Skip to content
2000
Volume 20, Issue 7
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Hainantoxin-III (HNTX-III) purified from the venom of the spider Ornithoctonus hainana is a novel neurotoxin preferentially inhibiting tetrodotoxin-sensitive voltage-gated sodium channels in rat dorsal root ganglion cells. The structure of this toxin in aqueous solution was investigated using 2-D 1H-NMR techniques. The complete sequencespecific assignments of proton resonances in the 1H-NMR spectra were obtained by analyzing a series of 2-D spectra, including DQF-COSY, TOCSY and NOESY spectra, in H2O or D2O. All the backbone protons and more than 95% of the side-chain protons have been assigned by dαN, dβN, and dNN connectivities in NOESY spectrum. Furthermore, the secondary structure of HNTX-III was identified from NMR data. It consists mainly of a short triple-stranded antiparallel β-sheet formed by Asp7 to Cys9, Tyr21 to Ser23, and Lys27 to Val30. Because HNTX-III shares high sequence identity (>70%) with HWTX-I and HNTX-I, we proposed that they all share a structural scaffold known as the inhibitor cystine knot architectural motif. This study provides a basis for the further determination of the solution conformation of HNTX-III.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0929866511320070005
2013-07-01
2025-11-08
Loading full text...

Full text loading...

/content/journals/ppl/10.2174/0929866511320070005
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test