Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2666-6499
  • E-ISSN: 2666-6502

Abstract

The definition and comprehension of prebiotics have undergone a substantial transformation over the years, culminating in a consensus in 2016 among an expert panel from the International Scientist Association for Probiotics and Prebiotics (ISAPP). This revision suggests that prebiotics are substances that promote the growth of probiotics, thereby benefitting the health of the host. These substances are no longer restricted to dietary carbohydrates and have expanded to include bioactive compounds such as polyphenols. The objective of this review is to offer a thorough examination of carbohydrate-based prebiotics (, FOS, GOS, Inulin), their natural modulation, herbal interventions, microbial-based substances, and their influence on gut health. Additionally, it will investigate their association with the Indian traditional medicinal system. A review was conducted to identify and analyze studies related to prebiotics, including their categories, commercial availability, and applications. The investigation was expanded to encompass the interactions between the intestinal microbiome, diet, epigenetics, and the mechanism of action of prebiotics. The relationship between prebiotics and the Indian traditional medicinal system, emergent dietary inventions, and microbial products such as synbiotics, postbiotics, and para-probiotics that have demonstrated potential in gut health management with minimal side effects were all given special attention. The review emphasizes novel discoveries, including the integration of a variety of dietary interventions and microbial products into digestive health management, as well as the role of bioactive compounds (, polyphenols) as potential prebiotics. Additionally, the review emphasizes the potential synergistic benefits and compatibility of integrating contemporary prebiotic research with practices from the Ayurvedic medicinal system. The increased understanding of prebiotics, which extends beyond dietary carbohydrates to encompass a variety of bioactive compounds, creates new opportunities for research and implementation in the management of integrative gut health. This review has identified herbal interventions and microbial products as promising frontiers for future research. The integration of these discoveries into therapeutic interventions and consumer products has the potential to significantly increase health outcomes with minimal side effects, thereby representing a significant advancement in the field of gut health research.

Loading

Article metrics loading...

/content/journals/probiot/10.2174/0126666499361588250121170836
2025-02-07
2025-10-31
Loading full text...

Full text loading...

References

  1. GibsonG.R. HutkinsR. SandersM.E. PrescottS.L. ReimerR.A. SalminenS.J. ScottK. StantonC. SwansonK.S. CaniP.D. VerbekeK. ReidG. Expert consensus document: The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics.Nat. Rev. Gastroenterol. Hepatol.201714849150210.1038/nrgastro.2017.7528611480
    [Google Scholar]
  2. HaoC.L. EsahE.M. TajarudinH.A. AkterB. SallehR.M. Effect of potential prebiotics from selected fruits peel on the growth of probiotics.J. Food Process. Preserv.202145610.1111/jfpp.15581
    [Google Scholar]
  3. FullerR. History and development of probiotics.Probiotics.DordrechtSpringer Netherlands19921810.1007/978‑94‑011‑2364‑8_1
    [Google Scholar]
  4. HillC. GuarnerF. ReidG. GibsonG.R. MerensteinD.J. PotB. MorelliL. CananiR.B. FlintH.J. SalminenS. CalderP.C. SandersM.E. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic.Nat. Rev. Gastroenterol. Hepatol.201411850651410.1038/nrgastro.2014.6624912386
    [Google Scholar]
  5. KangoN. NathS. Prebiotics, probiotics and postbiotics: The changing paradigm of functional foods.J. Diet. Suppl.202421570973510.1080/19390211.2024.236319938881201
    [Google Scholar]
  6. SandersM.E. MerensteinD.J. ReidG. GibsonG.R. RastallR.A. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic.Nat. Rev. Gastroenterol. Hepatol.2019161060561610.1038/s41575‑019‑0173‑331296969
    [Google Scholar]
  7. SwansonK.S. GibsonG.R. HutkinsR. ReimerR.A. ReidG. VerbekeK. ScottK.P. HolscherH.D. AzadM.B. DelzenneN.M. SandersM.E. The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics.Nat. Rev. Gastroenterol. Hepatol.2020171168770110.1038/s41575‑020‑0344‑232826966
    [Google Scholar]
  8. MishraA. ChakravartyI. MandavganeS. Current trends in non-dairy based synbiotics.Crit. Rev. Biotechnol.202141693595210.1080/07388551.2021.189832933749462
    [Google Scholar]
  9. SalminenS. ColladoM.C. EndoA. HillC. LebeerS. QuigleyE.M.M. SandersM.E. ShamirR. SwannJ.R. SzajewskaH. VinderolaG. The international scientific association of probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics.Nat. Rev. Gastroenterol. Hepatol.202118964966710.1038/s41575‑021‑00440‑633948025
    [Google Scholar]
  10. KumarH. SchützF. BhardwajK. SharmaR. NepovimovaE. DhanjalD.S. VermaR. KumarD. KučaK. Cruz-MartinsN. Recent advances in the concept of paraprobiotics: Nutraceutical/functional properties for promoting children health.Crit. Rev. Food Sci. Nutr.202363193943395810.1080/10408398.2021.199632734748444
    [Google Scholar]
  11. Di GioiaD. BiavatiB. Probiotics and prebiotics in animal health and food safety: Conclusive remarks and future perspectives.Probiotics and Prebiotics in Animal Health and Food Safety.ChamSpringer International Publishing201826927310.1007/978‑3‑319‑71950‑4_11
    [Google Scholar]
  12. MartínR. LangellaP. Emerging health concepts in the probiotics field: Streamlining the definitions.Front. Microbiol.201910104710.3389/fmicb.2019.0104731164874
    [Google Scholar]
  13. TavernitiV. GuglielmettiS. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: Proposal of paraprobiotic concept).Genes Nutr.20116326127410.1007/s12263‑011‑0218‑x21499799
    [Google Scholar]
  14. AkterS. ParkJ.H. JungH.K. Potential health-promoting benefits of paraprobiotics, inactivated probiotic cells.J. Microbiol. Biotechnol.202030447748110.4014/jmb.1911.1101931986247
    [Google Scholar]
  15. MartyniakA. Medyńska-PrzęczekA. WędrychowiczA. SkoczeńS. TomasikP.J. Prebiotics, probiotics, synbiotics, paraprobiotics and postbiotic compounds in IBD.Biomolecules20211112190310.3390/biom1112190334944546
    [Google Scholar]
  16. VinderolaG. SandersM.E. SalminenS. The concept of postbiotics.Foods2022118107710.3390/foods1108107735454664
    [Google Scholar]
  17. VinderolaG. SandersM.E. CunninghamM. HillC. Frequently asked questions about the ISAPP postbiotic definition.Front. Microbiol.202414132456510.3389/fmicb.2023.132456538268705
    [Google Scholar]
  18. BaqueroF. NombelaC. The microbiome as a human organ.Clin. Microbiol. Infect.201218Suppl. 42410.1111/j.1469‑0691.2012.03916.x22647038
    [Google Scholar]
  19. ThursbyE. JugeN. Introduction to the human gut microbiota.Biochem. J.2017474111823183610.1042/BCJ2016051028512250
    [Google Scholar]
  20. CaniP.D. EverardA. Talking microbes: When gut bacteria interact with diet and host organs.Mol. Nutr. Food Res.2016601586610.1002/mnfr.20150040626178924
    [Google Scholar]
  21. RivièreA. SelakM. GeirnaertA. Van den AbbeeleP. De VuystL. Complementary mechanisms for degradation of inulin-type fructans and arabinoxylan oligosaccharides among bifidobacterial strains suggest bacterial cooperation.Appl. Environ. Microbiol.2018849e02893-1710.1128/AEM.02893‑1729500265
    [Google Scholar]
  22. ChaudhariD.S. DhotreD.P. AgarwalD.M. GaikeA.H. BhaleraoD. JadhavP. MongadD. LubreeH. SinkarV.P. PatilU.K. SalviS. BavdekarA. JuvekarS.K. ShoucheY.S. Gut, oral and skin microbiome of Indian patrilineal families reveal perceptible association with age.Sci. Rep.2020101568510.1038/s41598‑020‑62195‑532231240
    [Google Scholar]
  23. EnamF. MansellT.J. Prebiotics: Tools to manipulate the gut microbiome and metabolome.J. Ind. Microbiol. Biotechnol.2019469-101445145910.1007/s10295‑019‑02203‑431201649
    [Google Scholar]
  24. WangS. XiaoY. TianF. ZhaoJ. ZhangH. ZhaiQ. ChenW. Rational use of prebiotics for gut microbiota alterations: Specific bacterial phylotypes and related mechanisms.J. Funct. Foods20206610383810.1016/j.jff.2020.103838
    [Google Scholar]
  25. GonçalvesD.A. GonzálezA. RouparD. TeixeiraJ.A. NobreC. How prebiotics have been produced from agro-industrial waste: An overview of the enzymatic technologies applied and the models used to validate their health claims.Trends Food Sci. Technol.2023135749210.1016/j.tifs.2023.03.016
    [Google Scholar]
  26. WongkaewM. TinpovongB. SringarmK. LeksawasdiN. JantanasakulwongK. RachtanapunP. HanmoungjaiP. SommanoS.R. Crude pectic oligosaccharide recovery from thai chok anan mango peel using pectinolytic enzyme hydrolysis.Foods202110362710.3390/foods1003062733809517
    [Google Scholar]
  27. MagengeleleM. MalgasS. PletschkeB.I. Bioconversion of spent coffee grounds to prebiotic mannooligosaccharides – An example of biocatalysis in biorefinery.RSC Advances20231363773378010.1039/D2RA07605E36756573
    [Google Scholar]
  28. TianT. FreemanS. CoreyM. GermanJ.B. BarileD. Chemical characterization of potentially prebiotic oligosaccharides in brewed coffee and spent coffee grounds.J. Agric. Food Chem.201765132784279210.1021/acs.jafc.6b0471628318250
    [Google Scholar]
  29. SadhP.K. DuhanS. DuhanJ.S. Agro-industrial wastes and their utilization using solid state fermentation: A review.Bioresour. Bioprocess.201851110.1186/s40643‑017‑0187‑z
    [Google Scholar]
  30. AryaS.S. ShakyaN.K. High fiber, low glycaemic index (GI) prebiotic multigrain functional beverage from barnyard, foxtail and kodo millet.Lebensm. Wiss. Technol.202113510999110.1016/j.lwt.2020.109991
    [Google Scholar]
  31. NithiyananthamS. KalaiselviP. MahomoodallyM.F. ZenginG. AbiramiA. SrinivasanG. Nutritional and functional roles of millets—A review.J. Food Biochem.2019437e1285910.1111/jfbc.1285931353706
    [Google Scholar]
  32. TheodoroJ.M.V. GrancieriM. GomesM.J.C. ToledoR.C.L. de São JoséV.P.B. MantovaniH.C. CarvalhoC.W.P. da SilvaB.P. MartinoH.S.D. Germinated millet (Pennisetum glaucum (L.) R. Br.) flour improved the gut function and its microbiota composition in rats fed with high-fat high-fructose diet.Int. J. Environ. Res. Public Health202219221521710.3390/ijerph19221521736429936
    [Google Scholar]
  33. OnipeO.O. RamashiaS.E. Finger millet seed coat—a functional nutrient-rich cereal by-product.Molecules20222722783710.3390/molecules2722783736431938
    [Google Scholar]
  34. ByreshT.S. MaliniB. KavithaL. SunilC.K. ChidanandD.V. VenkatachalapathyN. Study of prebiotic effect of pineapple crown powder on development of white finger millet vegan probiotic beverage.Food and Humanity2023174275210.1016/j.foohum.2023.07.021
    [Google Scholar]
  35. OkolieC.L. RajendranC.K.Sr UdenigweC.C. AryeeA.N.A. MasonB. Prospects of brown seaweed polysaccharides (BSP) as prebiotics and potential immunomodulators.J. Food Biochem.201741e1239210.1111/jfbc.12392
    [Google Scholar]
  36. XueZ. SunX.M. ChenC. ZhangX.Y. ChenX.L. ZhangY.Z. FanS.J. XuF. A novel alginate lyase: Identification, characterization, and potential application in alginate trisaccharide preparation.Mar. Drugs202220315910.3390/md2003015935323458
    [Google Scholar]
  37. AfniF.S. PurwaningsihS. NurilmalaM. PeranginanginR. Production of alginate oligosaccharides (AOS) as prebiotic ingredients through by Alginate lyase enzyme.J. Pengolah. Has. Perikan. Indones.201720110910.17844/jphpi.v20i1.16498
    [Google Scholar]
  38. HanZ.L. YangM. FuX.D. ChenM. SuQ. ZhaoY.H. MouH.J. Evaluation of prebiotic potential of three marine algae oligosaccharides from enzymatic hydrolysis.Mar. Drugs201917317310.3390/md1703017330889794
    [Google Scholar]
  39. MilutinovićM. Dimitrijević-BrankovićS. Rajilić-StojanovićM. Plant extracts rich in polyphenols as potent modulators in the growth of probiotic and pathogenic intestinal microorganisms.Front. Nutr.2021868884310.3389/fnut.2021.68884334409062
    [Google Scholar]
  40. Garcia-AlonsoA. Sánchez-Paniagua LópezM. Manzanares-PalenzuelaC.L. Redondo-CuencaA. López-RuízB. Edible plant by-products as source of polyphenols: Prebiotic effect and analytical methods.Crit. Rev. Food Sci. Nutr.20236331108141083510.1080/10408398.2022.208402835658778
    [Google Scholar]
  41. PlamadaD. VodnarD.C. Polyphenols—gut microbiota interrelationship: A transition to a new generation of prebiotics.Nutrients202114113710.3390/nu1401013735011012
    [Google Scholar]
  42. Moreno-IndiasI. Sánchez-AlcoholadoL. Pérez-MartínezP. Andrés-LacuevaC. CardonaF. TinahonesF. Queipo-OrtuñoM.I. Red wine polyphenols modulate fecal microbiota and reduce markers of the metabolic syndrome in obese patients.Food Funct.2016741775178710.1039/C5FO00886G26599039
    [Google Scholar]
  43. GuarinoM. AltomareA. EmerenzianiS. Di RosaC. RibolsiM. BalestrieriP. IovinoP. RocchiG. CicalaM. Mechanisms of action of prebiotics and their effects on gastro-intestinal disorders in adults.Nutrients2020124103710.3390/nu1204103732283802
    [Google Scholar]
  44. WichienchotS. JatupornpipatM. RastallR.A. Oligosaccharides of pitaya (dragon fruit) flesh and their prebiotic properties.Food Chem.2010120385085710.1016/j.foodchem.2009.11.026
    [Google Scholar]
  45. ZahidH.F. RanadheeraC.S. FangZ. AjlouniS. Utilization of mango, apple and banana fruit peels as prebiotics and functional ingredients.Agriculture202111758410.3390/agriculture11070584
    [Google Scholar]
  46. PowthongP. JantrapanukornB. SuntornthiticharoenP. LaohaphatanalertK. Study of prebiotic properties of selected banana species in Thailand.J. Food Sci. Technol.20205772490250010.1007/s13197‑020‑04284‑x32549599
    [Google Scholar]
  47. MallU.P. PatelV.H. Evaluation of pomegranate (Punica granatum) peel for bioaccessibility of polyphenols and prebiotic potential using in vitro model.Food Chem. Adv.2023210032010.1016/j.focha.2023.100320
    [Google Scholar]
  48. QuezadaM.P. SalinasC. GottelandM. CardemilL. Acemannan and fructans from aloe vera ( Aloe barbadensis miller) plants as novel prebiotics.J. Agric. Food Chem.20176546100291003910.1021/acs.jafc.7b0410029072072
    [Google Scholar]
  49. LuQ.Y. SummanenP.H. LeeR.P. HuangJ. HenningS.M. HeberD. FinegoldS.M. LiZ. Prebiotic potential and chemical composition of seven culinary spice extracts.J. Food Sci.20178281807181310.1111/1750‑3841.1379228678344
    [Google Scholar]
  50. SorrentiV. AliS. MancinL. DavinelliS. PaoliA. ScapagniniG. Cocoa polyphenols and gut microbiota interplay: Bioavailability, prebiotic effect, and impact on human health.Nutrients2020127190810.3390/nu1207190832605083
    [Google Scholar]
  51. YounesA. KarbouneS. LiuL. AndreaniE.S. DahmanS. Extraction and characterization of cocoa bean shell cell wall polysaccharides.Polymers202315374510.3390/polym1503074536772046
    [Google Scholar]
  52. ÁlvarezC. GonzálezA. BallesterosI. GullónB. NegroM.J. In vitro assessment of the prebiotic potential of Xylooligosaccharides from barley Straw.Foods20221218310.3390/foods1201008336613299
    [Google Scholar]
  53. ChenL. XuW. ChenD. ChenG. LiuJ. ZengX. ShaoR. ZhuH. Digestibility of sulfated polysaccharide from the brown seaweed Ascophyllum nodosum and its effect on the human gut microbiota in vitro.Int. J. Biol. Macromol.20181121055106110.1016/j.ijbiomac.2018.01.18329425873
    [Google Scholar]
  54. GullónB. GullónP. TavariaF. PintadoM. GomesA.M. AlonsoJ.L. ParajóJ.C. Structural features and assessment of prebiotic activity of refined arabinoxylooligosaccharides from wheat bran.J. Funct. Foods2014643844910.1016/j.jff.2013.11.010
    [Google Scholar]
  55. MüllerM. HermesG.D.A. Emanuel EC. HolstJ.J. ZoetendalE.G. SmidtH. TroostF. SchaapF.G. DaminkS.O. JockenJ.W.E. LenaertsK. MascleeA.A.M. BlaakE.E. Effect of wheat bran derived prebiotic supplementation on gastrointestinal transit, gut microbiota, and metabolic health: A randomized controlled trial in healthy adults with a slow gut transit.Gut Microbes2020121170414110.1080/19490976.2019.170414131983281
    [Google Scholar]
  56. YangC. XuZ. DengQ. HuangQ. WangX. HuangF. Beneficial effects of flaxseed polysaccharides on metabolic syndrome via gut microbiota in high-fat diet fed mice.Food Res. Int.202013110899410.1016/j.foodres.2020.10899432247451
    [Google Scholar]
  57. GoñiI. García-AlonsoA. AlbaC. RodríguezJ.M. Sánchez-MataM.C. Guillén-BejaranoR. Redondo-CuencaA. Composition and functional properties of the edible spear and by-products from Asparagus officinalis L. and their potential prebiotic effect.Foods2024138115410.3390/foods1308115438672827
    [Google Scholar]
  58. De GianiA. BovioF. ForcellaM.E. LasagniM. FusiP. Di GennaroP. Prebiotic effect of maitake extract on a probiotic consortium and its action after microbial fermentation on colorectal cell lines.Foods20211011253610.3390/foods1011253634828817
    [Google Scholar]
  59. BergG. RybakovaD. FischerD. CernavaT. VergèsM.C.C. CharlesT. ChenX. CocolinL. EversoleK. CorralG.H. KazouM. KinkelL. LangeL. LimaN. LoyA. MacklinJ.A. MaguinE. MauchlineT. McClureR. MitterB. RyanM. SarandI. SmidtH. SchelkleB. RoumeH. KiranG.S. SelvinJ. SouzaR.S.C. van OverbeekL. SinghB.K. WagnerM. WalshA. SessitschA. SchloterM. Microbiome definition re-visited: Old concepts and new challenges.Microbiome20208110310.1186/s40168‑020‑00875‑032605663
    [Google Scholar]
  60. GuptaA. SahaS. KhannaS. Therapies to modulate gut microbiota: Past, present and future.World J. Gastroenterol.202026877778810.3748/wjg.v26.i8.77732148376
    [Google Scholar]
  61. DixitK. ChaudhariD. DhotreD. ShoucheY. SarojS. Restoration of dysbiotic human gut microbiome for homeostasis.Life Sci.202127811962210.1016/j.lfs.2021.11962234015282
    [Google Scholar]
  62. ShaliniT.V. JnanaA. SriranjiniS.J. TanwarA.S. BrandA. MuraliT.S. SatyamoorthyK. GangadharanG.G. Exploring the signature gut and oral microbiome in individuals of specific Ayurveda prakriti. J. Biosci.20214635410.1007/s12038‑021‑00182‑234148877
    [Google Scholar]
  63. WallaceR.K. The microbiome in health and disease from the perspective of modern medicine and ayurveda.Medicina202056946210.3390/medicina5609046232932766
    [Google Scholar]
  64. SharmaH. MeadeJ. Dynamic DNA: Activating Your Inner Energy for Better Health.SelectBooks2018
    [Google Scholar]
  65. PetersonChristine Tara 16S rRNA gene profiling and genome reconstruction reveal community metabolic interactions and prebiotic potential of medicinal herbs used in neurodegenerative disease and as nootropics.PLoS One201914e021386910.1371/journal.pone.0213869
    [Google Scholar]
  66. PetersonC.T. SharmaV. UchitelS. DennistonK. ChopraD. MillsP.J. PetersonS.N. Prebiotic potential of herbal medicines used in digestive health and disease.J. Altern. Complement. Med.201824765666510.1089/acm.2017.042229565634
    [Google Scholar]
  67. DeyP. Gut microbiota in phytopharmacology: A comprehensive overview of concepts, reciprocal interactions, biotransformations and mode of actions.Pharmacol. Res.201914710436710.1016/j.phrs.2019.10436731344423
    [Google Scholar]
  68. ZwickeyH. LipskiL. Expanding our view of herbal medicine.J. Altern. Complement. Med.201824761962010.1089/acm.2018.012329851499
    [Google Scholar]
  69. XuJ. ChenH.B. LiS.L. Understanding the molecular mechanisms of the interplay between herbal medicines and gut microbiota.Med. Res. Rev.20173751140118510.1002/med.2143128052344
    [Google Scholar]
  70. PetersonC.T. DennistonK. ChopraD. Therapeutic uses of Triphala in ayurvedic medicine.J. Altern. Complement. Med.201723860761410.1089/acm.2017.008328696777
    [Google Scholar]
  71. PetersonC.T. RodionovD.A. IablokovS.N. PungM.A. ChopraD. MillsP.J. PetersonS.N. Prebiotic potential of culinary spices used to support digestion and bioabsorption.Evid. Based Complement. Alternat. Med.2019201911110.1155/2019/897370431281405
    [Google Scholar]
  72. MartelJ. OjciusD.M. KoY.F. YoungJ.D. Phytochemicals as prebiotics and biological stress inducers.Trends Biochem. Sci.202045646247110.1016/j.tibs.2020.02.00832413323
    [Google Scholar]
  73. PetersonC.T. Pérez-SantiagoJ. IablokovS.N. RodionovD.A. PetersonS.N. Alteration of community metabolism by prebiotics and medicinal herbs.Microorganisms202311486810.3390/microorganisms1104086837110291
    [Google Scholar]
  74. GibsonG.R. ProbertH.M. LooJ.V. RastallR.A. RoberfroidM.B. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics.Nutr. Res. Rev.200417225927510.1079/NRR20047919079930
    [Google Scholar]
  75. GhaniU. NaeemM. RafeeqH. ImtiazU. AmjadA. UllahS. RehmanA. QasimF. A novel approach towards nutraceuticals and biomedical applications.Schol. Int. J. Biochem.201921024525210.36348/SIJB.2019.v02i10.001
    [Google Scholar]
  76. MarkowiakP. ŚliżewskaK. Effects of probiotics, prebiotics, and synbiotics on human health.Nutrients201799102110.3390/nu909102128914794
    [Google Scholar]
  77. RezendeE.S.V. LimaG.C. NavesM.M.V. Dietary fibers as beneficial microbiota modulators: A proposed classification by prebiotic categories.Nutrition20218911121710.1016/j.nut.2021.11121733838493
    [Google Scholar]
  78. ZhaoC. WuY. LiuX. LiuB. CaoH. YuH. SarkerS.D. NaharL. XiaoJ. Functional properties, structural studies and chemo-enzymatic synthesis of oligosaccharides.Trends Food Sci. Technol.20176613514510.1016/j.tifs.2017.06.008
    [Google Scholar]
  79. TangW. HanT. LiuW. HeJ. LiuJ. Pectic oligosaccharides: Enzymatic preparation, structure, bioactivities and application.Crit. Rev. Food Sci. Nutr.2024•••11710.1080/10408398.2024.232817538481101
    [Google Scholar]
  80. RanaM. JassalS. YadavR. SharmaA. PuriN. MazumderK. GuptaN. Functional β-mannooligosaccharides: Sources, enzymatic production and application as prebiotics.Crit. Rev. Food Sci. Nutr.2023•••11810.1080/10408398.2023.222216537335120
    [Google Scholar]
  81. ManoM.C.R. Neri-NumaI.A. da SilvaJ.B. PaulinoB.N. PessoaM.G. PastoreG.M. Oligosaccharide biotechnology: An approach of prebiotic revolution on the industry.Appl. Microbiol. Biotechnol.20181021173710.1007/s00253‑017‑8564‑229032473
    [Google Scholar]
  82. YadavR. ShuklaP. An overview of advanced technologies for selection of probiotics and their expediency: A review.Crit. Rev. Food Sci. Nutr.201757153233324210.1080/10408398.2015.110895726505073
    [Google Scholar]
  83. Redondo-CuencaA. Herrera-VázquezS.E. Condezo-HoyosL. Gómez-OrdóñezE. RupérezP. Inulin extraction from common inulin-containing plant sources.Ind. Crops Prod.202117011372610.1016/j.indcrop.2021.113726
    [Google Scholar]
  84. MudannayakeD.C. JayasenaD.D. WimalasiriK.M.S. RanadheeraC.S. AjlouniS. Inulin fructans – Food applications and alternative plant sources: A review.Int. J. Food Sci. Technol.20225795764578010.1111/ijfs.15947
    [Google Scholar]
  85. ChungW.S.F. MeijerinkM. ZeunerB. HolckJ. LouisP. MeyerA.S. WellsJ.M. FlintH.J. DuncanS.H. Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon.FEMS Microbiol. Ecol.2017931110.1093/femsec/fix12729029078
    [Google Scholar]
  86. WongkaewM. TangjaideeP. LeksawasdiN. JantanasakulwongK. RachtanapunP. SeesuriyachanP. PhimolsiripolY. ChaiyasoT. RuksiriwanichW. JantrawutP. SommanoS.R. Mango pectic oligosaccharides: A novel prebiotic for functional food.Front. Nutr.2022979854310.3389/fnut.2022.79854335399687
    [Google Scholar]
  87. MeiZ. YuanJ. LiD. Biological activity of galacto-oligosaccharides: A review.Front. Microbiol.20221399305210.3389/fmicb.2022.99305236147858
    [Google Scholar]
  88. FarthingM.J.G. Bugs and the gut: An unstable marriage.Best Pract. Res. Clin. Gastroenterol.200418223323910.1016/j.bpg.2003.11.00115123066
    [Google Scholar]
  89. KhangwalI. ShuklaP. Potential prebiotics and their transmission mechanisms: Recent approaches.J. Food Drug Anal.2019a27364965610.1016/j.jfda.2019.02.00331324281
    [Google Scholar]
  90. ZhangC. LiM. RaufA. KhalilA.A. ShanZ. ChenC. RengasamyK.R.R. WanC. Process and applications of alginate oligosaccharides with emphasis on health beneficial perspectives.Crit. Rev. Food Sci. Nutr.202363330332910.1080/10408398.2021.194600834254536
    [Google Scholar]
  91. MudgilD. BarakS. PatelA. ShahN. Partially hydrolyzed guar gum as a potential prebiotic source.Int. J. Biol. Macromol.201811220721010.1016/j.ijbiomac.2018.01.16429414731
    [Google Scholar]
  92. SinglaR.K. DubeyA.K. GargA. SharmaR.K. FiorinoM. AmeenS.M. HaddadM.A. Al-HiaryM. Natural polyphenols: Chemical classification, definition of classes, subcategories, and structures.J. AOAC Int.201910251397140010.5740/jaoacint.19‑013331200785
    [Google Scholar]
  93. GaoZ. WuH. ZhangK. HossenI. WangJ. WangC. XuD. XiaoJ. CaoY. Protective effects of grape seed procyanidin extract on intestinal barrier dysfunction induced by a long-term high-fat diet.J. Funct. Foods20206410366310.1016/j.jff.2019.103663
    [Google Scholar]
  94. Marhuenda-MuñozM. Laveriano-SantosE.P. Tresserra-RimbauA. Lamuela-RaventósR.M. Martínez-HuélamoM. Vallverdú-QueraltA. Microbial phenolic metabolites: Which molecules actually have an effect on human health?Nutrients20191111272510.3390/nu1111272531717653
    [Google Scholar]
  95. AnhêF.F. NachbarR.T. VarinT.V. VilelaV. DudonnéS. PilonG. FournierM. LecoursM.A. DesjardinsY. RoyD. LevyE. MaretteA. A polyphenol-rich cranberry extract reverses insulin resistance and hepatic steatosis independently of body weight loss.Mol. Metab.20176121563157310.1016/j.molmet.2017.10.00329107524
    [Google Scholar]
  96. AnhêF.F. VarinT.V. Le BarzM. PilonG. DudonnéS. TrottierJ. St-PierreP. HarrisC.S. LucasM. LemireM. DewaillyÉ. BarbierO. DesjardinsY. RoyD. MaretteA. Arctic berry extracts target the gut–liver axis to alleviate metabolic endotoxaemia, insulin resistance and hepatic steatosis in diet-induced obese mice.Diabetologia201861491993110.1007/s00125‑017‑4520‑z29270816
    [Google Scholar]
  97. Alves-SantosA.M. SugizakiC.S.A. LimaG.C. NavesM.M.V. Prebiotic effect of dietary polyphenols: A systematic review.J. Funct. Foods20207410416910.1016/j.jff.2020.104169
    [Google Scholar]
  98. DiasR. PereiraC.B. Pérez-GregorioR. MateusN. FreitasV. Recent advances on dietary polyphenol’s potential roles in Celiac Disease.Trends Food Sci. Technol.202110721322510.1016/j.tifs.2020.10.033
    [Google Scholar]
  99. GowdV. KarimN. ShishirM.R.I. XieL. ChenW. Dietary polyphenols to combat the metabolic diseases via altering gut microbiota.Trends Food Sci. Technol.201993819310.1016/j.tifs.2019.09.005
    [Google Scholar]
  100. ZorraquínI. Sánchez-HernándezE. Ayuda-DuránB. SilvaM. González-ParamásA.M. Santos-BuelgaC. Moreno-ArribasM.V. BartoloméB. Current and future experimental approaches in the study of grape and wine polyphenols interacting gut microbiota.J. Sci. Food Agric.2020100103789380210.1002/jsfa.1037832167171
    [Google Scholar]
  101. JiaoX. WangY. LinY. LangY. LiE. ZhangX. ZhangQ. FengY. MengX. LiB. Blueberry polyphenols extract as a potential prebiotic with anti-obesity effects on C57BL/6 J mice by modulating the gut microbiota.J. Nutr. Biochem.2019648810010.1016/j.jnutbio.2018.07.00830471564
    [Google Scholar]
  102. XianY. FanR. ShaoJ. Mulcahy ToneyA. ChungS. Ramer-TaitA.E. Polyphenolic fractions isolated from red raspberry whole fruit, pulp, and seed differentially alter the gut microbiota of mice with diet-induced obesity.J. Funct. Foods20217610428810.1016/j.jff.2020.104288
    [Google Scholar]
  103. MaH. ZhangB. HuY. WangJ. LiuJ. QinR. LvS. WangS. Correlation analysis of intestinal redox state with the gut microbiota reveals the positive intervention of tea polyphenols on hyperlipidemia in high fat diet fed mice.J. Agric. Food Chem.201967267325733510.1021/acs.jafc.9b0221131184120
    [Google Scholar]
  104. Mayta-ApazaA.C. PottgenE. De BodtJ. PappN. MarasiniD. HowardL. AbrankoL. Van de WieleT. LeeS.O. CarboneroF. Impact of tart cherries polyphenols on the human gut microbiota and phenolic metabolites in vitro and in vivo.J. Nutr. Biochem.20185916017210.1016/j.jnutbio.2018.04.00130055451
    [Google Scholar]
  105. Palencia-ArgelM. Rodríguez-VillamilH. Bernal-CastroC. Díaz-MorenoC. FuenmayorC.A. Probiotics in anthocyanin-rich fruit beverages: Research and development for novel synbiotic products.Crit. Rev. Food Sci. Nutr.202464111012610.1080/10408398.2022.210480635880471
    [Google Scholar]
  106. RorizC.L. BarrosL. PrietoM.A. ĆirićA. SokovićM. MoralesP. FerreiraI.C.F.R. Enhancing the antimicrobial and antifungal activities of a coloring extract agent rich in betacyanins obtained from Gomphrena globosa L. flowers.Food Funct.20189126205621710.1039/C8FO01829D30467561
    [Google Scholar]
  107. SongH. ChuQ. YanF. YangY. HanW. ZhengX. Red pitaya betacyanins protects from diet‐induced obesity, liver steatosis and insulin resistance in association with modulation of gut microbiota in mice.J. Gastroenterol. Hepatol.20163181462146910.1111/jgh.1327826699443
    [Google Scholar]
  108. FeiY. ChenZ. HanS. ZhangS. ZhangT. LuY. BerglundB. XiaoH. LiL. YaoM. Role of prebiotics in enhancing the function of next-generation probiotics in gut microbiota.Crit. Rev. Food Sci. Nutr.20236381037105410.1080/10408398.2021.195874434323634
    [Google Scholar]
  109. YouS. MaY. YanB. PeiW. WuQ. DingC. HuangC. The promotion mechanism of prebiotics for probiotics: A review.Front. Nutr.20229100051710.3389/fnut.2022.100051736276830
    [Google Scholar]
  110. KarakanT. TuohyK.M. Janssen-van SolingenG. Low-dose lactulose as a prebiotic for improved gut health and enhanced mineral absorption.Front. Nutr.2021867292510.3389/fnut.2021.67292534386514
    [Google Scholar]
  111. KhareA. ThoratG. BhimteA. YadavV. Mechanism of action of prebiotic and probiotic.J. Entomol. Zool. Stud.201865153
    [Google Scholar]
  112. HolscherH.D. Dietary fiber and prebiotics and the gastrointestinal microbiota.Gut Microbes20178217218410.1080/19490976.2017.129075628165863
    [Google Scholar]
  113. CuiJ. LianY. ZhaoC. DuH. HanY. GaoW. XiaoH. ZhengJ. Dietary fibers from fruits and vegetables and their health benefits via modulation of gut microbiota.Compr. Rev. Food Sci. Food Saf.20191851514153210.1111/1541‑4337.1248933336908
    [Google Scholar]
  114. ŚliżewskaK. Markowiak-KopećP. ŚliżewskaW. The role of probiotics in cancer prevention.Cancers20201312010.3390/cancers1301002033374549
    [Google Scholar]
  115. MorrisonD.J. PrestonT. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism.Gut Microbes20167318920010.1080/19490976.2015.113408226963409
    [Google Scholar]
  116. DalileB. Van OudenhoveL. VervlietB. VerbekeK. The role of short-chain fatty acids in microbiota–gut–brain communication.Nat. Rev. Gastroenterol. Hepatol.201916846147810.1038/s41575‑019‑0157‑331123355
    [Google Scholar]
  117. LiuX. SuS. YaoJ. ZhangX. WuZ. JiaL. LiuL. HouR. FaragM.A. LiuL. Research advance about plant polysaccharide prebiotics, benefit for probiotics on gut homeostasis modulation.Food Biosci.20245910383110.1016/j.fbio.2024.103831
    [Google Scholar]
  118. SilvaY.P. BernardiA. FrozzaR.L. The role of short-chain fatty acids from gut microbiota in gut-brain communication.Front. Endocrinol.2020112510.3389/fendo.2020.0002532082260
    [Google Scholar]
  119. PudduA. SanguinetiR. MontecuccoF. VivianiG.L. Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes.Mediators Inflamm.201420141910.1155/2014/16202125214711
    [Google Scholar]
  120. Prebiotic Ingredients Market - Industry Analysis, Market Size, Share, Trends, Growth and Forecast 2024 - 2030.Available from: https://www.industryarc.com/Report/7481/prebiotics-ingredients-market.html
  121. BoonM.A. JanssenA.E.M. van ’t RietK. van ’t Riet K Effect of temperature and enzyme origin on the enzymatic synthesis of oligosaccharides.Enzyme Microb. Technol.2000262-427128110.1016/S0141‑0229(99)00167‑210689088
    [Google Scholar]
  122. KhangwalI. ShuklaP. Prospecting prebiotics, innovative evaluation methods, and their health applications: A review.3 Biotech2019918710.1007/s13205‑019‑1716‑6
    [Google Scholar]
  123. ThomsonP. MedinaD.A. GarridoD. Human milk oligosaccharides and infant gut bifidobacteria: Molecular strategies for their utilization.Food Microbiol.201875374610.1016/j.fm.2017.09.00130056961
    [Google Scholar]
  124. KongC. de JongA. de HaanB.J. KokJ. de VosP. Human milk oligosaccharides and non-digestible carbohydrates reduce pathogen adhesion to intestinal epithelial cells by decoy effects or by attenuating bacterial virulence.Food Res. Int.202215111086710.1016/j.foodres.2021.11086734980402
    [Google Scholar]
  125. KaurA.P. BhardwajS. DhanjalD.S. NepovimovaE. Cruz-MartinsN. KučaK. ChopraC. SinghR. KumarH. ȘenF. KumarV. VermaR. KumarD. Plant prebiotics and their role in the amelioration of diseases.Biomolecules202111344010.3390/biom1103044033809763
    [Google Scholar]
  126. VosA.P. van EschB.C. StahlB. M’RabetL. FolkertsG. NijkampF.P. GarssenJ. Dietary supplementation with specific oligosaccharide mixtures decreases parameters of allergic asthma in mice.Int. Immunopharmacol.20077121582158710.1016/j.intimp.2007.07.02417920536
    [Google Scholar]
  127. HumeM.P. NicolucciA.C. ReimerR.A. Prebiotic supplementation improves appetite control in children with overweight and obesity: A randomized controlled trial.Am. J. Clin. Nutr.2017105479079910.3945/ajcn.116.14094728228425
    [Google Scholar]
  128. ChoY.J. LeeH.G. SeoK.H. YokoyamaW. KimH. Antiobesity effect of prebiotic polyphenol-rich grape seed flour supplemented with probiotic kefir-derived lactic acid bacteria.J. Agric. Food Chem.20186647124981251110.1021/acs.jafc.8b0372030392364
    [Google Scholar]
  129. Estruel-AmadesS. Massot-CladeraM. Pérez-CanoF.J. FranchÀ. CastellM. Camps-BossacomaM. Hesperidin effects on gut microbiota and gut-associated lymphoid tissue in healthy rats.Nutrients201911232410.3390/nu1102032430717392
    [Google Scholar]
  130. PaturiG. ButtsC.A. MonroJ.A. HedderleyD. Effects of blackcurrant and dietary fibers on large intestinal health biomarkers in rats.Plant Foods Hum. Nutr.2018731546010.1007/s11130‑018‑0652‑729388158
    [Google Scholar]
  131. OhN.S. LeeJ.Y. KimY.T. KimS.H. LeeJ.H. Cancer-protective effect of a synbiotic combination between Lactobacillus gasseri 505 and a Cudrania tricuspidata leaf extract on colitis-associated colorectal cancer.Gut Microbes2020121178580310.1080/19490976.2020.178580332663105
    [Google Scholar]
  132. CummingsJ.H. Short chain fatty acids in the human colon.Gut198122976377910.1136/gut.22.9.7637028579
    [Google Scholar]
  133. SudheerS. GangwarP. UsmaniZ. SharmaM. SharmaV.K. SanaS.S. AlmeidaF. DubeyN.K. SinghD.P. DilbaghiN. Khayat KashaniH.R. GuptaV.K. SinghB.N. KhayatkashaniM. NabaviS.M. Shaping the gut microbiota by bioactive phytochemicals: An emerging approach for the prevention and treatment of human diseases.Biochimie2022193386310.1016/j.biochi.2021.10.01034688789
    [Google Scholar]
  134. MickaA. SiepelmeyerA. HolzA. TheisS. SchönC. Effect of consumption of chicory inulin on bowel function in healthy subjects with constipation: A randomized, double-blind, placebo-controlled trial.Int. J. Food Sci. Nutr.2017681828910.1080/09637486.2016.121281927492975
    [Google Scholar]
  135. WhisnerC.M. CastilloL.F. Prebiotics, bone and mineral metabolism.Calcif. Tissue Int.2018102444347910.1007/s00223‑017‑0339‑329079996
    [Google Scholar]
  136. CollinsF.L. Rios-ArceN.D. SchepperJ.D. ParameswaranN. McCabeL.R. The potential of probiotics as a therapy for osteoporosis.Microbiol. Spectr.2017545.4.2010.1128/microbiolspec.BAD‑0015‑201628840819
    [Google Scholar]
  137. BrosseauC. SelleA. PalmerD.J. PrescottS.L. BarbarotS. BodinierM. Prebiotics: Mechanisms and preventive effects in allergy.Nutrients2019118184110.3390/nu1108184131398959
    [Google Scholar]
  138. HarschI.A. KonturekP.C. The role of gut microbiota in obesity and type 2 and type 1 diabetes mellitus: New insights into “old” diseases.Med. Sci.2018623210.3390/medsci602003229673211
    [Google Scholar]
  139. KimJ.S. NamK. ChungS.J. Effect of nutrient composition in a mixed meal on the postprandial glycemic response in healthy people: A preliminary study.Nutr. Res. Pract.201913212613310.4162/nrp.2019.13.2.12630984356
    [Google Scholar]
  140. LudwigD.S. HuF.B. TappyL. Brand-MillerJ. Dietary carbohydrates: Role of quality and quantity in chronic disease.BMJ2018361k234010.1136/bmj.k234029898880
    [Google Scholar]
  141. OrtegaÁ. BernáG. RojasA. MartínF. SoriaB. Gene-diet interactions in type 2 diabetes: The chicken and egg debate.Int. J. Mol. Sci.2017186118810.3390/ijms1806118828574454
    [Google Scholar]
  142. HardyH. HarrisJ. LyonE. BealJ. FoeyA. Probiotics, prebiotics and immunomodulation of gut mucosal defences: Homeostasis and immunopathology.Nutrients2013561869191210.3390/nu506186923760057
    [Google Scholar]
  143. PaineauD. PayenF. PanserieuS. CoulombierG. SobaszekA. LartigauI. BrabetM. GalmicheJ.P. TripodiD. Sacher-HuvelinS. ChapalainV. ZourabichviliO. RespondekF. WagnerA. BornetF.R.J. The effects of regular consumption of short-chain fructo-oligosaccharides on digestive comfort of subjects with minor functional bowel disorders.Br. J. Nutr.200899231131810.1017/S000711450779894X17697398
    [Google Scholar]
  144. SierraC. BernalM.J. BlascoJ. MartínezR. DalmauJ. OrtuñoI. EspínB. VasalloM.I. GilD. VidalM.L. InfanteD. LeisR. MaldonadoJ. MorenoJ.M. RománE. Prebiotic effect during the first year of life in healthy infants fed formula containing GOS as the only prebiotic: A multicentre, randomised, double-blind and placebo-controlled trial.Eur. J. Nutr.2015541899910.1007/s00394‑014‑0689‑924671237
    [Google Scholar]
  145. ZhangX. ZhaoY. XuJ. XueZ. ZhangM. PangX. ZhangX. ZhaoL. Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats.Sci. Rep.2015511440510.1038/srep1440526396057
    [Google Scholar]
  146. LiX. GuoJ. JiK. ZhangP. Bamboo shoot fiber prevents obesity in mice by modulating the gut microbiota.Sci. Rep.2016613295310.1038/srep3295327599699
    [Google Scholar]
  147. Sánchez-TapiaM. Aguilar-LópezM. Pérez-CruzC. Pichardo-OntiverosE. WangM. DonovanS.M. TovarA.R. TorresN. Nopal (Opuntia ficus indica) protects from metabolic endotoxemia by modifying gut microbiota in obese rats fed high fat/sucrose diet.Sci. Rep.201771471610.1038/s41598‑017‑05096‑428680065
    [Google Scholar]
  148. GerhauserC. Impact of dietary gut microbial metabolites on the epigenome.Philos. Trans. R. Soc. Lond. B Biol. Sci.201837317482017035910.1098/rstb.2017.035929685968
    [Google Scholar]
  149. El-SayedA. AleyaL. KamelM. Microbiota and epigenetics: Promising therapeutic approaches?Environ. Sci. Pollut. Res. Int.20212836493434936110.1007/s11356‑021‑15623‑634319520
    [Google Scholar]
  150. BultmanS.J. Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer.Mol. Nutr. Food Res.2017611150090210.1002/mnfr.20150090227138454
    [Google Scholar]
  151. LinX. HanH. WangN. WangC. QiM. WangJ. LiuG. The gut microbial regulation of epigenetic modification from a metabolic perspective.Int. J. Mol. Sci.20242513717510.3390/ijms2513717539000282
    [Google Scholar]
  152. RajaveluA. TulyashevaZ. JaiswalR. JeltschA. KuhnertN. The inhibition of the mammalian DNA methyltransferase 3a (Dnmt3a) by dietary black tea and coffee polyphenols.BMC Biochem.20111211610.1186/1471‑2091‑12‑1621510884
    [Google Scholar]
  153. LutzM. MoyaP.R. GallorioS. RíosU. ArancibiaM. Effects of dietary fiber, phenolic compounds, and fatty acids on mental health: Possible interactions with genetic and epigenetic aspects.Nutrients20241616257810.3390/nu1616257839203714
    [Google Scholar]
  154. RevaK. LaranjinhaJ. RochaB.S. Epigenetic modifications induced by the gut microbiota may result from what we eat: Should we talk about precision diet in health and disease?Metabolites202313337510.3390/metabo1303037536984815
    [Google Scholar]
  155. LozuponeM. D’UrsoF. PiccininniC. MontagnaM.L. SardoneR. RestaE. DibelloV. DanieleA. GiannelliG. BellomoA. PanzaF. The relationship between epigenetics and microbiota in neuropsychiatric diseases.Epigenomics202012171559156810.2217/epi‑2020‑005332901505
    [Google Scholar]
  156. LiD. LiY. YangS. LuJ. JinX. WuM. Diet-gut microbiota-epigenetics in metabolic diseases: From mechanisms to therapeutics.Biomed. Pharmacother.202215311329010.1016/j.biopha.2022.11329035724509
    [Google Scholar]
  157. MorovicW. BudinoffC.R. Epigenetics: A new frontier in probiotic research.Trends Microbiol.202129211712610.1016/j.tim.2020.04.00832409146
    [Google Scholar]
/content/journals/probiot/10.2174/0126666499361588250121170836
Loading
/content/journals/probiot/10.2174/0126666499361588250121170836
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): epigenetics; gut-microbiome; medicinal plants; polyphenols; Prebiotics; probiotics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test