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Abstract: Background: The morbidity and mortality associated with tobacco smoking is well estab-
lished. Nicotine is the addictive component of tobacco. Nicotine, through the non-neuronal α7nicotinic 
receptor, induces cell proliferation, neo-angiogenesis, epithelial to mesenchymal transition, and inhib-
its drug-induced apoptosis. 

Objective: To understand the genetic, molecular and cellular biology of addiction, chronic obstructive 
pulmonary disease and lung cancer. 

Methods: The search for papers to be included in the review was performed during the months of July-
September 2018 in the following databases: PubMed (http://www.ncbi.nlm.nih.gov), Scopus 
(http://www.scopus.com), EMBASE (http://www.elsevier.com/online-tools/embase), and ISI Web of 
Knowledge (http://apps.webofknowledge.com/). The following searching terms: “nicotine”, “nicotinic 
receptor”, and “addiction” or “COPD” or “lung cancer” were used.  

Patents were retrieved in clinicaltrials.gov (https://clinicaltrials.gov/). All papers written in English 
were evaluated. The reference list of retrieved articles was also reviewed to identify other eligible 
studies that were not indexed by the above-mentioned databases.  

New experimental data on the ability of nicotine to promote transformation of human bronchial epithe-
lial cells, exposed for one hour to Benzo[a]pyrene-7,8-diol-9-10-epoxide, are reported. 

Results: Nicotinic receptors variants and nicotinic receptors upregulation are involved in addiction, 
chronic obstructive pulmonary disease and/or lung cancer. Nicotine through α7nicotinic receptor up-
regulation induces complete bronchial epithelial cells transformation.  

Conclusion: Genetic studies highlight the involvement of nicotinic receptors variants in addiction, 
chronic obstructive pulmonary disease and/or lung cancer. A future important step will be to translate 
these genetic findings to clinical practice. Interventions able to help smoking cessation in nicotine 
dependence subjects, under patent, are reported. 

Keywords: Addiction, cancer hallmarks, COPD, genetic variant, lung cancer, nicotine, nicotinic receptor, patent. 

1. INTRODUCTION 

According to the Global Burden of Disease (GBD) 
group, tobacco smoking is among the three leading risk fac-
tors in terms of attributable Disability-Adjusted Life Year 
(DALYs), at the global level, that for men is equal to 124.1 
million DALYs. Smoking remains among the leading five 
risk factors for DALYs in 109 countries [1]. The GBD group 
expects that the burden of tobacco will remain high in future  
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years, in spite of the global decline of tobacco use and second-
hand smoke exposure. The burden increase of DALYs is ac-
countable to population growth and ageing, jointly with persis-
tently high smoking habits in several of the most heavily 
populated countries and in the low social income population 
[1]. The observation that tobacco habit depends on the 
environment (i.e. metropolitan or nonmetropolitan areas); 
level of development, perceived discrimination, gender, eco-
nomic status, and cultural background emphasizes the re-
quirement of tailored approaches to modify the smoking be-
havior. The majority of health damages accountable to tobacco 
smoking are strictly related to tobacco combustion products 
[2]. Nicotine is the addictive component of tobacco [3-5]. 
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1.1. Addiction or Substance Use Disorder 

The American Society of Addiction Medicine (ASAM) 
on April 12, 2011, defined addiction as: “A primary, chronic 
disease of brain reward, motivation, memory and related 
circuitry” [6]. However, “addiction” is not considered a spe-
cific diagnosis in the DSM-5 - A diagnostic manual used by 
clinicians that contains descriptions and symptoms of all 
mental disorders classified by the APA, that recommends the 
use of the term “substance use disorder” (SUD) [7]. The 
associated symptoms of SUD include impaired control, so-
cial impairment, risk use, and pharmacological criteria (i.e., 
tolerance and withdrawal). Alterations in neurocircuits char-
acterize the complex phenotype of SUD and correspond to 
three functional domains: 1. binge/intoxication (reward and 
incentive salience: basal ganglia), 2. withdrawal/negative 
affect (negative emotional states and stress: extended 
amygdale and habenula), and 3. preoccupation/anticipation 
(craving, impulsivity, and executive function: PFC, insula, 
and allocortex). These three stages nourish into each other 
making an addiction cycle that becomes more forceful after 
each cycle, leading to the pathological state of SUD [8]. 

1.1.1. Nicotine and Nicotinic Receptor 

The pyridine alkaloid nicotine is the marking compound of 
the genus Nicotiana (Family: Solanaceae). Species within the 
genus Nicotiana contain a high level of nicotine, up to 90-95% 
of the total alkaloid content. In nature, nicotine is largely used 
for plant defense; indeed, nicotine poisons AChR resulting 
toxic to all heterotrophs with neuromuscular junction [9]. 
Manduca sexta, also known as tobacco hornworm or Carolina 
sphinx moth, is a nicotine-resistant tobacco-feeding insect. 
The nicotine-resistance of Manduca sexta reflects the presence 
of a modified nAChR lacking the amino acid residues required 
for binding nicotine at the α subunits [10]. It is in homage to 
Jean Nicot deVillemain, who introduced the queen consort 
and regent of France, Catherine de Medicis, to tobacco, that 
the name of the botanical species is Nicotiana and its product 
nicotine [5]. Native Americans used tobacco essentially during 
religious ceremonies and for medicinal practices. After its 
introduction in Europe by the crew of Columbus, the tobacco 
started to be used as hedonistic purpose until the use of ciga-
rettes exploded during the World War I (1914-18) becoming 
epidemic [5]. Alton Ochsner, a medical student at the Wash-
ington University, after having observed eight cases of lung 
cancer surgery in six months (in the thirties of the last century 
lung cancer was considered a rarity), realized that all the pa-
tients were heavy smokers who had picked up the smoking 
habit during World War I [5].  

Once in the bloodstream, nicotine rapidly crosses the 
blood-brain barrier, accumulates in the brain and interacts 
with nAChR. Nicotine initially acts increasing the white mat-
ter integrity then, after chronic use, induces reduction of 
white matter integrity, probably in connection with activa-
tion of nAChR in lightly myelinated tracts [11, 12]. 

nAChR belong to the cholinergic system (ACh, ChAT, 
AChE, and mAChR and nAChR). ACh and ACh-
synthesizing activity is a very ancient system present in all 
living organisms from algae and bacteria, including the Ar-
chaea [13], to mammals passing through fungi and plants 
[14]. In mammals, the cholinergic system is expressed in 
neuronal and non-neuronal cells [14-18]. Eventually, ACh 

may be considered as a universal mediator involved in the 
regulation of the organism/cellular homeostasis. 

nAChR belong to the cys-loop superfamily of pentameric 
ligand-gated ion channels [19]. In vertebrates, there are two 
classes of nAChR, muscle- and neuronal-type, playing cru-
cial roles in neuro-muscular and neuronal transmission, re-
spectively. Mammalian neuronal nAChR consists of eleven 
subunits (α2-α7, α9, α10, β2-β4). α7 and α9 subunits 
(α9   often in combination with α10) may form pentameric α-
homomeric receptors - i.e. (α7)5, α2   and   α6   require co-
expression of at least one β subunit to form functional recep-
tors - i.e. (α2)3(β2)2. The α subunit is the binding-site of 
ACh, the physiological ligand [19]. In the brain, the two 
most predominantly expressed receptors are the homomeric 
α7 and the heteromeric α4β2* nAChR (* denotes the possi-
ble presence of other subunits in the nAChR complex, for 
example, α5, α6, or β3) (Fig. 1). 

Although the details of the structure and function of the 
nAChR are beyond the objectives of this review, it is impor-
tant to remind that homomeric or heteromeric receptors are 
characterized by important differences in their physiology and 
pharmacology including sensitivity to nicotine, permeability to 
Ca2+ and propensity to desensitize. In brief, nAChR mediate  
intercellular communication by converting a chemical signal 
into a transmembrane ion flux in the postsynaptic cells. At 
rest, the ion channel is closed, and binding of the agonist (i.e. 
ACh or nicotine) to the extracellular domain triggers a rapid 
conformational change resulting in the opening of the trans-
membrane pore «gating» that allows cations to pass inside the 
cell (Fig. 1). The cation(s) influx depolarizes the cell mem-
brane and increases neuronal excitability. ACh or exogenous 
agonists-binding influence the transition rates between three 
distinct functional states of the receptor: resting, open and 
desensitized [20]. The transition to non-conducting state is 
determined either by agonist dissociation, deactivation, or by 
an agonist-bound conformational change, a non-conducting 
state, desensitization. Deactivation is the transition from the 
open state to the resting state associated with dissociation of 
the agonist. Repeated exposures to nicotine determine an in-
crease in nAChR, upregulation; whereas the mRNA levels of 
nAChR are unchanged suggesting that upregulation is likely 
through post-transcriptional mechanisms. Since the nAChR 
are upregulated, also when the protein synthesis inhibitor cy-
cloheximide is added with nicotine, it is supposed that the 
existing pool of nAChR subunits can be used for the enhanced 
stable assembly of the pentamer [20]. Various nAChR sub-
types exhibit a diverse range of sensitivities to nicotine and 
other nicotinic ligand as well as to upregulation. Upregulation 
seems to be region- and cell-specific. Nicotine binding may 
activate, desensitize or inactivate nAChR, whereas, chronic 
nicotine exposure leads to neural adaptations (activation 
and/or desensitization) that in the case of desensitization can 
alter neuronal functions interrupting the transmission of ACh 
[see the special issue “The Nicotinic Acetylcholine Receptor: 
From Molecular Biology to Cognition” [21]. 

The neuronal cholinergic system plays a vital role in cog-
nitive functions and the resulting pro-cognitive effects such as 
improvements in attention, tobacco users [22] have long ap-
preciated working memory and executive processes. Nicotine 
provokes DA release from neurons of the mesolimbic system 
and increases the excitatory glutamatergic drive onto DA cell 
bodies in the VTA [23]. These mesolimbic neurons arise in the 
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VTA and end in the NAc. Smoking reinforcement may be 
initially related to the temporarily cognitive improvement, 
however, after nicotine abstinence, a cognitive disruption hap-
pens triggering a “vicious circle” of improvement and disrup-
tion that in turn induces dependence [22].  

1.1.2. nAChR Subunit Variants 
This area of study is nowadays receiving a great deal of re-

search attention after the initial publication of three papers 
released by Nature [24, 25] and Nature Genetics [26] on 2008 
all suggesting a strong association between mutations in the 
region containing the gene cluster CHRNA5-CHRNA3-
CHRNB4. This region is located on the chromosome 15 re-
gion q25 (q = long chromosome arm), and encodes the α5, α3 
and β4 nAChR subunits, respectively. CHRNA5-CHRNA3-

CHRNB4 is involved in nicotine dependence, COPD or lung 
cancer susceptibility risk (Fig. 2).  

These genetic findings, largely replicated, has been con-
sidered as “an exciting convergence of genetic findings, and 
highlights the potential for research on smoking to inform 
public health” [27].  

A gene cluster is a group of closely related genes that all 
code for the same function, or variations on the same function. 
CHRNA5 and CHRNA3 are located in a tail-to-tail configura-
tion on opposite DNA strands. One locus within this cluster, 
marked by the SNPs rs16969968, has generated particular 
interest. rs16969968 is a missense variant in CHRNA5 at posi-
tion 78882925 generating a D398N amino acid change [from 
aspartic acid (D) to asparagine (N) at codon 398], with the 

 
Fig. (1). Homomeric and heteromeric nAChR. In the presence of ligand (ACh or nicotine) the receptor open and Ca2+ influx inside a cell. 
(Images were created using Biomedical-PPT-Toolkit-Suite\06-PPT-Toolkit-Neuroscience [www.motifolio.com]. 

Fig. (2). Schematic picture of the chromosome 15 region q25 containing the gene cluster CHRNA5-CHRNA3-CHRNB4. The horizontal 
arrows indicate the tail-to-tail configuration on opposite DNA strands of CHRNA5 and CHRNA3 gene. The vertical arrows show the three 
principal variants involved in nicotine dependence, COPD and lung cancer risk. (Partially Adapted from Wen et al. 2016). 
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minor ‘‘A’’ allele being the risk allele and “G” the protective. 
rs1051730 in CHRNA3 is a coding, synonymous variant. 
rs1051730 and rs16969968 are in a complete LD (i.e. non-
casual alleles association at different loci, not even on the 
same chromosome); therefore, rs1051730 or rs16969968 may 
be utilized interchangeably. α5nAChR, as well as β3AChR, 
are not able to constitute functional receptors, however when 
incorporated into the pentamer, as accessory subunits, affect 
the conductance and the desensitization kinetics of the recep-
tor [19]. Accessory subunits play important roles in nAChR 
function, as they confer unique properties to their parent re-
ceptors. Indeed, the resulting α4β2α5 receptors are more per-
meable to Ca2+ than α4β2 receptors and have a higher sensi-
tivity to nicotine [28]. The D398N polymorphism alters the 
function of α4β2α5 [28]. The presence of aspartic acid (D398) 
on α4β2α5 causes a diminished agonist-evoked intracellular 
Ca2+ response, reduced Ca2+ permeability and enhanced short-
term desensitization compared to α4β2α5 possessing 
asparagine (N398). Recently, it has been reported that addition 
of either variant of α5 into an α3β4α5 receptor induces like-
wise effects on receptor pharmacology and function. Never-
theless, the N398 variant induces a reduced response to ago-
nists (ACh or nicotine) under conditions of high external Ca2+ 
and it may lead to distinct downstream cellular signaling. 
However, the mechanism through which the polymorphism 
affects receptor function remains unclear [29]. In human 
D398N allele is associated with heavy smoking [30], early 
onset of smoking behavior [30], and ‘‘pleasurable buzz’’ from 
tobacco [31]. Moreover, it is a major risk factor for lung can-
cer or COPD in smokers (see Table 1); this association is 
likely to be mediated largely, if not completely, to high expo-
sure to carcinogens contained in tobacco smoke [32]. Human 
fMRI study have shown a relationship between the presence 
of D398N risk allele and decreased functional connectivity 
between the anterior cingulate cortex and the NAc and ex-
tended amygdale [33]. These observations sustain, strongly, a 
primary effect of the gene rather than a secondary effect 
caused by smoking on connectivity strength [33]. CHRNA5 in 
exon 5, in which rs16969968 resides, may have different splic-
ing that may decrease the risk of SUD [34, 35]. The shared 
genetic vulnerability of nicotine and cocaine addictions is par-
ticularly interesting as the risk for these two dependencies is 
conferred by the opposite alleles of rs16969968.  

A cluster of nAChR on human chromosome 8p11 (p = 
short chromosome arm) including CHRNB3-A6 is supposed 
to be associated with decreased risk for nicotine dependence 
and increased risk for DSM-5 cocaine use disorder, and there 
is a nominal association with lung cancer. The α6 subunit 
expression is detected specifically and almost exclusively in 
dopaminergic neurons of the Substantia nigra, and the VTA. 
The α6-containing receptors act as enhancers of dopaminer-
gic neurotransmission. Using a transgenic mouse model 
(gain-of-function α6β2* nAChR -α6L9'S mice) hypersensi-
tive to nicotine and endogenous ACh, it has been shown that 
increased activity of α6-containing nAChR results in en-
hanced DA synthesis as well as in increased extracellular DA 
levels following evoked release [36].  

β3, expressed in the human striatum [37], is involved in 
the conformational changes happening during activation/ 
desensitization of nAChR and affect both the channel proper-
ties and the agonist potency [38]. A large association study 
examining 348 genes shows that CHRNB3 is one of the most 
significant gene associated with nicotine dependence [39].  

The 8p11 association resembles that of chromosome 
15q25; indeed, both regions contain gene clusters that en-
code for nAChR subtypes, and specific variants in each re-
gion are associated with nicotine dependence as well as with 
lung cancer. Moreover, evidence suggests that nAChR may 
play a major role in controlling the consumption of addictive 
drugs other than nicotine, such as cocaine, alcohol, opiates 
and cannabinoids.  

The gene cluster CHRNA5-CHRNA3-CHRNB4A is 
phylogenetically conserved, and the D398N variant may occur 
only in humans since this residue is invariant across vertebrate 
species that all possess an aspartic acid residue (D398) at this 
location. Although this region is rather homogeneous across 
three ethnic populations (European, Asian, African-
American), the “at risk” allele differs across human popula-
tions being predominantly present in populations of European 
and Middle Eastern ancestry and uncommon or non-existent in 
populations of African, Asian, or American origin. Otherwise, 
research implies that any causative variants identified in this 
gene could be important for almost all smokers, regardless of 
ancestry [40]. α3α5β2nAChR are expressed at a low level in 
the basal layer of the pseudostratified normal and stationary 
bronchial epithelium but at a high level in migrating human 
bronchial epithelium cells [41]. α3α5β2-nAChR, modulating 
intracellular Ca2+, contributes to the wound repair of the hu-
man bronchial epithelium [41]. In vitro experiments using two 
human lung cancer cell lines that differentiates for CHRNA5 
polymorphic status, A549 (rs16969968 GG, D398) and H1299 
(rs16969968 AA, N398), show that treatment of either cell 
lines with nicotine significantly increased invasiveness al-
though, the amplitude of this effect was greater in A549 than 
in H1299 cells. When CHRNA5 was silenced DNA synthesis 
was significantly decreased in both cells but was more marked 
in H1299 (60% decrease) than in A549 (20% decrease). These 
observations do not explain how polymorphisms of CHRNA5 
may affect lung cancer susceptibility [42]. It may be possible 
that the D398 variant exerts a much potent negative effect on 
nicotine signaling than N398. Otherwise, polymorphisms in 
LD with rs16969968 may modulate the expression of 
CHRNA5 altering the repair of injured human bronchial epi-
thelium. The N398 variant principally happens at low 
CHRNA5 mRNA expression level. When the D398 occurs at 
low CHRNA5 mRNA expression level the risk for nicotine 
dependence and lung cancer is lower than that at high 
CHRNA5 mRNA expression level [35]. Interestedly, it has 
been reported that rs1051730 is related to incident COPD, 
tobacco-related cancers, lung cancer, and smoking quantity 
and predicts an increased risk of death amongst smokers [43]. 
rs1051730 is in almost perfect correlation with rs16969968 
(CHRNA5) in European populations, thus rs1051730 should 
be considered as a surrogate marker [44]. 

At least two different mechanisms of action are associ-
ated with the risk of nicotine dependence and lung cancer: 
(1) a coding variant changes amino acid sequence in 
CHRNA5 (D398N) and (2) non-coding variants regulating 
CHRNA5 gene expression. 

Recently, it has been reported that CHRNA7 promoter 
variant rs28531779 (position chr15:g.32322604G > C sig-
nificantly associated with schizophrenia) is associated with 
smoking amount [45]. 

Table 1 summarizes the different CHRNA variants and the 
correlation with addiction, COPD and lung cancer [40, 46-74].  



Smoking and Disease Recent Patents on Anti-Cancer Drug Discovery, 2019, Vol. 14, No. 1    43 
 

Table 1. nAChR Genes(CHRNA) Variant and Association with Addiction, COPD and Lung Cancer. 

nAChR Subunit Variants Disease References 

 Addiction COPD Lung 
Cancer 

 

CHRNA5-CHRNA3-CHRNB4 gene cluster on chromosome 15q24-25 associated with addiction, COPD and lung cancer 

rs16969968/rs1051780 From GWAS meta-analyses replicated association with 
cigarettes/day. 

Receptor modification, sensitization, desensitization. 

Strong association with tobacco exposure  

Low effect of peer smoking on nicotine dependence  

Individuals early-onset smokers with 1 risk allele more 
likely to be heavy smokers in adulthood  

Women with the variant AA genotype at significantly 
increased risk of heavy smoking 

Increased risk of death amongst smokers 

Yes Yes [40, 43, 46-
55] 

rs578775 Women AA decreased risk of heavy smoking   [50] 

rs6495309   Yes [54, 56] 

rs578776 

rs1948 

rs684513 

Association with age of first regular tobacco use    [57] 

rs1051730, rs8034191   Yes [58] 

rs16969968, rs680244. The high-risk haplotype increases the risk of cessation 
failure 

  [59,60] 

rs11634361   Yes [54] 

rs8040868  Yes 

Protective effect vs 
severe emphysema 

 [61 

, 62] 

rs1051730 Lower likelihood of quitting before hospitalization    [63] 

rs2036527, sr5787776, 
rs11634351,rs11636753, rs1948 

Association for traits related to ages at smoking initiation 	
   	
   [64] 

CHRNB3-CHRNA6 gene cluster on chromosome 8p11 associated with decreased risk for nicotine dependence and increased risk for DSM-5 cocaine use 
disorder.Nominal associations with lung cancer 

rs13273442  Nicotine dependence   [65] 

rs9298626 Reduced risk for nicotine dependence   [66] 

rs6474412 Nicotine dependence  Yes [24] 

rs9298628, rs892413, rs2217732  Association with nicotine dependence in the European 
American 

  [67] 

rs4950 in the 5’ end of CHRNB3  Association with the tobacco adverse and positive 
subjective factors 

  [68] 

rs10958725, rs10958726, 

rs4736835,  

rs6474412, rs4950, rs13280604, 
rs6474415 

This region is homogeneous across the three ethnic 
populations  

  [69] 

rs4950 Associated with nicotine dependence   [70] 

rs10958726, rs1955186, 
rs1955185, rs13277254, 

rs13277524, rs4950 

Associated with “dizziness”   [71] 

CHRNA2 on chromosome 8p11.21 associated with nicotine-addiction 

rs2472553  Encodes a functional variant in the signal peptide  Yes [72-74] 

rs2292976,rs3735757, rs891398,  Association in the African American sample  Yes [67] 
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Briefly, the most important variants are located on: 

 CHRNA5-CHRNA3-CHRNB4 gene cluster on chromo-
some 15q24-25 is associated with addiction, COPD and 
lung cancer, namely: rs16969968/rs1051780 with addic-
tion, COPD and lung cancer; rs6495309, rs1051730, 
rs8034191, and rs11634361with lung cancer 

 CHRNB3-CHRNA6 gene cluster on chromosome 8p11 
associated with decreased risk for nicotine dependence 
and increased risk for DSM-5 cocaine use disorder. 
Nominal associations with lung cancer. rs6474412 is as-
sociated with lung cancer. 

 CHRNA2 on chromosome 8p11.21 associated with 
nicotine-addiction 

1.2. CHRNA7 

 CHRNA7 (Homo sapiens, also known as NACHRA7) is 
located on chromosome 15q12.13. CHRNA7 consists of 10 
exons, while all other nAChR subunits have six. Exons 5-10 
are duplicated [75], and at their upstream, there are three 
exons partially duplicated with ULK4, a serine/threonine 
kinase gene mapping at 3p22.1.5, and an additional one of 
unknown provenience [76]. CHRNA7 is partially duplicated 
with FAM7A (exons A-E), forming the chimera gene 
CHRFAM7A. CHRFAM7A is present only in humans [77] 
possibly suggesting an “evolutionary advantage”. Simulta-
neous transcription of CHRNA7 and CHRFAM7A generates 
α7 and dupα7 proteins, respectively. dupα7 is detected both 
in neuronal and non-neuronal cells [78-80]. dupα7 may 
modulate α7-mediated synaptic transmission or cholinergic 
anti-inflammatory reaction [80]. CHRFAM7A exists in two 
orientations in respect to CHRNA7 [81]. Expression of 
CHRFAM7A alone generates protein expression but no 
functional receptor. Co-expression of CHRFAM7A with 
CHRNA7 may generate receptors but non-functional (ACh-
silent), suggesting that CHRFAM7A is a dominant negative 
modulator of CHRNA7.  

α7nAChR shows peculiar properties different from those 
of other nAChR. 
1) α7 may be considered a primordial type of receptor be-

cause, apparently, evolved without additional gene du-
plications [82]  

2) α7 may operate both in ionotropic and metabotropic 
modes, leading to CICR and G-protein-associated inosi-
tol trisphosphate-induced calcium release, respectively. 
Metabotropic signaling by α7 prolongs the downstream 
signal of the receptor, most notably Ca2+ signaling at 
synapses [83] 

3) α7 shows high permeability to Ca2+ [84] 
4) α7 activates multiple Ca2+ amplification pathways [84] 
5) α7 is modulated by the extracellular Ca2+concentrations 

[84] 
6) α7 may bind two-five molecules of agonist and modu-

lates cellular functions via phosphorylation and/or via 
Ca2+-dependent serine/threonine kinases. The occupancy 
of only one binding site is sufficient for activation. In-
creasing the number of functional binding sites from one 

to five does not lead to a concomitant increase in the 
stability of the open channel [85] 

7) α7 is functional without co-assembling with specialized 
accessory subunits as required by other nAChR subtypes 
[84] 

8) α7 may co-assemble with β2 forming functional α7β2 
receptors expressed in human basal forebrain neurons 
and cerebral cortical neurons [86] 

9) Choline is the slightest potent agonist for α7, approxi-
mately 10 fold lower than ACh. Nevertheless, choline 
can produce detectable levels of channel activation at 
concentrations that are relatively non-desensitizing. α7 
current choline-activated may play an important role in 
Ca2+ homeostasis regulation in α7-expressing cells [87] 

10) α7 opens rather inefficiently, and, although α7 rapidly 
desensitizes in the presence of high concentrations of 
agonist, once desensitized they do not convert to a high-
affinity state, as other nAChR [88] 

11) The low open probability of α7 can be overcome by 
positive allosteric modulation and serum factors leading 
to the generation of excitotoxic currents at physiological 
temperatures [89]. 

12) The activity of RIC-3 is critical for the folding, matura-
tion and functional expression of nAChR [90]. α7 needs 
RIC-3 activity for biogenesis and cell-surface expres-
sion. At low levels, RIC-3-depended activity promotes 
α7 assembly in the ER and surface delivery. At higher 
levels, RIC-3 suppresses the surface delivery and keeps 
α7 into the ER [91, 92] 

13) α7 require NACHO, a small multi-pass transmembrane 
protein enriched in neuronal ER, in combination with 
RIC-3 for proper assembly [93] 

14) Since great amounts of α7 remain improperly assembled 
also in the presence of RIC-3, it has been suggested that 
additional chaperone such as cholinergic ligands may 
promote the α7 assembly [94]  

15) α7 is palmitoylated with a stoichiometry of approxi-
mately one palmitate/subunit during the assembly in the 
ER [95] 

16) α7 regulates NMDAR forming a complex 
α7nAchR/NMDAR throughout a protein-protein interac-
tion [96, 97] 

17) α7 stimulation is needed for NMDA actions [98] 
18) α7 promotes the formation of glutamatergic synapses 

during development [99] 
19) The endogenous “prototoxin” LYNX1, belonging to the 

Ly6 protein family, binds α7 within the extracellular 
domain, leaving the classical binding site for agonists 
and competitive antagonists of α7 nAChR unoccupied 
[100] 

20) The prototoxin SLURP-1 is a positive allosteric modula-
tor of α7 [101] 
α7nAChR is the major nicotinic subtype highly ex-

pressed in the brain (olfactory bulb, cerebral cortex, hippo-
campus, hypothalamus and amygdale) as well as in non-
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neuronal cells (epithelial, immunological, et cet) [15-18, 
102]. Nevertheless, the human α7nAChR 3D structure is still 
to be elucidated. 3D structure would be of great value in the 
identification of tobacco constituents with the potential to 
bind α7nAChR. 

1.2.1. CHRNA7 and COPD 

COPD is a multisystem disease, with effects beyond the 
lung that are associated with symptom burden and prognosis 
[103]. COPD causes chronic airflow limitation, breathless-
ness, exercise intolerance, cough, difficulty with daily activi-
ties, infections and (re)hospitalization [104]. The principal 
leading cause of COPD is long-term primary or second-hand 
exposure to cigarette smoke [105]. However, as well as for 
lung cancer, not all smokers develop COPD, supporting the 
role of other environmental factors and genetic susceptibility 
in inducing COPD [106]. 

The relatively new finding that nAChR are present on 
non-neuronal cells [107] identified α7nAChR as a crucial 
player in lung function such as in FEV1 regulation [108, 
109]. The role of α7nAChR in airway cells has been dis-
cussed largely in a previous review [109].  

α7nAChR is a key regulator of the CFTR functional ac-
tivity in the airway epithelial cells both in the surface epithe-
lium and in submucosal glands. Impairment of airway mucus 
transport results from dysfunction of CFTR, indeed COPD 
patients, with a history of chronic smoking, are characterized 
by an impaired mucus transport. In these patient’s chronic 
exposure to nicotine results in α7nAChR desensitization; 
consequently, α7nAChR desensitization may contribute to 
CFTR-related lung diseases in heavy smokers [110]. The 
lack of functional α7nAChR in the airways leads to 
squamous metaplasia and loss of ciliary function, alterations 
observed in patients with COPD [111]. Moreover, α7-
nAChR is critical in airway mucous cell metapla-
sia/hyperplasia and mucus production in response to nicotine 
[112]. A study, evaluating the effect of a common copy 
number variation, namely CNV-3956, that duplicates the 
CHRNA7 gene, performed on 7880 subjects, revealed that ≥ 
4-copy of CNV-3956 increased COPD, caused poor lung 
function, and worsened prognosis [113]. The study estimates 
that the ≥ 4-copy accounts for 1.56% of COPD heritability 
representing a possible genetic biomarker [113]. 

1.2.2. CHRNA7 and Lung Cancer 

On 1990, Maneckjee and Minna showed the presence of 
nAChR on the cell membranes of lung cancer cell lines and 
found that nicotine partially or totally reversed opioid-
induced growth inhibition, establishing that nicotine in-
creased total PKC activity [114]. It is well accepted now that 
airways epithelial cells express almost every component of 
the cholinergic system, that α7nAChR controls lung homeo-
stasis and nicotine mediates cell proliferation and tumor pro-
gression [17, 115-124].  

Among the global actions recommended by the American 
Association for Cancer Research, there is “Determine the 
effects of long-term nicotine exposure on cancer risk, cancer 
treatment, cancer progression, and survival” [125]. The av-
erage daily intake of nicotine in an inhaler smoker is esti-
mated to be 3.1 × 10-7M. However, depending on how a 

cigarette is smoked, it can be as high as 6 × 10-7M [17, 126]. 
We report here new unpublished data that chronic admini-
stration of nicotine, at 10-7M, fully transforms HBEpC, pre-
viously exposed for one hr to 0.1µM BPDE, the major ulti-
mate carcinogen of Benzo[a]pyrene. Table 2 shows that 
HBEpC, exposed for one h to 0.1µM BPDE and then grown 
for 16 passages in the presence of nicotine 10-7M, named 
HBEpC(A), shows the features of transformed cells such as 
anchorage-independent growth, sustained proliferative sig-
naling, evading growth suppressor, senescence evading, 
EMT, and evading apoptosis. However, we do not know the 
ability of these cells to be tumorigenic when transplanted 
into nude mice, since we decided to not perform experiments 
in animals for personal ethical reasons.  

2. DISCUSSION 

Smoking is the second leading risk factor for early death 
and disability worldwide [127]. Italy has a high SDI for fe-
male equal to 17.1 (15.3 to 19.0) and for male equal to 23.2 
(21.2 to 25.5) [128]. SDI is a new summary measure of 
overall development to assess levels and trends in smoking 
prevalence and attributable burden across the development 
spectrum. 

Tobacco smoking is the main cause of COPD [129]. Oth-
ers factors such as ambient particulate matter pollution, oc-
cupational exposure, and second-hand smoke can cause 
COPD. It has been speculated that these factors may become 
a greater cause of COPD in a near future [130]. Of note, 
COPD in non-smokers may be dissimilar to COPD caused 
by tobacco smoking in terms of phenotype, comorbidities, 
and progression [131]. COPD is now one of the most impor-
tant public health challenge representing the major cause of 
chronic morbidity and mortality worldwide [127]. It has been 
reported that in 15 years, COPD will become the leading 
cause of death [132]. In Italy, chronic lower respiratory dis-
eases (ICD-10 codes: J40-J47) cause 8,324 deaths (5,699 
men, 2,625 women) with an ASMR per 100,000 person-
years equal to 11.6 for man and 4.8 for a woman (age 30-74 
years, period 2012-2014) [133]. Since COPD occurs often in 
a context of multi-morbidity, COPD remains a growing but 
neglected global epidemic. Recently, it has been concluded 
that COPD is under-recognized, under-diagnosed and under-
treated resulting in millions of people continuing to suffer 
from this preventable and treatable condition [134]. The final 
goal in the treatment of COPD treatment is the prevention of 
lung function worsening, with consequent symptoms mitiga-
tion, including complications treatment. On this contest, 
pulmonary rehabilitation produces benefits in exercise ca-
pacity, symptoms, and health status [135]. Smoking cessa-
tion is the most important treatment for smokers with COPD 
[136]. 

Globally, lung cancer remains the leading cause of cancer 
incidence and mortality; among man, it is the first cause in 
38 countries and among females in 28. Notably, Denmark, 
Netherlands, and Hungary are on the top of the list [137]. 
Lung cancer is now the leading cause of death from cancer in 
women in the EU-28, thus women die from lung cancer more 
commonly than from breast cancer in a growing number of 
countries. In Italy, the estimated number of lung cancer death 
(hundreds) is 240.3 for man and 104.8 for a woman (for 
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breast is 125) [138]. The differences in incidence trends, in 
geographical patterns, in men and in women reflect largely 
historical, cultural, and regional differences in tobacco smok-
ing [139]. As well as for COPD, 80-85% of lung cancers in 
Western populations is attributed to smoking, thus the dis-
ease might be largely prevented through tobacco control.  

Currently, the majority of the general population, at least 
in the more developed countries, is well conscious of the 
dramatic increased risk to develop lung cancer caused by 
tobacco smoking [140]. On the other hand, it is possible to 

hypothesize that a personal history of smoking (i.e. number 
of cigarettes per day), and the level of nicotine dependence 
may influence the perception of this risk among healthy in-
dividuals. A recent study shows that people smoking less 
than 10 cigarettes per day do not see themselves as carrying 
any risk of lung cancer [141]. Notably, only 38% of patients 
strongly agree with the statement “smoking is the cause of 
most cases of COPD” [142]. Moreover, a second recent 
study reports that the 5-year survival probability of a lung 
cancer patient (at most 15%) is widely overestimated (ex-

Table 2. Nicotine Promotes Transformation of HBEpC Previously Exposed for One hr to 0.1µM BPDE. 

Cancer Hallmarks Cells 

 HBEpC HBEpC(A) HBEpC(B)	
   HBEpC(C) si-mRNA- 
a7-HBEpC 

Anchorage-independent growtha 

Semisolid agar media 

Spheroids formation 

ATP 

No 

(-) 

ND 

N.D. 

Yes  

(++) 

(++) 

(+++) 

No 

(-) 

(-) 

(-) 

No 

(-) 

(+/-) 

(+) 

No 

(-) 

(-) 

(-) 

Sustaining Proliferative Signalingb 

Doubling time h 

α7-nAChR 

No 

36 

 (+) 

Yes (++) 

15 

(++) 

No 

35 

(+/-) 

Yes (+) 

28 

(+) 

No 

44 

(+/-) 

Migration and Invasionc N.D. Yes N.D. N.D. N.D. 

Evading growth suppressord 

p53 and phospho-p53  

pAKT1Ser473/Thr308 

pMAPKThr202/Tyr204 

pS6Ser235/236 

No 

(-) 

(-) 

(-) 

(-) 

Yes 

(++) 

(++) 

(++) 

(++) 

No 

(-) 

(-) 

(-) 

(-) 

Yes 

(+/-) 

(+) 

(+) 

(+) 

No 

(-) 

(-) 

(-) 

(-) 

Senescence evadinge 

SA-β -Gal activity 16d 

No 

(++) 

Yes (++) 

N.D. 

No 

(+++) 

Yes (+) 

(+) 

No 

(+++) 

EMT  

E-cadherin/ZO-1 

No Yes  

(++) 

No Yes 

 (+) 

No 

Evading apoptosisf 

Cleaved-caspase3 

Cleaved-PARP 

BAD 

pBAD 

No 

 (-) 

(-) 

(+++) 

(++) 

Yes (++) 

 (-) 

(-) 

(+++) 

(-) 

No 

 (-) 

(-) 

(+++) 

(+) 

Yes (+) 

 (-) 

(-) 

(+++) 

(+) 

No 

 (-) 

(-) 

(+++) 

(+) 

Human Bronchial Epithelial Cells “HBEpC”, obtained from Cell Applications Inc. (www.cellapplications.com/product no. 502K-05a), were maintained as adherent monolayers in 
complete Bronchial/Tracheal Epithelial Cell Growth Medium (www.cellapplications.com/product) at 37°C in a 95% air/5% CO2. Cells were seeded at an initial density of 7.5×104 
cells/cm2 and sub-cultured with a 0.25% trypsin–1mM EDTA solution (Sigma-Aldrich, Milan, Italy) when cultures reached 80% confluence. 7.5 ×104 cells/cm2 semi-confluent 
HBEpC at 4th passage were treated for 1 h with (a) 0.1 µM BPDE in 0.1% DMSO (BPDE Eagle-Picher Industries,Inc., Chemsyn Science Laboratories, Lenexa, KS] or (b) 0.1% 
DMSO. Then, cells were washed twice and cultured in the presence or absence of 1.0 x 10-7M Nicotine (Sigma-Aldrich, Milan, Italy). BPDE was handled in accordance with NIH 
Guidelines for the Use of Chemical Carcinogens. 
HBEpC(A): BPDE+continuous treatment with 1x10-7 M Nicotine for 16 passages  
HBEpC(B): BPDE+complete medium 
HBEpC(C): continuous treatment with 1x10-7 M Nicotine for 16 passages  
si-mRNA-α7-HBEpC: a7silenced cells: BPDE+continuous treatment with 1x10-7 M Nicotine for 16 passages. 
aAfter 16 passages cells were analyzed for their ability to grow in anchorage independent way [cytoselect 96-well transformation assay by Cell Biolabs, Inc] and on Low cell 
adhesion plates (spheroids formation). ATP formation was calculated by ATP colorimetric assay kit [Bio vision]. 
bMeasured with Agilent’s Cell proliferation Assay Kit (96 wells)[https://www.agilent.com/cs/library/usermanuals/public/302011-12_Cell_Proliferation_Assay_Kit.pdf]. 
cMeasured using CytoSelect 24-well Cell Migration and Invasion assay [fluorometric, Cell Biolabs, Inc] 
dMeasuredusing PathScan cell growth multi-target sandwich ELISA kit [Cell signaling]. 
e Using Cellular Senescence Assay Kit (SA-β-gal Staining) [Cell Biolabs, Inc]. 
fPathSWcan apoptosis using multi-target sandwich ELISA kit [Cell signaling] 
α7-nAChR and E-cadherin/ZO-1were evaluated by western blotting. 
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ceeding 20%) among smokers and non-smokers [143]. These 
findings are further supported by recent data showing that 
people with high nicotine dependence are less likely to quit 
smoking after lung screening independently of pack-years, in 
spite of the observation that subjects with high nicotine de-
pendence are more likely to die of lung cancer and all other 
causes compared with those who are less dependent [144]. 

Actually, the chromosome 15q25.1 locus is well recog-
nized as a susceptibility region for nicotine addiction, smok-
ing behavior, lung cancer, and, in a lower extent, for COPD 
(see Table 1 and Fig. 2). Moreover, it has been reported that 
epigenetic silencing of nAChR-encoding genes clustered at 
the 15q25.1 locus may contribute to lung cancer risk [145]. 

 A recent work analyzed a cohort of 1,923 lung cancer 
cases and 1,977 healthy controls of Italian origin combined 
with a cohort of 2,995 lung cases and 3,578 controls of 
European ancestry, to explore the underlying pathways in-
volved in the molecular mechanisms that link variants at the 
chromosome 15q25.1 locus and lung cancer risk as well in-
crease in lung cancer incidence and development [146]. The 
findings were replicated with an independent cohort of 
18,439 lung cancer cases and 14,026 healthy controls [146]. 
The findings of the above study suggest that common genetic 
variations within chromosome 15q25.1 have an effect on 
lung cancer etiology through the expression/structure and 
thus the consequent gene functions that encompass the neu-

roactive ligand-receptor interaction pathway or gated chan-
nel activity and connected terms.  

 It has been shown recently that COPD-risk allele 
rs12914385: C > T, in CHRNA3, exerts its risk decreasing 
the DNA methylation level at IREB2 gene, and increasing its 
expression in COPD patients [147]. This finding supports the 
hypothesis that the 15q25.1 locus is engaged in the patho-
genesis of lung cancer and COPD throughout differential 
methylation and expression regulation.  

 All of these results imply the importance to develop new 
therapeutic drugs able to help smoking cessation according 
to genetic biomarkers. Table 3 shows new therapeutic ap-
proaches now under patent [148-152]. 

CONCLUSION 

 The morbidity and mortality associated with smoking is 
now well established. Smoking cessation is currently the 
only certain way to reduce the risk of developing COPD or 
lung cancer. All the findings support the hypothesis that ge-
netic variants are involved in addiction, COPD and lung can-
cer. On the other hand, nicotine itself induces cell prolifera-
tion, neo-angiogenesis, EMS, and inhibits drug-induced 
apoptosis contributing to lung cancer development and inva-
sion (see Table 2, Fig. (3) and References No: 17, 108-111, 
116-124, 153].  

Table 3. Interventions Able to Help Smoking Cessation in Nicotine Dependence Subjects, Under Patent. 

ClinicalTrials Number / 
Location Status Study 

 Title 
Conditions 
Allocation 

Interventions 
Last Update Posted References 

NCT01780038 
 University of Nebraska 

Medical Center 
Omaha, Nebraska  

Completed 
Smokers' response to 
nicotine dependence 

genotyping 

Cigarette smoking 
nicotine dependence 

randomized 

Behavioral: Participants 
receive the results of 

genotyping for rs1051730 
No results given 
February 1, 2018 

[148] 

NCT00969137 

Department of Veterans 
Affairs 

West Haven, Connecticut  

Completed 
Sensitivity to 

intravenous nicotine: 
genetic moderators 

Nicotine dependence 
randomized 

crossover assignment 

Drug: Saline 

Drug: Nicotine 

April 19, 2017 

[149] 

NCT01505725 
National Institute on 

Drug Abuse, Biomedical 
Research Center (BRC) 

Baltimore, Maryland  

Completed 

Nicotine reinforcement  
and smoking-cue 

reactivity: association 
with genetic 

polymorphisms 

Nicotine dependence 
observational April 5, 2018 [150] 

NCT01924468 

National Institute on 
Drug Abuse 

Baltimore, Maryland 

Completed Brain networks and 
addiction susceptibility 

Nicotine dependence. 

Impact of rs16969968 on the BOLD 
fMRI signal and functional 

connectivity within and between the 
three networks of interests at rest and 

during task performance  
non-randomized  

intervention crossover assignment 

Oral methylphenidate and 
oral haloperidol 

September 27, 2018 

[151] 

NCT01176383 

The Integrated Care 
Partnership The Old 

Cottage Hospital Epsom, 
Surrey,  

United Kingdom 

Completed Impact of a gene test 
for susceptibility to 

lung cancer in smokers 

Smoking cessation 

randomized 

parallel assignment 

Respiragene test and risk 
score 

May 14, 2014 

[152] 
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CURRENT & FUTURE DEVELOPMENTS  

Nicotine induces dependence that in turn is responsible 
for the widespread of tobacco epidemic. Smoking cessation 
policy and reasonable secondary tobacco as well as  
environment control approach shall be planned to attempt to 
reduce the harm from continued exposure. GWAS studies 
highlight the involvement of nAChR variants in the risk of 
developing an addiction, COPD and/or lung cancer. A future 
important step will be to translate these genetic findings to 
clinical practice with tailored approaches to modify the 
smoking behavior. 

LIST OF ABBREVIATIONS 

ACh  = Acetylcholine 
AChR = Acetylcholine Receptors 
AChE  = Acetylcholinesterase 
ASMR = Age-Standardized Mortality Rates 
APA = American Psychiatric Association 
ASAM = American Society of Addiction Medicine 
N398 = Asparigine Residue 
D398 = Aspartic Acid Residue 
BPDE = Benzo[a]Pyrene-7,8-Diol-9-10-Epoxide 
CICR = Ca2+-Induced Calcium Release 
RIC-3 = Chaperone Resistant to Inhibitors of Ace-

tylcholinesterase 
CHRFAM7A = Chimeric Gene Formed by 

CHRNA7+FAM7A 
Chat  = Choline Acetyltransferase 
COPD = Chronic Obstructive Pulmonary Disease 
CNV = Copy Number Variation 
CFTR = Cystic Fibrosis (CF) Transmembrane 

Conductance Regulator 
DSM-5 = Diagnostic and Statistical Manual of 

Mental Disorders, Fifth Edition 

DALYs  = Disability-Adjusted Life-Years 
DA = Dopamine 
ER = Endoplasmic Reticulum 
EMT = Epithelial Mesenchymal Transition 
EU-28 = European Union at 28 Countries 
FAM7A = Family with Sequence Similarity 7A 
FEV1 = Forced Respiratory Volume in One Sec-

ond 
D398N = From Aspartic Acid (D) to Asparigine 

(N) at Codon 398 
fMRI = Functional Magnetic Resonance Imaging 
GWAS = Genome-Wide Association Study 
GBD  = Global Burden of Diseases, Injuries, and 

Risk Factors Study 
HBEpC = Human Bronchial Epithelial Cells 
ICD10 = International Classification of Diseases 

10th Revision 
IREB2 = Iron Responsive Element Binding Protein 

2 
LY6  = Leukocytes Proteins 
LD = Linkage Disequilibrium 
LYNX1 = Ly6/Neurotoxin 1 
mAChR = Muscarinic Acetylcholine Receptors 
NACHO = Nicotinic Acetylcholine Receptor Regula-

tor Chaperone 
CHRNA = Nicotinic Acetylcholine Receptors Alpha 

Gene 
CHRNB = Nicotinic Acetylcholine Receptors Beta 

Gene 
nAChR = Nicotinic Acetylcholine Receptors 
NMDAR = N-Methyl-D-Aspartate (NMDA) Recep-

tor 
NAc = Nucleus Accumbens 

Fig. (3). Cell transformation induced by nicotine via a7nAChR activation. 
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PFC = Pre-Frontal Cortex 
PKC = Protein Kinase C 
RIC-3 = Resistance to Inhibitors of Cholinesterase 

3 
SLURP-1 = Secreted Lymphocyte Antigen-

6/Urokinase-Type Plasminogen Activator 
Receptor-Related Peptide-1 

SNPs = Single Nucleotide Polymorphisms 
SDI = Socio-Demographic Index 
SUD = Substance Use Disorder 
Dupα7 = Truncated Subunit Lacking Part of the N- 

Terminal Extracellular Ligand-Binding 
Domain of α7 nAChR 

ULK4 = Unc-51 Like Kinase 4 
VTA = Ventral Tegmental Area 
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