Skip to content
2000
Volume 18, Issue 10
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

3D domain swapping is a protein structural phenomenon that mediates the formation of the higher order oligomers in a variety of proteins with different structural and functional properties. 3D domain swapping is associated with a variety of biological functions ranging from oligomerization to pathological conformational diseases. 3D domain swapping is realised subsequent to structure determination where the protein is observed in the swapped conformation in the oligomeric state. This is a limiting step to understand this important structural phenomenon in a large scale from the growing sequence data. A new machine learning approach, 3dswap-pred, has been developed for the prediction of 3D domain swapping in protein structures from mere sequence data using the Random Forest approach. 3Dswap-pred is implemented using a positive sequence dataset derived from literature based structural curation of 297 structures. A negative sequence dataset is obtained from 462 SCOP domains using a new sequence data mining approach and a set of 126 sequencederived features. Statistical validation using an independent dataset of 68 positive sequences and 313 negative sequences revealed that 3dswap-pred achieved an accuracy of 63.8%. A webserver is also implemented using the 3dswap-pred Random Forest model. The server is available from the URL: http://caps.ncbs.res.in/3dswap-pred

Loading

Article metrics loading...

/content/journals/ppl/10.2174/092986611796378729
2011-10-01
2025-10-10
Loading full text...

Full text loading...

/content/journals/ppl/10.2174/092986611796378729
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test