Skip to content
2000
Volume 17, Issue 7
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

The transcription factor (TF) is a protein that binds DNA at specific site to help regulate the transcription from DNA to RNA. The mechanism of transcriptional regulatory can be much better understood if the category of transcription factors is known. We introduce a system which can automatically categorize transcription factors using their primary structures. A feature analysis strategy called “mRMR” (Minimum Redundancy, Maximum Relevance) is used to analyze the contribution of the TF properties towards the TF classification. mRMR is coupled with forward feature selection to choose an optimized feature subset for the classification. TF properties are composed of the amino acid composition and the physiochemical characters of the proteins. These properties will generate over a hundred features/parameters. We put all the features/parameters into a classifier, called NNA (nearest neighbor algorithm), for the classification. The classification accuracy is 93.81%, evaluated by a Jackknife test. Feature analysis using mRMR algorithm shows that secondary structure, amino acid composition and hydrophobicity are the most relevant features for classification. A free online classifier is available at http://app3.biosino.org/132dvc/tf/.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/092986610791306670
2010-07-01
2025-09-11
Loading full text...

Full text loading...

/content/journals/ppl/10.2174/092986610791306670
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test