Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2665-976X
  • E-ISSN: 2665-9778

Abstract

Introduction

The synthesis of bio-templated porous CuOQDs/gCN/C composites with controllable morphology and suitable energy band structure was successfully carried out a simple thermal condensation and hydrothermal method.

Methods

Dicyandiamide and cadmium chloride were selected as starting materials, while Hollyhock stem was chosen as the biological template. The results indicated that, in comparison to pure g-CN, g-CN/C had a rich porous structure and better-photogenerated carrier separation efficiency. The CuOQDs were anchored evenly on the surface of the g-CN, thus resulting in the formation of a greater number of reactive sites.

Results

The type-Z heterojunction formed between the CuOQDs and g-CN/C reduced the energy required for electron transition, thereby facilitating the separation of photo-generated electron-hole pairs. The highest photocatalytic degradation efficiency of CuOQDs/g-CN/C for tetracycline (TC) was 65.1%, which was 3.3 times that of pure g-CN.

Conclusion

In the photocatalytic process, the main reactive species is O−. The CuOQDs/g-CN/C synthesized by stem induction in multi-phase heterojunction form has a stable microstructure to improve the charge separation efficiency. Further, it represents practical photocatalytic environmental protection.

Loading

Article metrics loading...

/content/journals/photocat/10.2174/012665976X334005241021062812
2024-11-01
2025-11-16
Loading full text...

Full text loading...

References

  1. GuoJ. ShenC.H. SunJ. XuX-J. LiX-Y. FeiZ-H. LiuZ-T. WenX-J. Highly efficient activation of peroxymonosulfate by Co3O4/Bi2MoO6 p-n heterostructure composites for the degradation of norfloxacin under visible light irradiation.Separ. Purif. Tech.202125911810910.1016/j.seppur.2020.118109
    [Google Scholar]
  2. ShenC.H. ChenY. XuX.J. LiX.Y. WenX.J. LiuZ.T. XingR. GuoH. FeiZ.H. Efficient photocatalytic H2 evolution and Cr(VI) reduction under visible light using a novel Z-scheme SnIn4S8/CeO2 heterojunction photocatalysts.J. Hazard. Mater.202141612621710.1016/j.jhazmat.2021.12621734492974
    [Google Scholar]
  3. HasijaV. Singh, P.; Thakur, S.; Nguyen, V.H.; Van Le, Q.; Ahamad, T.; Alshehri, S.M.; Raizada, P.; Matsagar, B.M.; Wu, K.C.W. O and S co-doping induced N-vacancy in graphitic carbon nitride towards photocatalytic peroxymonosulfate activation for sulfamethoxazole degradation.Chemosphere202332013801510.1016/j.chemosphere.2023.13801536746247
    [Google Scholar]
  4. LiangC. WeiD. ZhangS. RenQ. ShiJ. LiuL. Removal of antibiotic resistance genes from swine wastewater by membrane filtration treatment.Ecotoxicol. Environ. Saf.202121011188510.1016/j.ecoenv.2020.11188533421714
    [Google Scholar]
  5. WuS. LiX. TianY. LinY. HuY.H. Excellent photocatalytic degradation of tetracycline over black anatase-TiO2 under visible light.Chem. Eng. J.202140612674710.1016/j.cej.2020.126747
    [Google Scholar]
  6. ZhengS. WangY. ChenC. ZhouX. LiuY. YangJ. GengQ. ChenG. DingY. YangF. Current progress in natural degradation and enhanced removal techniques of antibiotics in the environment: A review.Int. J. Environ. Res. Public Health202219171091910.3390/ijerph19171091936078629
    [Google Scholar]
  7. Kusiak-NejmanE. CzyżewskiA. WanagA. DubickiM. SadłowskiM. WróbelR.J. MorawskiA.W. Photocatalytic oxidation of nitric oxide over AgNPs/TiO2-loaded carbon fiber cloths.J. Environ. Manage.202026211034310.1016/j.jenvman.2020.11034332250819
    [Google Scholar]
  8. QuJ. ZhangW. BiF. YanS. MiaoX. ZhangB. WangY. GeC. ZhangY. Two-step ball milling-assisted synthesis of N-doped biochar loaded with ferrous sulfide for enhanced adsorptive removal of Cr(VI) and tetracycline from water.Environ. Pollut.202230611939810.1016/j.envpol.2022.11939835525521
    [Google Scholar]
  9. WangS. SongD. LiaoL. LiM. LiZ. ZhouW. Surface and interface engineering of BiOCl nanomaterials and their photocatalytic applications.Adv. Colloid Interface Sci.202432410308810.1016/j.cis.2024.10308838244532
    [Google Scholar]
  10. FanD. WangZ. YinM. LiH. HuH. GuoF. FengZ. LiJ. ZhangD. ZhuM. LiZ. Forming of organic/inorganic material heterojunction: Effectively improve the carrier separation rate and solar energy utilization rate.Physica B202467341548610.1016/j.physb.2023.415486
    [Google Scholar]
  11. YaoG. LiuY. LiuJ. XuY. Facile synthesis of porous g-C3N4 with enhanced visible-light photoactivity.Molecules2022276175410.3390/molecules2706175435335118
    [Google Scholar]
  12. FitoJ. KefeniK.K. NkambuleT.T.I. The potential of biochar-photocatalytic nanocomposites for removal of organic micropollutants from wastewater.Sci. Total Environ.202282915464810.1016/j.scitotenv.2022.15464835306069
    [Google Scholar]
  13. ZhaoC. RanF. DaiL. LiC. ZhengC. SiC. Cellulose-assisted construction of high surface area Z-scheme C-doped g-C3N4/WO3 for improved tetracycline degradation.Carbohydr. Polym.202125511734310.1016/j.carbpol.2020.11734333436186
    [Google Scholar]
  14. ZhaoJ. GeS. LiuL. ShaoQ. MaiX. ZhaoC.X. HaoL. WuT. YuZ. GuoZ. Microwave solvothermal fabrication of zirconia hollow microspheres with different morphologies using pollen templates and their dye adsorption removal.Ind. Eng. Chem. Res.201857123124110.1021/acs.iecr.7b04000
    [Google Scholar]
  15. TangF. LiuC. ChenF. QianJ. QiuY. MengX. ChenZ. Preparation of CdS-g-C3N4/C composites via hollyhock stem biotemplate and its photocatalytic property.Ceram. Int.20224819286142862110.1016/j.ceramint.2022.06.175
    [Google Scholar]
  16. LiuC. MaoD. PanJ. QianJ. ZhangW. ChenF. ChenZ. SongY. Fabrication of highly efficient heterostructured Ag-CeO2/g-C3N4 hybrid photocatalyst with enhanced visible-light photocatalytic activity.J. Rare Earths201937121269127810.1016/j.jre.2018.12.018
    [Google Scholar]
  17. JinT. LiuC. ChenF. QianJ. QiuY. MengX. ChenZ. Synthesis of g-C3N4/CQDs composite and its photocatalytic degradation property for Rhodamine B.Carbon Letters20223261451146210.1007/s42823‑022‑00382‑2
    [Google Scholar]
  18. Garg SolankiR. RajaramP. Theoretical analysis of XRD data by X-ray peak profile analysis for estimation of lattice strain and crystallite size and study of the effect of growth temperature in CdS nanoparticles.Mater. Today Proc.202147186384638810.1016/j.matpr.2021.08.172
    [Google Scholar]
  19. WangM. JinC. KangJ. LiuJ. TangY. LiZ. LiS. CuO/g-C3N4 2D/2D heterojunction photocatalysts as efficient peroxymonosulfate activators under visible light for oxytetracycline degradation: Characterization, efficiency and mechanism.Chem. Eng. J.202141612811810.1016/j.cej.2020.128118
    [Google Scholar]
  20. CadanF.M. RibeiroC. AzevedoE.B. Improving g-C3N4:WO3 Z-scheme photocatalytic performance under visible light by multivariate optimization of g-C3N4 synthesis.Appl. Surf. Sci.202153714790410.1016/j.apsusc.2020.147904
    [Google Scholar]
  21. ZhanX. ZhangZ. LinJ. XuJ. WangX. HongB. XiaY. ZengY. Surface atom rearrangement enabling graphitic carbon nitride/sodium alginate gel monolith for ultrafast completely photodegrading ciprofloxacin under visible light.Chem. Eng. J.202448915121810.1016/j.cej.2024.151218
    [Google Scholar]
  22. LiY. ChengC. YangY. DunX.J. GaoJ. JinX-J. A novel electrochemical sensor based on CuO/H-C3N4/rGO nanocomposite for efficient electrochemical sensing nitrite.J. Alloys Compd.20197982576477210.1016/j.jallcom.2019.05.137
    [Google Scholar]
  23. ZhangZ. GongL. ZhanX. HongB. WangX. XiaY. ZengY. Complete photodegradation of tetracycline induced by surface microenvironment of graphitic carbon nitride/silver phosphate.J. Environ. Chem. Eng.202412311258310.1016/j.jece.2024.112583
    [Google Scholar]
  24. AlenaziT.N. AlshariefH.H. AlmahriA. Al-ZahraniH.K. KatuahH.A. ShahR. SaadF.A. El-MetwalyN.M. Optimization on the heterogeneous photocatalytic degradation of Azorubine E122 dye using nanocomposite via CuO nanoparticles with sodium mordenite.J. Mol. Liq.202439612392610.1016/j.molliq.2023.123926
    [Google Scholar]
  25. ZengY. ZhanX. HongB. XiaY. DingY. CaiT. YinK. WangX. YangL. LuoS. Surface atom rearrangement on carbon nitride for enhanced photocatalysis degradation of antibiotics under visible light.Chem. Eng. J.202345213943410.1016/j.cej.2022.139434
    [Google Scholar]
  26. YangJ. LiuZ. WangY. TangX. Construction of a rod-like Bi2O4 modified porous g-C3N4 nanosheets heterojunction photocatalyst for the degradation of tetracycline.New J. Chem.202044239725973510.1039/D0NJ01922D
    [Google Scholar]
  27. HuC. HeJ. LiangJ. LinT. LiuQ. Heterogeneous photo-Fenton catalyst α-Fe2O3@g-C3N4@NH2-MIL-101(Fe) with dual Z-Scheme heterojunction for degradation of tetracycline.Environ. Res.2023231Pt 311631310.1016/j.envres.2023.11631337270080
    [Google Scholar]
  28. ManikandanV.S. HarishS. ArchanaJ. NavaneethanM. Fabrication of novel hybrid Z-Scheme WO3@g-C3N4@MWCNT nanostructure for photocatalytic degradation of tetracycline and the evaluation of antimicrobial activity.Chemosphere2022287Pt 313205010.1016/j.chemosphere.2021.13205034583295
    [Google Scholar]
  29. WangZ. WangH. WangZ. HuangD. QinH. HeY. ChenM. ZengG. XuP. Ferrocene modified g-C3N4 as a heterogeneous catalyst for photo-assisted activation of persulfate for the degradation of tetracycline.Colloids Surf. A Physicochem. Eng. Asp.202162612702410.1016/j.colsurfa.2021.127024
    [Google Scholar]
  30. HuangL. LiuH. ZhangT.C. WangY. YuanS. Peroxymonosulfate-Assisted BiVO4 /Exfoliated g-C3N4 heterojunction for high-performance photodegradation of tetracycline induced by visible light.Ind. Eng. Chem. Res.20226144164181643010.1021/acs.iecr.2c02458
    [Google Scholar]
  31. WagnerC.D. GaleL.H. RaymondR.H. Two-dimensional chemical state plots: A standardized data set for use in identifying chemical states by x-ray photoelectron spectroscopy.Anal. Chem.197951446648210.1021/ac50040a005
    [Google Scholar]
  32. ZhanX. ZengY. XuJ. XiaY. WangX. TaoF. OuyangJ. LiH. YangL. LuoS. HongB. Tailoring the three-phase microenvironment surface to induce carbon nitride oxide generating ·O2– with 100% selectivity for ultrafast photodegradation tetracycline under visible light.Chem. Eng. J.202346414256410.1016/j.cej.2023.142564
    [Google Scholar]
  33. KarthikP. Naveen KumarT.R. NeppolianB. Redox couple mediated charge carrier separation in g-C3N4/CuO photocatalyst for enhanced photocatalytic H2 production.Int. J. Hydrogen Energy202045137541755110.1016/j.ijhydene.2019.06.045
    [Google Scholar]
  34. ZhangH. ZengY. WangX. ZhanX. XuJ. JinA. HongB. Sea-Urchin carbon nitride with carbon vacancies (C-v) and oxygen substitution (O-s) for photodegradation of Tetracycline: Performance, mechanism insight and pathways.Chem. Eng. J.202244613705310.1016/j.cej.2022.137053
    [Google Scholar]
  35. KadiM.W. MohamedR.M. IsmailA.A. BahnemannD.W. Soft and hard templates assisted synthesis mesoporous CuO/g-C3N4 heterostructures for highly enhanced and accelerated Hg(II) photoreduction under visible light.J. Colloid Interface Sci.202058022323310.1016/j.jcis.2020.07.00132683119
    [Google Scholar]
  36. LiN. LiuX. ZhouJ. ChenW. LiuM. Encapsulating CuO quantum dots in MIL-125(Ti) coupled with g-C3N4 for efficient photocatalytic CO2 reduction.Chem. Eng. J.202039912578210.1016/j.cej.2020.125782
    [Google Scholar]
  37. ZhanX. ZengY. ZhangH. WangX. JinD. JinH. LuoS. YangL. HongB. The coral-like carbon nitride array: Rational design for efficient photodegradation of tetracycline under visible light.J. Environ. Chem. Eng.202311110920110.1016/j.jece.2022.109201
    [Google Scholar]
/content/journals/photocat/10.2174/012665976X334005241021062812
Loading
/content/journals/photocat/10.2174/012665976X334005241021062812
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test