Skip to content
2000
Volume 20, Issue 10
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Epstein-Barr virus (EBV) is a human oncogenic herpesvirus associating with several malignant diseases. Latent membrane protein 2 (LMP2) of EBV is considered to be an ideal candidate for immunotherapy or prophylactic EBV vaccine. We designed a LMP2 multiepitope containing T and B-cell epitope-rich peptides and constructed a recombinant plasmid containing mammalian codonoptimization EBV LMP2 multiepitope (pcDNA3.1(+)/EBV-LMP2 multiepitope). After pcDNA3.1(+)/EBV-LMP2 multiepitope was transfected into COS-7 cells, significant expression of the multiepitope in COS-7 cells was confirmed by RT-PCR and immunofluorescence assay. Western blot analysis indicated that serum from immunized mice could be discerned by the EBV-LMP2 protein and the EBV-LMP2 multiepitope specifically. The plasmid DNA of EBV-LMP2 multiepitope induced high levels anti-EBV membrane protein and anti-EBV LMP2 multiepitope IgG in mice. T lymphocytes from spleen of immunized mice showed a strong CTL activity. The present study suggested that plasmid DNA encoding EBV LMP2 multiepitope capable of stimulating enough cellular and humoral immunity could have potential for preventing or controlling EBV infection and EBV associated disease in mice.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/09298665113209990005
2013-10-01
2025-11-08
Loading full text...

Full text loading...

/content/journals/ppl/10.2174/09298665113209990005
Loading

  • Article Type:
    Research Article
Keyword(s): DNA vaccine; EBV; LMP2; multiepitope
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test