Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2665-976X
  • E-ISSN: 2665-9778

Abstract

Even though silver decorated reduced graphene oxide (Ag-rGO) shows maximum absorptivity in the UV region, most of the research on the degradation of dyes using Ag-rGO is in the visible region. Therefore the present work focused on the photocatalytic degradation of indigo carmine (IC) dye in the presence of Ag-rGO as a catalyst by UV light irradiation.

In this context, silver-decorated reduced graphene oxide hybrid material was fabricated and explored its potential for the photocatalytic degradation of aqueous IC solution in the UV region. The decoration of Ag nanoparticles on the surface of the rGO nanosheets is evidenced by TEM analysis. The extent of mineralization of the dye was measured by estimating chemical oxygen demand (COD) values before and after irradiation.

The synthesized Ag-rGO binary composites displayed excellent photocatalytic activity in 2 Χ 10-5 M IC concentration and 5mg catalyst loading. The optical absorption spectrum of Ag-rGO showed that the energy band-gap was found to be 2.27 eV, which is significantly smaller compared to the band-gap of GO. 5 mg of Ag-rGO was found to be an optimum quantity for the effective degradation of IC dye. The degradation rate increases with the decrease in the concentration of the dye at alkaline pH conditions. The photocatalytic efficiency was 92% for the second time.

The impact of the enhanced reactive species generation was consistent with higher photocatalytic dye degradation. The photocatalytic mechanism has been proposed and the hydroxyl radical was found to be the reactive species responsible for the degradation of dye. The feasibility of reusing the photocatalyst showed that the photocatalytic efficiency was very effective for the second time.

Loading

Article metrics loading...

/content/journals/photocat/10.2174/2665976X03666220622121653
2022-08-01
2025-10-01
Loading full text...

Full text loading...

References

  1. MangalamJ. KumarM. SharmaM. JoshiM. High adsorptivity and visible light assisted photocatalytic activity of silver/reduced graphene oxide (Ag/rGO) nanocomposite for wastewater treatment.Nano-Structures & Nano-Objects201917586610.1016/j.nanoso.2018.11.003
    [Google Scholar]
  2. ChenC. MaW. ZhaoJ. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation.Chem. Soc. Rev.201039114206421910.1039/b921692h20852775
    [Google Scholar]
  3. Hernández-GordilloA. Rodríguez-GonzálezV. Oros-RuizS. GómezR. Photodegradation of Indigo Carmine dye by CdS nanostructures under blue-light irradiation emitted by LEDs.Catal. Today2016266273510.1016/j.cattod.2015.09.001
    [Google Scholar]
  4. OppongS.O.B. AnkuW.W. ShuklaS.K. AgorkuE.S. GovenderP.P. Photocatalytic degradation of indigo carmine using Nd-doped TiO2-decorated graphene oxide nanocomposites.J. Sol-Gel Sci. Technol.2016801384910.1007/s10971‑016‑4062‑8
    [Google Scholar]
  5. SubramaniA.K. ByrappaK. AnandaS. Lokanatha RaiK.M. RanganathaiahC. YoshimuraM. Photocatalytic degradation of indigo carmine dye using TiO2 impregnated activated carbon.Bull. Mater. Sci.2007301374110.1007/s12034‑007‑0007‑8
    [Google Scholar]
  6. CostaL.L. PradoA.G.S. TiO2 nanotubes as recyclable catalyst for efficient photocatalytic degradation of indigo carmine dye.J. Photochem. Photobiol. Chem.20092011454910.1016/j.jphotochem.2008.09.014
    [Google Scholar]
  7. LohK.P. BaoQ. EdaG. ChhowallaM. Graphene oxide as a chemically tunable platform for optical applications.Nat. Chem.20102121015102410.1038/nchem.90721107364
    [Google Scholar]
  8. KiranP.P. Shivakiran BhakthaB.N. RaoD.N. DeG. Nonlinear optical properties and surface-plasmon enhanced optical limiting in Ag–Cu nanoclusters co-doped in SiO2 Sol-Gel films.J. Appl. Phys.200496116717672310.1063/1.1804228
    [Google Scholar]
  9. VoisinC. Del FattiN. ChristofilosD. ValléeF. Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles.J. Phys. Chem. B2001105122264228010.1021/jp0038153
    [Google Scholar]
  10. ZhengY. ChenC. ZhanY. LinX. ZhengQ. WeiK. ZhuJ. Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst: Correlation between structure and property.J. Phys. Chem. C200811229107731077710.1021/jp8027275
    [Google Scholar]
  11. WangP. HuangB. QinX. ZhangX. DaiY. WeiJ. WhangboM.H. Ag@AgCl: A highly efficient and stable photocatalyst active under visible light.Angew. Chem. Int. Ed.200847417931793310.1002/anie.20080248318773395
    [Google Scholar]
  12. KhojastehH. Salavati-NiasariM. SangsefidiF.S. Photocatalytic evaluation of RGO/TiO2NWs/Pd-Ag nanocomposite as an improved catalyst for efficient dye degradation.J. Alloys Compd.201874661161810.1016/j.jallcom.2018.02.345
    [Google Scholar]
  13. MadyA.H. BaynosaM.L. TumaD. ShimJ.J. Facile microwave-assisted green synthesis of Ag-ZnFe2O4@rGO nanocomposites for efficient removal of organic dyes under UV- and visible-light irradiation.Appl. Catal. B201720341642710.1016/j.apcatb.2016.10.033
    [Google Scholar]
  14. KurtB.Z. DurmusZ. DurmusA. Preparation and characterization of platinum (Pt) and palladium (Pd) nanoparticle decorated graphene sheets and their utilization for the elimination of basic fuchsin and indigo carmine dyes.Solid State Sci.201651515810.1016/j.solidstatesciences.2015.11.012
    [Google Scholar]
  15. BhuniaS.K. JanaN.R. Reduced graphene oxide-silver nanoparticle composite as visible light photocatalyst for degradation of colorless endocrine disruptors.ACS Appl. Mater. Interfaces2014622200852009210.1021/am505677x25296393
    [Google Scholar]
  16. JoseP.P.A. KalaM.S. KalarikkalN. ThomasS. Silver-attached reduced raphene oxide nanocomposite as an eco-friendly photocatalyst for organic dye degradation.Res. Chem. Intermed.20184495597562110.1007/s11164‑018‑3443‑8
    [Google Scholar]
  17. Martínez-OrozcoR.D. RosuH.C. LeeS.W. Rodríguez-GonzálezV. Understanding the adsorptive and photoactivity properties of Ag-graphene oxide nanocomposites.J. Hazard. Mater.2013263Pt 1526010.1016/j.jhazmat.2013.07.05624035508
    [Google Scholar]
  18. XuD. ChengB. CaoS. YuJ. Enhanced photocatalytic activity and stability of Z-scheme Ag2CrO4-GO composite photocatalysts for organic pollutant degradation.Appl. Catal. B201516438038810.1016/j.apcatb.2014.09.051
    [Google Scholar]
  19. AgrawallaR.K. PaulS. SahooP.K. ChakrabortyA.K. MitraA.K. A facile synthesis of a novel three-phase nanocomposite: Single-wall carbon nanotube/silver nanohybrid fibers embedded in sulfonated polyaniline.J. Appl. Polym. Sci.201413212
    [Google Scholar]
  20. NayakS.R. MohanaK.N.S. Corrosion protection performance of functionalized graphene oxide nanocomposite coating on mild steel.Surf. Interfaces201811637310.1016/j.surfin.2018.03.002
    [Google Scholar]
  21. StevenL.M. Handbook of photochemistry.New YorkMarcel Dekker1973
    [Google Scholar]
  22. NeelakandeswariN. SangamiG. DharmarajN. TaekN.K. KimH.Y. Spectroscopic investigations on the photodegradation of toluidine blue dye using cadmium sulphide nanoparticles prepared by a novel method.Spectrochim. Acta A Mol. Biomol. Spectrosc.20117851592159810.1016/j.saa.2011.02.00821382744
    [Google Scholar]
  23. LiK. LuoX. LinX. QiF. WuP. Novel NiCoMnO4 thermocatalyst for low-temperature catalytic degradation of methylene blue.J. Mol. Catal. Chem.2014383-3841910.1016/j.molcata.2013.11.017
    [Google Scholar]
  24. ChookS.W. ChiaC.H. ZakariaS. AyobM.K. CheeK.L. HuangN.M. NeohH.M. LimH.N. JamalR. RahmanR. Antibacterial performance of Ag nanoparticles and AgGO nanocomposites prepared via rapid microwave-assisted synthesis method.Nanoscale Res. Lett.20127154110.1186/1556‑276X‑7‑54123020815
    [Google Scholar]
  25. WuQ. ChenG.E. SunW.G. XuZ.L. KongY.F. ZhengX.P. XuS.J. Bio-inspired GO-Ag/PVDF/F127 membrane with improved anti-fouling for natural organic matter (NOM) resistance.Chem. Eng. J.201731345046010.1016/j.cej.2016.12.079
    [Google Scholar]
  26. IlyasH. ShawutiS. SiddiqM. NiaziJ.H. QureshiA. PEG functionalized graphene oxide-silver nano-additive for enhanced hydrophilicity, permeability and fouling resistance properties of PVDF-co-HFP membranes.Colloids Surf. A Physicochem. Eng. Asp.201957912364610.1016/j.colsurfa.2019.123646
    [Google Scholar]
  27. ChenJ. ZhengX. WangH. ZhengW. Graphene oxide-Ag nanocomposite: In situ photochemical synthesis and application as a surface-enhanced Raman scattering substrate.Thin Solid Films2011520117918510.1016/j.tsf.2011.07.012
    [Google Scholar]
  28. ShaikhA. ParidaS. BöhmS. One step eco-friendly synthesis of Ag–reduced graphene oxide nanocomposite by phytoreduction for sensitive nitrite determination.RSC Advances2016610210038310039110.1039/C6RA23655C
    [Google Scholar]
  29. GurunathanS. HanJ.W. ParkJ.H. KimE.S. ChoiY.J. KwonD.N. KimJ.H. Reduced graphene oxide–silver nanoparticle nanocomposite: A potential anticancer nanotherapy.Int. J. Nanomedicine2015106257627610.2147/IJN.S9244926491296
    [Google Scholar]
  30. FuL. LaiG. JiaB. YuA. Preparation and electrocatalytic properties of polydopamine functionalized reduced graphene oxide-silver nanocomposites.Electrocatalysis201561727610.1007/s12678‑014‑0219‑9
    [Google Scholar]
  31. ZhangL. ShiY. WangL. HuC. AgBr-wrapped Ag chelated on nitrogen-doped reduced graphene oxide for water purification under visible light.Appl. Catal. B201822011812510.1016/j.apcatb.2017.08.038
    [Google Scholar]
  32. MohamedS.H. Photocatalytic, optical and electrical properties of copper-doped zinc sulfide thin films.J. Phys. D Appl. Phys.201043303540610.1088/0022‑3727/43/3/035406
    [Google Scholar]
  33. RajalakshmiM. AroraA.K. Optical properties of selenium nanoparticles dispersed in polymer.Solid State Commun.19991102758010.1016/S0038‑1098(99)00055‑1
    [Google Scholar]
  34. KrishnamoorthyK. MohanR. KimS.J. Graphene oxide as a photocatalytic material.Appl. Phys. Lett.2011982424410110.1063/1.3599453
    [Google Scholar]
  35. LiH. HongW. CuiY. JiaQ. FanS. High photocatalytic activity of C-ZnSn(OH)6 catalysts prepared by hydrothermal method.J. Mol. Catal. Chem.201337816417310.1016/j.molcata.2013.06.012
    [Google Scholar]
  36. Nešić, J.; Manojlović, D.D.; Anđelković, I.; Dojčinović, B.P.; Vulić, P.J.; Krstić, J.; Roglić, G.M. Preparation, characterization and photocatalytic activity of lanthanum and vanadium co-doped mesoporous TiO2 for azo-dye degradation.J. Mol. Catal. Chem.2013378677510.1016/j.molcata.2013.05.018
    [Google Scholar]
  37. RakshaK.R. AnandaS. MadegowdaN.M. Study of kinetics of photocatalysis, bacterial inactivation and • OH scavenging activity of electrochemically synthesized Se 4+ doped ZnS nanoparticles.J. Mol. Catal. Chem.201539631932710.1016/j.molcata.2014.10.005
    [Google Scholar]
  38. LiW. LiD. WangJ. ShaoY. YouJ. TengF. Exploration of the active species in the photocatalytic degradation of methyl orange under UV light irradiation.J. Mol. Catal. Chem.2013380101710.1016/j.molcata.2013.09.001
    [Google Scholar]
  39. VautierM. GuillardC. HerrmannJ.M. Photocatalytic degradation of dyes in water: Case study of indigo and of indigo carmine.J. Catal.20012011465910.1006/jcat.2001.3232
    [Google Scholar]
  40. MiaoT.T. GuoY.R. PanQ-J. The SL-assisted synthesis of hierarchical ZnO nanostructures and their enhanced photocatalytic activity.J. Nanopart. Res.2013156172510.1007/s11051‑013‑1725‑z
    [Google Scholar]
  41. AbramsB.L. WilcoxonJ.P. Nanosize semiconductors for photooxidation.Crit. Rev. Solid State Mater. Sci.200530315318210.1080/10408430500200981
    [Google Scholar]
  42. AleboyehA. AleboyehH. MoussaY. “Critical” effect of hydrogen peroxide in photochemical oxidative decolorization of dyes: Acid orange 8, acid blue 74 and methyl orange.Dyes Pigments2003571677510.1016/S0143‑7208(03)00010‑X
    [Google Scholar]
  43. NawawiW.I. NawiM.A. Carbon coated nitrogen doped P25 for the photocatalytic removal of organic pollutants under solar and low energy visible light irradiations.J. Mol. Catal. Chem.2014383-384839310.1016/j.molcata.2013.11.030
    [Google Scholar]
/content/journals/photocat/10.2174/2665976X03666220622121653
Loading
/content/journals/photocat/10.2174/2665976X03666220622121653
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test