Skip to content
2000
Volume 20, Issue 2
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Structural information deduced from the new crystal form of xylanase from Bacillus sp (NCL 87-6-10) (ATBXYL- C) helped us to identify the active site and interpret the stability of the enzyme. The analysis of the tetragonal crystal structure of ATBXYL-C with a bound and cleaved xylotriose revealed the two glutamic acid residues in the structure that could act as nucleophile (Glu94) and base (Glu184) in the enzyme activity and also the tryptophan residues interacting with the substrate. The cleavage of xylotriose in the crystal showed xylobiose to be the major product. Intrinsic fluorescence of the enzyme showed the presence of tryptophans in partially exposed to the solvent at the active site and surface tryptophans in electropositive environment. The titration experiments with xylobiose and xylotriose revealed slightly enhanced preference for longer chain X3 compared with X2. The crystal structure also account for some of the factors, such as increased number of ionic interactions and additional interactions at the N-terminus, which contributed to increased alkalophilicity and thermostability of the enzyme.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/092986613804725271
2013-02-01
2025-09-05
Loading full text...

Full text loading...

/content/journals/ppl/10.2174/092986613804725271
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test