Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-6499
  • E-ISSN: 2666-6502

Abstract

The understanding of plant-associated bacterial communities has attracted a lot of attention because of their crucial function in improving plant physiology and productivity. These benefits include bioremediation, nutrient solubilization, and stress tolerance. Notably, the use of bacteria as probiotics in eco-efficient plant growing systems (EPGS), including hydroponics and aquaponics, is emerging. These systems are ecologically friendly, productive, resource-efficient, and hold excellent promises for a more sustainable agriculture. This review explores the use of probiotics in the unique stages of plant growth in EPGS, highlighting the significance of managing nutrients and conditions for the plant growth. Moreover, it clarifies how important bacteria are to the nitrogen cycle in EPGS, particularly nitrifying and nitrogen-fixing species. Furthermore, it discusses the methods for bioprospecting new probiotics, highlighting the importance of the combination of metagenomics and conventional microbiology methods. It also highlights how crucial it is to understand the dynamics of probiotics in EPGS for environmentally friendly plant production and preservation in the face of climate change.

Loading

Article metrics loading...

/content/journals/probiot/10.2174/0126666499301073240823095747
2024-01-01
2025-11-07
Loading full text...

Full text loading...

References

  1. LiH. ZhaoH.M. PurchaseD. ChenX.W. Editorial: Microbial communities and functions contribute to plant performance under various stresses.Front. Microbiol.20221399290910.3389/fmicb.2022.99290936419430
    [Google Scholar]
  2. PoriaV. Dębiec-AndrzejewskaK. FiodorA. LyzohubM. AjijahN. SinghS. PranawK. Plant Growth-Promoting Bacteria (PGPB) integrated phytotechnology: A sustainable approach for remediation of marginal lands.Front. Plant Sci.20221399986610.3389/fpls.2022.99986636340355
    [Google Scholar]
  3. JiS.H. KimJ.S. LeeC.H. SeoH.S. ChunS.C. OhJ. ChoiE.H. ParkG. Enhancement of vitality and activity of a plant growth-promoting bacteria (PGPB) by atmospheric pressure non-thermal plasma.Sci. Rep.201991104410.1038/s41598‑018‑38026‑z30705339
    [Google Scholar]
  4. SouzaR. AmbrosiniA. PassagliaL.M.P. Plant growth-promoting bacteria as inoculants in agricultural soils.Genet. Mol. Biol.201538440141910.1590/S1415‑47573842015005326537605
    [Google Scholar]
  5. KasoziN. AbrahamB. KaiserH. WilhelmiB. The complex microbiome in aquaponics: significance of the bacterial ecosystem.Ann. Microbiol.2021711110.1186/s13213‑020‑01613‑5
    [Google Scholar]
  6. StegelmeierA.A. RoseD.M. JorisB.R. GlickB.R. The use of pgpb to promote plant hydroponic growth.Plants20221120278310.3390/plants1120278336297807
    [Google Scholar]
  7. KasoziN. WilhelmiB. KaiserH. The effect of the addition of a probiotic mixture of two bacillus species to a coupled aquaponics system on water quality, growth and digestive enzyme activity of Mozambique tilapia, Oreochromis Mossambicus.J. Appl. Aquacult.202134211910.1080/10454438.2021.1986192
    [Google Scholar]
  8. SchmautzZ. EspinalC.A. BohnyA.M. RezzonicoF. JungeR. FrossardE. SmitsT.H.M. Environmental parameters and microbial community profiles as indication towards microbial activities and diversity in aquaponic system compartments.BMC Microbiol.20212111210.1186/s12866‑020‑02075‑033407126
    [Google Scholar]
  9. SchmautzZ. EspinalC.A. SmitsT.H.M. FrossardE. JungeR. Nitrogen transformations across compartments of an aquaponic system.Aquacult. Eng.20219210214510.1016/j.aquaeng.2021.102145
    [Google Scholar]
  10. VidalE.A. AlvarezJ.M. ArausV. RiverasE. BrooksM.D. KroukG. RuffelS. LejayL. CrawfordN.M. CoruzziG.M. GutiérrezR.A. Nitrate in 2020: thirty years from transport to signaling networks.Plant Cell20203272094211910.1105/tpc.19.0074832169959
    [Google Scholar]
  11. GaikwadD.J. Maitra. S. Hydroponics Cultivation of Crops.Protected Cultivation and Smart AgricultureNew Delhi: New Delhi Publishers202027928710.30954/NDP‑PCSA.2020.31
    [Google Scholar]
  12. PomoniD.I. KoukouM.K. VrachopoulosM.G. VasiliadisL. a review of hydroponics and conventional agriculture based on energy and water consumption, environmental impact, and land use.Energies2023164169010.3390/en16041690
    [Google Scholar]
  13. Menezes-BlackburnD. Al-MahrouqiN. Al-SiyabiB. Al-KalbaniA. GreinerR. DobretsovS. Bacterial communities associated with the cycling of non-starch polysaccharides and phytate in aquaponics systems.Diversity (Basel)2021131263110.3390/d13120631
    [Google Scholar]
  14. BongominO. YemaneA. KembabaziB. MalandaC. Chikonkolo MwapeM. Sheron MpofuN. TigalanaD. Industry 4.0 disruption and its neologisms in major industrial sectors: A state of the art.J. Eng.2020202014510.1155/2020/8090521
    [Google Scholar]
  15. RanaK.L. KourD. KaurT. DeviR. YadavN. SubrahmanyamG. KumarA. YadavA.N. Biotechnological applications of seed microbiomes for sustainable agriculture and environment.Trends Microb. Biotech. Sustain. Agri. Biomed. Sys. Diver. Func. Perspec.2020112714310.1016/B978‑0‑12‑820526‑6.00008‑7
    [Google Scholar]
  16. Johnston-MonjeD. GutiérrezJ.P. Becerra Lopez-LavalleL.A. Stochastic inoculum, biotic filtering and species-specific seed transmission shape the rare microbiome of plants.Life2022129137210.3390/life1209137236143410
    [Google Scholar]
  17. HundleyG. NavarroR. Aquaponics: The integration between fish farming and hydroponics.Rev. Bras. Agropecu. Sustent.201332526110.21206/rbas.v3i2.218
    [Google Scholar]
  18. BarbosaG. GadelhaF. KublikN. ProctorA. ReichelmL. WeissingerE. WohllebG. HaldenR. Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. conventional agricultural methods.Int. J. Environ. Res. Public Health20151266879689110.3390/ijerph12060687926086708
    [Google Scholar]
  19. ÃesA. Aquaponics and hydroponics urban farms: Systems for independent production.2020
    [Google Scholar]
  20. ThomasP. KnoxO.G.G. PowellJ.R. SindelB. WinterG. The hydroponic rockwool root microbiome: under control or underutilised?Microorganisms202311483583510.3390/microorganisms1104083537110258
    [Google Scholar]
  21. DhulappanavarG.R. GibsonK.E. Persistence of salmonella enterica subsp. enterica ser. javiana, listeria monocytogenes, and listeria innocua in hydroponic nutrient solution.J. Food Prot.2023861010015410015410.1016/j.jfp.2023.10015437640157
    [Google Scholar]
  22. SunY. WangM. MurL.A.J. ShenQ. GuoS. Unravelling the roles of nitrogen nutrition in plant disease defences.Int. J. Mol. Sci.202021257210.3390/ijms2102057231963138
    [Google Scholar]
  23. BaganzG.F.M. Junge R, Portella MC, The aquaponic principle—It is all about coupling.Rev. Aquacult.202114125226410.1111/raq.12596
    [Google Scholar]
  24. FangY. HuZ. ZouY. ZhangJ. ZhuZ. ZhangJ. NieL. Improving nitrogen utilization efficiency of aquaponics by introducing algal-bacterial consortia.Bioresour. Technol.2017245Pt A35836410.1016/j.biortech.2017.08.11628898831
    [Google Scholar]
  25. GoddekS. JoyceA. KotzenB. Aquaponics food production systems: combined aquaculture and hydroponic production technologies for the future.2019Cham, SwitzerlandSpringer10.1007/978‑3‑030‑15943‑6
    [Google Scholar]
  26. AssisCDSRD SantiagoCR SilvaLCBD Polyculture of juvenile nilotic and red tilapia in recirculation and aquaponics systems.202310.47820/recima21.v4i6.3230
    [Google Scholar]
  27. VasdravanidisC. AlvanouM.V. LattosA. PapadopoulosD.K. ChatzigeorgiouI. RavaniM. LiantasG. GeorgoulisI. FeidantsisK. NtinasG.K. GiantsisI.A. Aquaponics as a promising strategy to mitigate impacts of climate change on rainbow trout culture.Animals (Basel)20221219252310.3390/ani1219252336230264
    [Google Scholar]
  28. SátiroT.M. NetoKXCR DelpreteSE Aquaponics: System that integrates fish production with vegetable production in a sustainable way.Rev Bras Eng Pesca20181113810.18817/repesca.v11i1.1513
    [Google Scholar]
  29. SchmautzZ. WalserJ.C. EspinalC.A. GartmannF. ScottB. PothierJ.F. FrossardE. JungeR. SmitsT.H.M. Microbial diversity across compartments in an aquaponic system and its connection to the nitrogen cycle.Sci. Total Environ.202285215842610.1016/j.scitotenv.2022.15842636055492
    [Google Scholar]
  30. EckM. SzekelyI. MassartS. JijakliM.H. Ecological study of aquaponics bacterial microbiota over the course of a lettuce growth cycle.Water20211315208910.3390/w13152089
    [Google Scholar]
  31. MohapatraB.C. ChandanN.K. PandaS.K. MajhiD. PillaiB.R. Design and development of a portable and streamlined nutrient film technique (NFT) aquaponic system.Aquacult. Eng.20209010210010.1016/j.aquaeng.2020.102100
    [Google Scholar]
  32. FanL. QiuL. HuG. SongC. MengS. LiD. ChenJ. Ammonia-oxidizing bacterial communities in tilapia pond systems and the influencing factors.Appl. Sci. (Basel)20221273438343810.3390/app12073438
    [Google Scholar]
  33. DhawiF. The role of plant growth-promoting microorganisms (PGPMS) and their feasibility in hydroponics and vertical farming.Metabolites202313224710.3390/metabo1302024736837866
    [Google Scholar]
  34. SunN. WangY. ChenJ. WangP. SongW. MaP. DuanY. JiaoZ. LiY. Colonization and interaction of bacteria associated with chinese chives affected by ecological compartments and growth conditions.Front. Microbiol.20221377500210.3389/fmicb.2022.77500235237245
    [Google Scholar]
  35. StouvenakersG. MassartS. DepireuxP. JijakliM.H. Microbial origin of aquaponic water suppressiveness against pythium aphanidermatum lettuce root rot disease.Microorganisms2020811168310.3390/microorganisms811168333138322
    [Google Scholar]
  36. WongkiewS. Nitrogen recovery via aquaponics–bioponics: engineering considerations and perspectives.ACS EST Eng.20211332633910.1021/acsestengg.0c00196
    [Google Scholar]
  37. SetiawatiM.R. AfrilandhaN. HindersahR. SuryatmanaP. FitriatinB.N. KamaluddinN.N. The effect of beneficial microorganism as biofertilizer application in hydroponic-grown tomato.SAINS TANAH - J. Soil Sci. Agroclimat.2023201667710.20961/stjssa.v20i1.63877
    [Google Scholar]
  38. EckM. SareA.R. MassartS. SchmautzZ. JungeR. SmitsT.H.M. JijakliM.H. Exploring bacterial communities in aquaponic systems.Water201911226010.3390/w11020260
    [Google Scholar]
  39. DayJ.A. DienerC. OtwellA.E. TamsK.E. BeboutB. DetweilerA.M. LeeM.D. ScottM.T. TaW. HaM. CarreonS.A. TongK. AliA.A. GibbonsS.M. BaligaN.S. Lettuce (Lactuca sativa) productivity influenced by microbial inocula under nitrogen-limited conditions in aquaponics.PLoS One202116224753410.1371/journal.pone.024753433621265
    [Google Scholar]
  40. van RooyenI.L. NicolW. Nitrogen management in nitrification-hydroponic systems by utilizing their pH characteristics.Env. Techno. Inno.20222610236010.1016/j.eti.2022.102360
    [Google Scholar]
  41. WongkiewS. HuZ. ChandranK. LeeJ.W. KhanalS.K. Nitrogen transformations in aquaponic systems: A review.Aquacult. Eng.20177691910.1016/j.aquaeng.2017.01.004
    [Google Scholar]
  42. ParadisoR. BuonomoR. DixonM.A. BarbieriG. De PascaleS. Effect of bacterial root symbiosis and urea as source of nitrogen on performance of soybean plants grown hydroponically for Bioregenerative Life Support Systems (BLSSs).Front. Plant Sci.2015688810.3389/fpls.2015.0088826579144
    [Google Scholar]
  43. KontopoulouC.K. GiagkouS. StathiE. SavvasD. IannettaP.P.M. Responses of hydroponically grown common bean fed with nitrogen-free nutrient solution to root inoculation with n2-fixing bacteria.HortScience201550459760210.21273/HORTSCI.50.4.597
    [Google Scholar]
  44. RuedaD. Valencia GG. SoriaN. Effect of Azospirillum spp. and Azotobacter spp. on the growth and yield of strawberry (Fragaria vesca) in hydroponic system under different nitrogen levels.J. Appl. Pharma. Sci.2016485410.7324/JAPS.2016.600108
    [Google Scholar]
  45. ChiaranuntP. WhiteJ.F. Plant beneficial bacteria and their potential applications in vertical farming systems.Plants202312240010.3390/plants1202040036679113
    [Google Scholar]
  46. KasoziN. KaiserH. WilhelmiB. Effect of bacillus spp. on lettuce growth and root associated bacterial community in a small-scale aquaponics system.Agronomy202111594710.3390/agronomy11050947
    [Google Scholar]
  47. KasoziN. IweG.D. WalakiraJ. Integration of probiotics in aquaponic systems: an emerging alternative approach.Aquacult. Int.2023322131215010.1007/s10499‑023‑01261‑x
    [Google Scholar]
  48. Yosmaniar TaufikI. SetijaningsihL. WidyastutiY.R. Performance growth and survival of Hemibagrus nemurus with probiotic application on aquaponics.IOP Conf. Ser. Earth Environ. Sci.20221119101207010.1088/1755‑1315/1119/1/012070
    [Google Scholar]
  49. SewelamN. El-ShetehyM. MauchF. MaurinoV.G. Combined abiotic stresses repress defense and cell wall metabolic genes and render plants more susceptible to pathogen infection.Plants2021109194610.3390/plants1009194634579478
    [Google Scholar]
  50. WeßlingR. EppleP. AltmannS. HeY. YangL. HenzS.R. McDonaldN. WileyK. BaderK.C. GläßerC. MukhtarM.S. HaigisS. GhamsariL. StephensA.E. EckerJ.R. VidalM. JonesJ.D.G. MayerK.F.X. Ver Loren van ThemaatE. WeigelD. Schulze-LefertP. DanglJ.L. PanstrugaR. BraunP. Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life.Cell Host Microbe201416336437510.1016/j.chom.2014.08.00425211078
    [Google Scholar]
  51. AndersonT.S. GoldsteinL.T. TimmonsM.B. Root nitrification capacity of lettuce plants with application to aquaponics.Aquacult. Eng.20198610199710.1016/j.aquaeng.2019.101997
    [Google Scholar]
  52. TkaczA. CheemaJ. ChandraG. GrantA. PooleP.S. Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition.ISME J.20159112349235910.1038/ismej.2015.4125909975
    [Google Scholar]
  53. YamaneK. KimuraY. TakahashiK. MaedaI. IigoM. IkeguchiA. KimH-J. The growth of leaf lettuce and bacterial communities in a closed aquaponics system with catfish.Horticulturae20217822210.3390/horticulturae7080222
    [Google Scholar]
  54. SaijaiS. AndoA. InukaiR. ShinoharaM. OgawaJ. Analysis of microbial community and nitrogen transition with enriched nitrifying soil microbes for organic hydroponics.Biosci. Biotechnol. Biochem.201680112247225410.1080/09168451.2016.120045927351990
    [Google Scholar]
  55. LobanovV. KeesmanK.J. JoyceA. Plants dictate root microbial composition in hydroponics and aquaponics.Front. Microbiol.20221384805710.3389/fmicb.2022.84805735509321
    [Google Scholar]
  56. ArifA. Comparison of bacterial diversity in water samples of aquaculture, aquaponic and hydroponic system.J. zoo bio20236117
    [Google Scholar]
  57. MamphogoroT.P. MabokoM.M. BabalolaO.O. AiyegoroO.A. Bacterial communities associated with the surface of fresh sweet pepper (Capsicum annuum) and their potential as biocontrol.Sci. Rep.2020101856010.1038/s41598‑020‑65587‑932444860
    [Google Scholar]
  58. HarrisS.L. PelaezC.A. ShankE.A. Monitoring bacterial colonization and maintenance on arabidopsis thaliana roots in a floating hydroponic system.J. Vis. Exp.2019147e5951710.3791/59517‑v31205303
    [Google Scholar]
  59. LiuM. ChenY. WuY. GuoJ. SunP. ZhangZ. Synergistic action of plants and microorganism in integrated floating bed on eutrophic brackish water purification in coastal estuary areas.Front. Mar. Sci.2021861908710.3389/fmars.2021.619087
    [Google Scholar]
  60. Ye S, Chen J, LiP. YeS. ChenJ. Combined metagenomic and metabolomic analyses reveal that Bt rice planting alters soil C-N metabolism.ISME COMMUN.202334
    [Google Scholar]
  61. AminM. AgustonoA. AliM. PrayugoP. HumN.N.M.F. Isolation and screening of indigenous nitrifying bacteria to enhance nutrient recovery in an aquaponics system.J. World Aquacult. Soc.20235461607162310.1111/jwas.12970
    [Google Scholar]
  62. KasoziN. KaiserH. WilhelmiB. Metabarcoding analysis of bacterial communities associated with media grow bed zones in an aquaponic system.Int. J. Microbiol.2020202011010.1155/2020/888407033061984
    [Google Scholar]
  63. NuswantoroS. SungT-Y. KurniawanM. WuT-M. ChenB. HongM-C. Effects of phosphate-enriched nutrient in the polyculture of nile tilapia and freshwater prawn in an aquaponic system.Fishes2023828110.3390/fishes8020081
    [Google Scholar]
  64. RaškovićB. GebauerR. FolorunsoE.A. BožićG. VelíšekJ. DvořákP. BoříkA. GrabicR. MrázJ. Botanical and microbial insecticides application in aquaponics - is there a risk for biofilter bacteria and fish?Front. Mar. Sci.20229105556010.3389/fmars.2022.1055560
    [Google Scholar]
  65. SirakovI. LutzM. GraberA. MathisA. StaykovY. SmitsT. JungeR. Potential for combined biocontrol activity against fungal fish and plant pathogens by bacterial isolates from a model aquaponic system.Water201681151810.3390/w8110518
    [Google Scholar]
  66. ColetteM. Dynamic of active microbial diversity in rhizosphere sediments of halophytes used for bioremediation of earthen shrimp ponds.Enviro. microbio.202318110.1186/s40793‑023‑00512‑x
    [Google Scholar]
  67. KhalilS. PandaP. GhadamgahiF. RosbergA. VetukuriR.R. Comparison of two commercial recirculated aquacultural systems and their microbial potential in plant disease suppression.BMC Microbiol.202121120510.1186/s12866‑021‑02273‑434225658
    [Google Scholar]
  68. OliveiraV. MartinsP. MarquesB. Aquaponics using a fish farm effluent shifts bacterial communities profile in halophytes rhizosphere and endosphere.Sci. Rep.2020101
    [Google Scholar]
  69. Said et alMohamed M. Effect of the probiotic (Bacillus spp.) on water quality, production performance, microbial profile, and food safety of the nile tilapia and mint in recirculating aquaponic system.Egyptian J. Aqua. Bio. Fisher.202226635137210.21608/ejabf.2022.273109
    [Google Scholar]
  70. RuizA. ScicchitanoD. PalladinoG. NanettiE. CandelaM. FuronesD. SanahujaI. CarbóR. GisbertE. AndreeK.B. Microbiome study of a coupled aquaponic system: unveiling the independency of bacterial communities and their beneficial influences among different compartments.Sci. Rep.20231311970410.1038/s41598‑023‑47081‑037952071
    [Google Scholar]
  71. Rivera-GomezE. alVillamarinVE. Benavides-Claros CN, Daza-Rodriguez CA, Quintero ORG, Mauricio E. Evaluation of water quality parameters of an aquaponic system using red-bellied pacu (Piaractus brachypomus), strawberry (Fragaria x ananassa) and basil (Ocimum basilicum).J. Agric. Soc. Res.202335212
    [Google Scholar]
  72. FitzpatrickC.R. Salas-GonzálezI. ConwayJ.M. FinkelO.M. GilbertS. RussD. TeixeiraP.J.P.L. DanglJ.L. The Plant microbiome: from ecology to reductionism and beyond.Annu. Rev. Microbiol.20207418110010.1146/annurev‑micro‑022620‑01432732530732
    [Google Scholar]
  73. KuebutornyeF.K.A. AbarikeE.D. LuY. A review on the application of Bacillus as probiotics in aquaculture.Fish Shellfish Immunol.20198782082810.1016/j.fsi.2019.02.01030779995
    [Google Scholar]
  74. DadaşoğluF. DadaşoğluE. OrhanF. The effect of plant growth promoting bacteria both in vitro and hydroponic culture of barley (Hordeum vulgare) growth.Turk. J. Agric. For.202347566967510.55730/1300‑011X.3119
    [Google Scholar]
  75. KhanP. BoraL.C. BorahP.K. Management of lettuce rot caused by Fusarium oxysporum f. sp.Indian Phytopathol.201770210.24838/ip.2017.v70.i2.70757
    [Google Scholar]
  76. LeeS. AnR. GrewalP. YuZ. BorherovaZ. LeeJ. High-performing windowfarm hydroponic system: transcriptomes of fresh produce and microbial communities in response to beneficial bacterial treatment.Mol. Plant Microbe Interact.2016291296597610.1094/MPMI‑08‑16‑0162‑R28035839
    [Google Scholar]
  77. MoncadaA. VetranoF. MiceliA. Alleviation of salt stress by plant growth-promoting bacteria in hydroponic leaf lettuce.Agronomy20201010152310.3390/agronomy10101523
    [Google Scholar]
  78. SheridanC. DepuydtP. De RoM. PetitC. Van GysegemE. DelaereP. DixonM. StasiakM. AciksözS.B. FrossardE. ParadisoR. De PascaleS. VentorinoV. De MeyerT. SasB. GeelenD. Microbial community dynamics and response to plant growth-promoting microorganisms in the rhizosphere of four common food crops cultivated in hydroponics.Microb. Ecol.201773237839310.1007/s00248‑016‑0855‑027645138
    [Google Scholar]
  79. KitwetchB. RangseekaewP. ChromkaewY. Pathom-AreeW. SrinuanpanS. Employing a plant probiotic actinomycete for growth promotion of lettuce (lactuca sativa l. var. longifolia) cultivated in a hydroponic system under nutrient limitation.Plants20231222379310.3390/plants1222379338005691
    [Google Scholar]
  80. BruniL. JungeR. GartmannF. ParisiG. SchmautzZ. The effect of nutrient source and beneficial bacteria on growth of pythium-exposed lettuce at high salt stress.Water20231511210910.3390/w15112109
    [Google Scholar]
  81. JoshiM. SharmaS. Effects of hydroponic maize fodder with and without supplementation of probiotics (saccharomysis cerevisiae) on rumen parameters in calves.Int. J. Bio-Resour. Stress Manag.202415516
    [Google Scholar]
  82. KhanM.Y. HaqueM.M. MollaA.H. RahmanM.M. AlamM.Z. Antioxidant compounds and minerals in tomatoes by Trichoderma-enriched biofertilizer and their relationship with the soil environments.J. Integr. Agric.201716369170310.1016/S2095‑3119(16)61350‑3
    [Google Scholar]
  83. PogrzebaM. RusinowskiS. KrzyzakJ. Macroelements and heavy metals content in panicum virgatum cultivated on contaminated soil under different fertilization.20176310810.17707/AgricultForest.63.1.08
    [Google Scholar]
  84. Pathom-areeW. SensupaS. WichaphianA. SriketN. KitwetchB. PekkohJ. SattayawatP. LomakoolS. ChromkaewY. SrinuanpanS. An innovative co-cultivation of microalgae and actinomycete-inoculated lettuce in a hydroponic deep-water culture system for the sustainable development of a Food–Agriculture–Energy nexus.Horticulturae20241017010.3390/horticulturae10010070
    [Google Scholar]
  85. KrotovaO. Chelbin S, Krotova M, Sangadzhieva O, Khalgaeva K. Performance improvement of aquaponics systems when using microbiological strains in them.BIO Web Conferen.20224210101810.1051/bioconf/20224201018
    [Google Scholar]
  86. ChuY.T. BrownP.B. Sustainable marine aquaponics: Effects of shrimp to plant ratios and C/N ratios.Front. Mar. Sci.2021877163010.3389/fmars.2021.771630
    [Google Scholar]
  87. ChuY.T. BrownP.B. Optimal dietary crude protein in commercial feeds for shrimp and halophytes in marine aquaponic biofloc systems.Front. Mar. Sci.2022982497310.3389/fmars.2022.824973
    [Google Scholar]
  88. PriadiD. WibowoH. MulyaningsihE.S. The growth optimization of pak choy (brassica rapa l. var. chinensis) in household-scale aquaponics system.J. Biodjati20194217518310.15575/biodjati.v4i2.4630
    [Google Scholar]
  89. SaputraE. MuktiR.C. AminM. JubaedahD. YulismanY. RarassariM.A. Tilapia (oreochromis niloticus) farming in buckets in sakatiga village, indralaya district, ogan ilir regency.J Aquac Fish Health202211224725410.20473/jafh.v11i2.32517
    [Google Scholar]
  90. HassanM.A. FathallahM.A. ElzoghbyM.A. SalemM.G. HelmyM.S. Influence of probiotics on water quality in intensified Litopenaeus vannamei ponds under minimum-water exchange.AMB Express20221212210.1186/s13568‑022‑01370‑535218434
    [Google Scholar]
  91. ParkJ. HwangJ. ChoeJ. LeeD. KimH. Enhancing indoor culture of weather loach (misgurnus anguillicaudatus) and caipira lettuce (lactuca sativa) in a decoupled FLOCponics system.Fishes20249515010.3390/fishes9050150
    [Google Scholar]
  92. SantosoP. SunadjiS. Use of probiotics in fish feed and clams (Pilsbryoconcha exilis) as biofilter components of aquaponic system in archipelagic dryland.Int. J. Trop. Drylands20204204020310.13057/tropdrylands/t040203
    [Google Scholar]
  93. NadiaZ.M. AkhiA.R. RoyP. FarhadF.B. HossainM.M. SalamM.A. Yielding of aquaponics using probiotics to grow tomatoes with tilapia.Aquacult. Rep.20233310179910.1016/j.aqrep.2023.101799
    [Google Scholar]
  94. du JardinP. Plant biostimulants: Definition, concept, main categories and regulation.Sci. Hortic. (Amsterdam)201519631410.1016/j.scienta.2015.09.021
    [Google Scholar]
  95. PratteZ.A. BessonM. HollmanR.D. StewartF.J. The gills of reef fish support a distinct microbiome influenced by host-specific factors.Appl. Environ. Microbiol.2018849631810.1128/AEM.00063‑1829453266
    [Google Scholar]
  96. Rivas-GarcíaT. González-EstradaR.R. Chiquito-ContrerasR.G. Reyes-PérezJ.J. González-SalasU. Hernández-MontielL.G. Murillo-AmadorB. Biocontrol of phytopathogens under aquaponics systems.Water2020127206110.3390/w12072061
    [Google Scholar]
  97. BartelmeR.P. OysermanB.O. BlomJ.E. Sepulveda-VilletO.J. NewtonR.J. Stripping away the soil: plant growth promoting microbiology opportunities in aquaponics.Front. Microbiol.20189810.3389/fmicb.2018.0000829403461
    [Google Scholar]
  98. ChiangYR LinJHY ChiuCM LinHT The microorganism concern in the aquaponics system.Int. j. oceanog. aquacult.20237317
    [Google Scholar]
  99. DinevT. VelichkovaK. StoyanovaA. SirakovI. Microbial pathogens in aquaponics potentially hazardous for human health.Microorganisms20231112282410.3390/microorganisms1112282438137969
    [Google Scholar]
  100. DongM. FengH. Microbial community analysis and food safety practice survey-based hazard identification and risk assessment for controlled environment hydroponic/aquaponic farming systems.Front. Microbio.20221387926010.3389/fmicb.2022.879260
    [Google Scholar]
  101. ArmstrongR. Towards the microbial home: An overview of developments in next‐generation sustainable architecture.Microb. Biotechnol.20231661112113010.1111/1751‑7915.1425637070748
    [Google Scholar]
  102. LeeS.A. KimJ.M. KimY. JoaJ.H. KangS.S. AhnJ.H. KimM. SongJ. WeonH.Y. Different types of agricultural land use drive distinct soil bacterial communities.Sci. Rep.20201011741810.1038/s41598‑020‑74193‑833060673
    [Google Scholar]
  103. Munguia-FragozoP. Alatorre-JacomeO. Rico-GarciaE. Torres-PachecoI. Cruz-HernandezA. Ocampo-VelazquezR.V. Garcia-TrejoJ.F. Guevara-GonzalezR.G. Perspective for aquaponic systems: “ omic ” technologies for microbial community analysis.BioMed Res. Int.2015201511010.1155/2015/48038626509157
    [Google Scholar]
  104. AraujoRD PasqualM DoriaJ RodriguesFA RebeiroMDS Association of growth-promoting bacteria and hydroponic system aiming at reducing the time of production of banana seedlings.Arch. Agron. Soil Sci.20226981209122210.1080/03650340.2022.2078965
    [Google Scholar]
  105. KhanjaniM.H. SharifiniaM. EmerencianoM.G.C. Biofloc technology (BFT) in aquaculture: What goes right, what goes wrong? A scientific-based snapshot.Aquacult. Nutr.2024202412410.1155/2024/7496572
    [Google Scholar]
  106. EstimA. Shaleh SRM, Shapawi R, Saufia S, Mustafa S. Maximizing efficiency and sustainability of aquatic food production from aquaponics systems - a critical review of challenges and solution options.Aqua Stud2020201
    [Google Scholar]
/content/journals/probiot/10.2174/0126666499301073240823095747
Loading
/content/journals/probiot/10.2174/0126666499301073240823095747
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test