghV. ChoubeyM. VashishthaT. SureshA. BhattaraiM. Economic Impact of Organic Agriculture: Evidence from a Pan-India Survey.Sustainability (Basel)202214221505710.3390/su142215057
    [Google Scholar]
  67. Somdutt KaranB RathoreR. S. ShekhawatP. S. Jeevamrut and Panchagavya: Consequences on Growth, Quality, and Productivity of Organically Grown Crops: Review.Agric. Rev. (Karnal)2023444451459
    [Google Scholar]
  68. SreenivasaM.N. NaikN. BhatS.N. NekarM.M. Effect of Organic Liquid Manures on Growth, Yield, and Quality of Chilli (Capsicum annuum L.).Green Farming201013282284
    [Google Scholar]
  69. KannaiyanK. Biofertilisers – Key factors in organic farming.J. Phytol.20002104254
    [Google Scholar]
  70. NathT. YadavJ. Influence of Inorganic and Organic Nutrient Sources on Soil Enzyme Activities.J. Indian Soc. Soil Sci.20115915459
    [Google Scholar]
  71. RavindraU. NayakaM.K. RevannaM.L. Microbial Quality Evaluation of Liquid Jaggery.Int. J. Appl. Pure Sci. Agric.201626114117
    [Google Scholar]
  72. KitamuraR. SugiyamaC. YasudaK. NagatakeA. YuanY. DuJ. YamakiN. TairaK. KawaiM. HatanoR. Effects of Three Types of Organic Fertilizers on Greenhouse Gas Emissions in a Grassland on Andosol in Southern Hokkaido, Japan.Front. Sustain. Food Syst.2021564961310.3389/fsufs.2021.649613
    [Google Scholar]
  73. LiR. PangZ. ZhouY. FallahN. HuC. LinW. YuanZ. Metagenomic Analysis Exploring Taxonomic and Functional Diversity of Soil Microbial Communities in Sugarcane Fields Applied with Organic Fertilizer.BioMed Res. Int.2020202011110.1155/2020/9381506 33145361
    [Google Scholar]
  74. MaougalR.T. KechidM. LadjabiC. DjekounA. PGPR Characteristics ofRhizospheric Bacteria to Understand the Mechanisms of Faba Bean Growth.Proceedings20206627
    [Google Scholar]
  75. KumarR. KumarS. YashavanthB.S. MeenaP.C. IndoriaA. KunduS. ManjunathM. Adoption of Natural Farming and Its Effect on Crop Yield and Farmers’ Livelihood in India.New Delhi, IndiaICAR2020
    [Google Scholar]
  76. MuensterD. Performing alternative agriculture: critique and recuperation in Zero Budget Natural Farming, South India.J. Polit. Ecol.201825174876410.2458/v25i1.22388
    [Google Scholar]
  77. SharmaS.B. Trend setting impacts of organic matter on soil physico-chemical properties in traditional vis -a- vis chemical-based amendment practices.PLOS Sustainability and Transformation202213e000000710.1371/journal.pstr.0000007
    [Google Scholar]
  78. WangQ. JiangX. GuanD. WeiD. ZhaoB. MaM. ChenS. LiL. CaoF. LiJ. Long-term fertilization changes bacterial diversity and bacterial communities in the maize rhizosphere of Chinese Mollisols.Appl. Soil Ecol.2018125889610.1016/j.apsoil.2017.12.007
    [Google Scholar]
  79. DeluzC. NussbaumM. SauzetO. GondretK. BoivinP. Evaluation of the Potential for Soil Organic Carbon Content Monitoring With Farmers.Front. Environ. Sci.2020811310.3389/fenvs.2020.00113
    [Google Scholar]
  80. DhawiF. Plant Growth Promoting Rhizobacteria (PGPR) Regulated Phyto and Microbial Beneficial Protein Interactions.Open Life Sci.2020151687810.1515/biol‑2020‑0008
    [Google Scholar]
  81. IshaqS.L. Plant-microbial interactions in agriculture and the use of farming systems to improve diversity and productivity.AIMS Microbiol.20173233535310.3934/microbiol.2017.2.335 31294165
    [Google Scholar]
  82. KopeckyJ. KyselkovaM. OmelkaM. CermakL. NovotnaJ. GrundmannG.L. Moënne-LoccozY. Sagova-MareckovaM. Actinobacterial community dominated by a distinct clade in acidic soil of a waterlogged deciduous forest.FEMS Microbiol. Ecol.201178238639410.1111/j.1574‑6941.2011.01173.x 22092176
    [Google Scholar]
  83. BargazA. LyamlouliK. ChtoukiM. ZeroualY. DhibaD. Soil Microbial Resources for Improving Fertilizers Efficiency in an Integrated Plant Nutrient Management System.Front. Microbiol.20189160610.3389/fmicb.2018.01606 30108553
    [Google Scholar]
  84. HanS.H. AnJ.Y. HwangJ. KimS.B. ParkB.B. The effects of organic manure and chemical fertilizer on the growth and nutrient concentrations of yellow poplar (Liriodendron tulipifera Lin.) in a nursery system.Forest Sci. Technol.201612313714310.1080/21580103.2015.1135827
    [Google Scholar]
  85. AdekiyaA.O. OgunboyeO.I. EwuloB.S. OlayanjuA. Effects of Different Rates of Poultry Manure and Split Applications of Urea Fertilizer on Soil Chemical Properties, Growth, and Yield of Maize.ScientificWorldJournal202020201810.1155/2020/4610515 32831804
    [Google Scholar]
  86. MaM. ZhouJ. OngenaM. LiuW. WeiD. ZhaoB. GuanD. JiangX. LiJ. Effect of long-term fertilization strategies on bacterial community composition in a 35-year field experiment of Chinese Mollisols.AMB Express2018812010.1186/s13568‑018‑0549‑8 29442257
    [Google Scholar]
  87. WenY.C. LiH.Y. LinZ.A. ZhaoB.Q. SunZ.B. YuanL. XuJ.K. LiY.Q. Long-term fertilization alters soil properties and fungal community composition in fluvo-aquic soil of the North China Plain.Sci. Rep.2020101719810.1038/s41598‑020‑64227‑6 32350351
    [Google Scholar]
  88. DevakumarN. ShubhaS. GowderS.B. RaoG.G. Microbial Analytical Studies of Traditional Organic Preparations Beejamrutha and Jeevamrutha.Build. Org. Bridges20142639642
    [Google Scholar]
  89. KulkarniS.S. GargelwarA.P. Production and Microbial Analysis of Jeevamrutham for Nitrogen Fixers and Phosphate Solubilizers in the Rural Area from Maharashtra.IOSR J. Agric. Vet. Sci.2019128592
    [Google Scholar]
  90. PandiaS. TrivediA. SharmaS.K. YadavS. Evaluation of Jeevamrut and its Constituents against Alternaria Leaf spot of Mungbean in vitro and under Cage House Condition in Rajasthan.Int. J. Curr. Microbiol. Appl. Sci.2019892240225110.20546/ijcmas.2019.809.258
    [Google Scholar]
  91. NawazM.F. BourriéG. TrolardF. TrolardF. Soil compaction impact and modelling. A review.Agron. Sustain. Dev.201333229130910.1007/s13593‑011‑0071‑8
    [Google Scholar]
  92. DineshR. AnandarajM. KumarA. SrinivasanV. BiniY.K. SubilaK.P. AravindR. HamzaS. Effects of Plant Growth-Promoting Rhizobacteria and NPK Fertilizers on Biochemical and Microbial Properties of Soils Under Ginger (Zingiber officinale).Cultivation. Agric. Res.20132434635310.1007/s40003‑013‑0080‑8
    [Google Scholar]
  93. MohantyP. SinghP.K. ChakrabortyD. MishraS. PattnaikR. Insight Into the Role of PGPR in Sustainable Agriculture and Environment.Front. Sustain. Food Syst.2021566715010.3389/fsufs.2021.667150
    [Google Scholar]
/content/journals/rafna/10.2174/012772574X332918240911033507
Loading
/content/journals/rafna/10.2174/012772574X332918240911033507
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test